
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Path Planning Strategies for UAVS in 3D Environments / DE FILIPPIS, Luca; Guglieri, Giorgio; Quagliotti, Fulvia. - In:
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 0921-0296. - STAMPA. - 65:1-4(2012), pp. 247-264.
[10.1007/s10846-011-9568-2]

Original

Path Planning Strategies for UAVS in 3D Environments

Publisher:

Published
DOI:10.1007/s10846-011-9568-2

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2466579 since:

Springer

Path Planning Strategies for UAVS in 3D Environments

Luca De Filippis · Giorgio Guglieri ·
Fulvia Quagliotti

Abstract The graph-search algorithms developed
between 60s and 80s were widely used in many
fields, from robotics to video games. The A*
algorithm shall be mentioned between some of
the most important solutions explicitly oriented
to motion-robotics, improving the logic of graph
search with heuristic principles inside the loop.
Nevertheless, one of the most important draw-
backs of the A* algorithm resides in the heading
constraints connected with the grid characteristics.
Different solutions were developed in the last
years to cope with this problem, based on post-
processing algorithms or on improvements of the
graph-search algorithm itself. A very important
one is Theta* that refines the graph search al-
lowing to obtain paths with “any” heading. In
the last two years, the Flight Mechanics Research
Group of Politecnico di Torino studied and im-
plemented different path planning algorithms. A

L. De Filippis (B) · G. Guglieri · F. Quagliotti
Dipartimento di Ingegneria Aeronautica e Spaziale,
Politecnico di Torino, Corso Duca Degli Abruzzi 24,
10129 Turin, Italy
e-mail: luca.defilippis@polito.it

G. Guglieri
e-mail: giorgio.guglieri@polito.it

F. Quagliotti
e-mail: fulvia.quagliotti@polito.it

Matlab based planning tool was developed, col-
lecting four separate approaches: geometric pre-
defined trajectories, manual waypoint definition,
automatic waypoint distribution (i.e. optimizing
camera payload capabilities) and a comprehen-
sive A*-based algorithm used to generate paths,
minimizing risk of collision with orographic ob-
stacles. The tool named PCube exploits Digital
Elevation Maps (DEMs) to assess the risk maps
and it can be used to generate waypoint se-
quences for UAVs autopilots. In order to improve
the A*-based algorithm, the solution is extended
to tri-dimensional environments implementing a
more effective graph search (based on Theta*). In
this paper the application of basic Theta* to tri-
dimensional path planning will be presented. Par-
ticularly, the algorithm is applied to orographic
obstacles and in urban environments, to eval-
uate the solution for different kinds of obsta-
cles. Finally, a comparison with the A* algorithm
will be introduced as a metric of the algorithm
performances.

Keywords Path planning · A* · Theta* ·
UAVs · 3D environments

1 Introduction

Path planning has been one of the most important
elements of mission definition and management of

1

manned flight vehicles and it became crucial after
birth and growth of Unmanned Aerial Vehicles
(UAVs), frequently exploiting autonomous flight
capabilities. Mission tasks, mission constraints and
platform characteristics drive the mission manage-
ment system and path planning is subject to the
same constraints, being part of the loop. As a
matter of fact, the path planning strategy is chosen
to improve computational time and effectiveness
of the system and has to be combined with the
other elements in order to comply with the mis-
sion requirements.

Generally, path planning aims to generate a
real-time trajectory to a target, avoiding obstacles
or collisions (assuming reference flight-conditions
and providing maps of the environment), but also
optimizing a given functional under kinematic
and/or dynamic constraints. Universities, research
centres and industries developed solutions for
different planning requirements: performances
optimization, collision avoidance, real-time plan-
ning or risk minimization. Several algorithms were
developed for robotic systems and ground vehi-
cles. They took hints from research fields like
physics for potential field algorithms [2, 21], math-
ematics for probabilistic approaches [17], or com-
puter science for graph search algorithms [11].
Each family of algorithms was also tailored for
the path planning of UAVs, and future work will
enforce the development of new strategies.

Nevertheless, in order to implement an effec-
tive path planning strategy, a deep analysis of
various contributing elements is needed. Mission
tasks, required payload and surveillance systems
drive the platform choice, but platform character-
istics strongly influence the path. As an example,
quad-rotors kinematics gives hovering capabilities
to these platforms. This feature permits to re-
lax turning constraints on the path (which repre-
sents a crucial problem for fixed-wing vehicles).
The type of mission defines the environment for
planning actions, the path constraints (mountains,
hills, valleys, ...) and the required optimization
process. The need for off-line or real-time re-
planning may also substantially revise the path
planning strategy for the selected type of missions.
Finally, the computational performances of the
Remote Control Station (RCS), where the mis-
sion management system is generally running, can

influence the algorithm selection and design, as
time constraints can be a serious operational issue.

Graph search algorithms were developed for
computer science to find the shortest path be-
tween two nodes of connected graphs. They were
designed for computer networks to develop rout-
ing protocols and were applied to path planning
through decomposition of the path in waypoint
sequences. The optimization logic behind these al-
gorithms attains the minimization of the distance
covered by the vehicle, but none of its perfor-
mances or kinematic characteristics is optimized
along the path. After the discretization of the
environment, these algorithms threat each cell of
the mesh as a graph node and search the shortest
path with a “greedy” logic: the path is obtained
step-by-step and only a reduced number of cells
are analysed to define the following steps. As a
matter of fact, these algorithms don’t try to find
the real optimum path but generate a subopti-
mal solution in order to reduce computational
time. The first positive feature of these solvers
is their simplicity, which implies reduced com-
putational time. Hence, these algorithms can be
integrated in complex mission management sys-
tems for multitask platforms or vehicles. The
low computational requirements are strongly con-
nected with the re-planning capabilities. Exploit-
ing graph search algorithms, the path can be up-
dated along the mission, taking into account the
modification or evolution of physical constraints.
Therefore, re-planning gives road to different ap-
plication fields, like the coordination of multiple
agents (formations and even swarms as an ex-
ample). For this kind of application the task of
each agent shall be assigned synchronizing with
the others, in order to cover efficiently the mission
tasks and the surveillance area. The paths can be
reassigned during the mission, according to the
overall coordination, so re-planning must be fast
and effective. As mentioned before, graph search
algorithms generate the path neglecting vehicle’s
characteristics. This approach allows planning of
the path for any moving or flying vehicle, but
doesn’t guarantees match of the path with turn
and climb limitations. This drawback should be
faced using smoothing algorithms to adapt locally
the path to the platform characteristics through
single waypoint reallocation, but more effective

2

solutions where developed introducing the plat-
form characteristics inside the path planning loop.

With the potential field algorithms the envi-
ronment is modelled to generate attractive forces
toward the goal and repulsive ones around the
obstacles. The vehicle motion is forced to follow
the energy minimum respecting some dynamic
constraints connected with the platform charac-
teristics [21]. As a matter of fact these algorithms
give smoothed and flyable paths, avoiding static
and dynamic obstacles according with the field
complexity. In the last 20 years they have been
widely investigated and interesting applications
have been published [12]. Even tough they are a
promising solution for path planning and collision
avoidance their application to the here-presented
problem seemed hard due to their tendency to
local minima on complex environments.

The use of evolutionary algorithms for vehicles
path optimization is another important solution
permitting to apply kinematic constraints to the
path. Using Splines or random threes to model
the trajectory, these algorithms can reallocate the
waypoint sequence to generate optimum solu-
tions under constraints on complex environments
[10, 16]. Being interesting and flexible, the evo-
lutionary algorithms are spreading on different
planning problems, but their solving complexity
is paid with a heavy computational effort [3].
Looking for an algorithm to manage complex en-
vironments and large amount of data on small
RCSs, the choice of graph-search algorithm for
path planning, together with local optimization
algorithm to tailor the path on the platform char-
acteristics looked reasonable. Also, graph search
algorithms are a powerful help for planning of
long-term path, where local kinematic constraints
reduce their penalization increasing the distance
between successive waypoints (as grid spacing of
the solution is at least one order of magnitude
larger than turn or climb radius).

A Matlab based planning tool was developed,
assembling four methods: geometric predefined
trajectories, manual waypoint definition, auto-
matic waypoint distribution (i.e. optimizing opti-
cal payload capabilities) [5] and a comprehensive
A*-based algorithm to generate paths, minimiz-
ing risk of collision with orographic obstacles [4].
The tool named PCube exploits Digital Elevation

Maps (DEMs) to obtain the risk map. It can be
used to generate waypoint sequences for UAVs in
a format compatible with commercial autopilots.
The A*-based algorithm was improved, applying
the solver to tri-dimensional environments and
then implementing a more effective graph search
solution: the Theta* algorithm. The primary pur-
pose was generating waypoint sequences ready to
be uploaded to commercial autopilots for micro
and mini fixed-wing UAVs, mainly operating in
alpine areas. In this context, the graph search algo-
rithms resulted to be the best solution as they are
able to generate paths on wide sectional graphs
with sustainable computational time. Moreover,
small scale UAVs are often linked with com-
pact and man-portable RCSs. These ground seg-
ments have reduced computational capabilities.
Finally, the distribution of orographic-obstacles is
re-constructed starting from DEMs mapping of
the territory. A discrete domain is obtained and
the interpretation of these maps as graphs results
to be the simplest solution.

From late 50s wide research activity was per-
formed on graph-search algorithms within com-
puter science, trying to support the design of
computer networks. Soon after, the possibility of
their application in robotics resulted evident and
new solutions were developed to implement al-
gorithms tailored for autonomous agents. As a
consequence, research on graph-search methods
brought new solutions and still continues nowa-
days. Therefore, an accurate analysis is required
to understand advantages and drawbacks of each
proposed approach, in order to find possible
application-oriented improvements.

It is well known that a graph is made of
nodes connected with arcs that can be directed
or undirected. In graph search, a cost is con-
nected with the motion along each arc. These
algorithms analyse a given number of nodes sur-
rounding the actual position to evaluate the best
successive step in terms of movement cost. The
Dijkstra algorithm is one of the first greedy al-
gorithms for graph search and permits to find
the minimum path between two nodes of a graph
with positive arc costs [6]. An evolution of the
Dijkstra algorithm is the Bellman-Ford algorithm
[1, 9]; this method finds the minimum path on ori-
ented graphs with positive, but also negative costs.

3

Another important method is the Floyd-Warshall
algorithm [8, 20], that finds the shortest path
on a weighted graph with positive and negative
weights, but it reduces the number of evaluated
nodes compared with the Dijkstra algorithm. The
A* algorithm is one of the most important solvers
developed between 50s and 70s, explicitly ori-
ented to motion-robotics. A* improved the logic
of graph search with heuristic evaluations inside
the loop [11]. Together with the evaluation of the
distance between the current node and the neigh-
bours, it also considers the distance between the
neighbours and the target end node, as balance for
the estimation of the following steps.

The graph-search algorithms developed be-
tween 1960s and 1980s were widely used in many
fields, from robotics to video games, assuming
known deterministic positions of the obstacles on
the map. This was a logic assumption for many
planning problems, but represented a limit when
robots moved in unknown environments. This
problem excited research on algorithms able to
face with map modifications during the path exe-
cution. Particularly, results on sensing robots, able
to detect obstacles along the path, induced re-
search on algorithms used to re-plan the trajectory
with a more effective strategy than static solvers
were able to do. Dynamic re-planning with graph
search algorithms was introduced. D* (Dynamic
A*) was published in 1993 and it represented
the evolution of A* for re-planning [18]. When
changes occur in the nodes of the graph, only the
new costs of the nodes are updated, exploiting the
previous path. D* expands (the expansion of a
node is the analysis of its neighbours to evaluate
the cost of motion from the current node to the
neighbour) less nodes than A* because it has
not to re-plan the whole path through the end.
D* focused was the evolution of D*, published
by the same authors and developed to improve
its characteristics [19]. This algorithm improved
the expansion, reducing the amount of analysed
nodes and the computational time. Then, research
on dynamic re-planning brought to the develop-
ment of Lifelong Planning A* (LPA*) and D*
Lite. They are based on the same principles of
D* and D* focused, but they recall the heuristic
aspect of A* to improve the speed of the search
process [13, 14]. They are very similar and can

be described together. LPA* and D* Lite exploit
an incremental search method to update modified
nodes, recalculating only the start distances (i.e.
distance from the start cell) that have changed or
have not been calculated before. These algorithms
exploit the change of consistency of the path to
replan.

A* evaluates iteratively the moving cost from
the current cell to one of its neighbours through
a defined cost function. This function (F) is ob-
tained summing up two terms:

• H proportional to the heuristic-estimate dis-
tance from the evaluated cell to the goal.

• G proportional to the distance from the cur-
rent cell to the evaluated one.

The G-value is 0 for the starting cell and it in-
creases while the algorithm expands successive
cells (i.e. at each step the algorithm sum to the
moving cost from the starting cell to the current
one, the distance from the current cell to one of
its neighbours).

To enforce convergence the H-value has to be
admissible and the H-function has to be monotone
or consistent. In other words, at each step the H-
value of a cell has not to overestimate the eval-
uated distance from the goal and H has to vary
along the path in such a way that:

H (N) ≤ H (C) + G

where:

H(N) heuristic distance from the evaluated cell
to the goal;

H(C) heuristic distance from the current cell to
the goal;

G distance from the current cell to the eval-
uated one.

When nodes are updated, their G-values can
change. The algorithm records the G-value of the
preceding nodes (the predecessors) and the value
of the updated nodes (the new nodes), comparing
them to verify consistency. The change in consis-
tency of the path drives the algorithm search.

Dynamic algorithms allowed new applications
of graph search methods to path planning of ro-
botic systems. More recently, other drawbacks

4

and possible improvements were discovered. Par-
ticularly, one of the most important drawbacks
of the A* algorithm resides on the heading con-
straints connected with the grid characteristics.
The graph obtained from a surface map is a mesh
of eight-connected nodes with undirected arcs.
Moving from the current node of the graph to the
next means to move the vehicle from a position to
another one. Considering two nodes of the graph
and connecting them with a straight line (i.e. there
aren’t obstacles between them), if the slope of the
line a is different from

a �= n · π

4
0 ≤ n ≤ +∞ n ∈ N

it is found that the A* algorithm is not able to
find the real shortest path between the nodes
(the straight line itself). A* generates solutions
strongly suboptimal because of this limit, which
comes out in any application to path planning.
Suboptimal solutions are paths with continuous
heading changes and useless vehicle steering (in-
creasing control losses) that require some kind
of post processing to become feasible. Different
approaches were developed to cope with this
problem, based on post-processing algorithms or
on improvements of the graph-search algorithm
itself. Very important examples are Field D* [7]
and Theta* [15]. These algorithms refined the
graph search obtaining generalized paths with
“any” heading.

To exploit Field D*, the map must be meshed
with cells of given geometry and the algorithm
propagates information along the edges of the
cells. Field D* evaluates neighbours of the current
cell like D*, but it also considers any path from
the cell to any point along the perimeter of the
neighbour. A functional defines the point on the
perimeter characterizing the shortest path. With
this method a wider range of headings can be
achieved and shortest paths are obtained. It is
known that graph search algorithms choose per
steps from a node to the next. Defining parent the
previous node, just left to arrive at the current
position, and neighbours the nodes evaluated for
the successive step, Theta* evaluates the distance
from the parent to one of the neighbours for the
current cell so that the shortest path is obtained.

When the algorithm expands the search, it eval-
uates two types of paths: from the current node
to the neighbour (like in A*) and from the parent
of the current node to the neighbour. As a con-
clusion, paths obtained by the Theta* solver are
smoother and shorter than those generated by A*.

Apparently, Theta* is the most promising so-
lution for the path planning of fixed-wing UAVs,
used for ground monitoring and surveillance. As
a matter of fact, other graph search algorithms
were not considered due to their primitive con-
cepts and considering that the computational
performances of current digital computers have
overcome many implementation issues. Dynamic
algorithms do not match the present application,
being addressed for ground robots equipped with
sensing and embedded re-planning capabilities.
Furthermore, the application of these algorithms
for static path planning is less effective than us-
ing an advanced static solver [15]. Considering
long-range flights over highlands and alpine ar-
eas, it is assumed that we do not need real-time
re-planning, as the map is invariable during the
mission. Furthermore, using DEMs as a basis to
evaluate orographic obstacles, implies that build-
ing the graph with nodes instead of cells is easier
and therefore Theta* becomes the best approach
to the solution.

In this paper the application of a basic ver-
sion of Theta* to tri-dimensional path planning
is presented. The algorithm is applied both to
orographic obstacles and to urban environments,
in order to evaluate its responsiveness to different
kinds of obstacles. Finally, comparison with the
A* algorithm is presented to outline the advan-
tages of this solution method for path planning in
tri-dimensional environments.

2 Algorithm Description

2.1 Modelling of the Tri-Dimensional
Environment

Two subroutines were developed to elabo-
rate maps and to produce flight paths in tri-
dimensional environments, either for orographic
obstacles or for urban environments.

5

The first subroutine exploits a DEM map to
define the altitude of each node (mesh) and an im-
age to present the area view to the user. As a mat-
ter of fact, two types of maps are loaded: the first
is a geo-referenced graphic representation of the
environment (Fig. 1) and the second is the DEM
map of the same area. The two maps are matched
to obtain the tri-dimensional representation and
to build the mesh of the graph (Fig. 1). Start and
target nodes can be assigned using contours on the
geotiff (Fig. 1) or they can be given in external
input text-files.

DEM maps are text-files listing latitude, longi-
tude and elevation of a given number of points
composing the map. These points are matched
with pixels of the geotiff image, setting the width
and height of the map equal to the number of
horizontal and vertical points. The elevation of
each point on the map (being equally spaced in
the horizontal and vertical direction according to
the map resolution) is also included in the DEM
digital formats. We define the environment matrix
as the search graph. This graph is a tri-dimensional
matrix with a number of columns and rows equal
to the width and height of the DEM file. Hence,
columns and rows of the environment matrix are
related with longitude and latitude (x and y axes).
The third dimension (z axis) of the environment-
matrix is defined according to the altitude of the
area, the flight level limitations and the vertical
rates (climbing speed). These are the only air-
craft characteristics included in the path-planning
algorithm.

Vertical and horizontal spacing are fixed by
the resolution of DEM files and they define the
minimum distance between successive nodes. This
is considered the minimum distance covered by
the aircraft moving from a node to the next with
constant airspeed. Resolution along the third di-
mension is assigned according to the nominal ver-
tical speed of the vehicle:
⎧
⎪⎨

⎪⎩

�h = �x · tan γ

γ = arcsin
(

RC
V

)

where:

�h altitude spacing,
�x = �y horizontal and vertical spacing,

a

b

c

Fig. 1 a Graphic representation of the environment.
b DEM tri-dimensional representation. c Contour graph

γ climb angle,
RC rate of climb,
V flight speed.

6

Using the rate of climb to assign the spacing along
the third dimension of the environment matrix
guarantees the feasibility of climbs and fixes the
altitude resolution (i.e. the number of cells along
the altitude above the ground level):

N3 = hmax − hmin

�h

where:

N3 number of cells along the third dimension
of the environment matrix.

hmax maximum DEM altitude,
hmin minimum DEM altitude,

For a given row and column of the matrix
(latitude and longitude of a given position), values
along the third dimensions are different from zero
below the altitude given in the DEM file and
they are equal to zero from this altitude to the
upper flight limit. To reduce the computational
requirements, the user may define or restrict the
altitude range of the environment matrix. With
this option, the lower limit is fixed to the minimum
between the altitude of the start and the target
node, while the upper limit is fixed summing
a margin to the maximum altitude between the
same nodes.

A simple graphical user interface was designed
for the urban environments, able to define the size

Fig. 2 a Urban
environments GUI.
b Urban environments
tri-dimensional
representation

a

b

7

of the map and to draw the obstacles interactively.
The obstacles are represented as parallelepipeds
or cubes and the interface is used to assign their
dimensions and position on the map (Fig. 2).

Once the obstacles are drawn on the map the
sequence used to generate the environment ma-
trix is the same, but the lower altitude limit is set to
zero and the upper limit is defined with a margin
added up to the altitude of the larger obstacle.
The model of urban obstacles is very simple, but
it is useful to test the algorithm with maps repro-
ducing the characteristics typical of these cluttered
environments.

2.2 Theta* and the Minimum Path Search

The description of the Theta* algorithm is pre-
sented in Ref. [15], but it is useful to outline the
adaptation of the algorithm to path planning of a
fixed-wing UAV in a tri-dimensional environment.

The choice of Basic Theta* (first release later
updated with following versions) is due to the
results published by the authors [15] comparing
various algorithms and giving estimates for the
computational load, number of heading changes
and path length. Another factor is also the struc-
ture of the graph, made of nodes instead of cells.
This feature makes the use of the successive ver-
sions of the algorithm more complicated, being
mainly addressed for cell-structured graphs.

The first subroutine that needs to be described
is called mask. This subroutine was designed to
choose the neighbours of a node being expanded.
If we consider a cube of 26 nodes around the

New nodes

Unfeasible nodes

Obstacles

Nodes on the closed list

Nodes on the open list

Current node

Fig. 3 First strategy for LOS verification

1

2

3

4

5

6

1 2 3 4 5 6
Neighbour

Parent

Δr

Fig. 4 First strategy for LOS verification

current one (Fig. 3), mask shall avoid unfeasible
nodes (i.e. nodes out of the mesh limits or nodes
requiring unfeasible trajectories), nodes includ-
ing obstacles and nodes included into the closed
list.

For the sake of clarity it’s useful to recall the
definition of open and close lists in graph search
algorithms. The open list collects the nodes ex-
panded along the graph search. At each step the
algorithm evaluates the nodes surrounding the
current one putting them into the open list and
sorting the list with respect to the cost-function

Neighbour

Parent

X

Y

Fig. 5 Second strategy for LOS verification

8

Fig. 6 Geometric ambiguity between nodes

value. The first element of the sorted list is moved
in the closed list. This list contains the best neigh-
bour of the node expanded at each step. These
nodes are removed from the open list and never
evaluated again and the path is build with nodes
coming from this list.

Theta* calls mask for each expanded node
along the path search. Therefore, its runtime
strongly influences the overall computational
time. First implementations used a tri-dimensional
matrix, the OPCL matrix, to assign the status of
each node (i.e. to record if one node was inside
the open or the closed list) and the evaluation of
the nodes listed in the closed list was not included
in mask (i.e. avoiding to load the OPCL matrix).
Mask was used only to avoid unfeasible nodes

Table 1 Convergence
tests for different gain
factors

Test α β Processing time [s] α/β

001 0.01 0.01 No convergence 1.0
002 0.01 0.05 No convergence 5.0
003 0.001 0.005 No convergence 5.0
004 0.01 0.07 No convergence 7.0
005 0.001 0.007 No convergence 7.0
006 0.01 0.08 No convergence 8.0
007 0.001 0.008 No convergence 8.0
008 0.01 0.09 13.0 9.0
009 0.001 0.009 11.4 9.0
010 0.01 0.10 4.2 10.0
011 0.001 0.01 4.1 10.0
012 0.01 0.11 4.4 11.0
013 0.001 0.011 3.7 11.0
014 0.01 0.15 0.68 15.0
015 0.001 0.015 0.66 15.0
016 0.0001 0.001 4.00 10.0
017 0.00001 0.0001 4.04 10.0
018 0.100 1 3.18 10.0
020 0.100 1 4.03 10.0
021 1.000 10 2.01 10.0
024 1.000 10 4.17 10.0
025 0.100 1 1.49 10.0
029 0.100 1 2.37 10.0
030 0.100 1 2.72 10.0
032 0.010 0.10 6.1 10.0
032 0.010 0.30 6.94 30.0
033 0.010 0.40 6.88 40.0
034 0.005 0.20 7.07 40.0
035 0.002 0.08 7.1 40.0
036 0.021 1.00 No convergence 50.0
045 0.030 1.50 No convergence 50.0
049 0.040 2.40 No convergence 60.0
052 0.050 3.00 No convergence 60.0

9

Table 2 Path 1 (characteristics)

Path 1 A* Theta*

Path length (m) 4850 4618
Computational time (s) 1.203 1.393
Number of heading changes 42 13
Number of altitude changes 159 15
Number of path points 358 17

(a priori) and nodes including obstacles (scan-
ning at each cycle the environment matrix). Then,
the environment matrix was extended in order
to indicate also the status of the nodes, assigning
three different states to the matrix elements. Us-
ing 1 to define an obstacle, 2 to define a position
inside the open list and 3 to define a position in-
side the closed list, it is possible to use the same tri-
dimensional matrix to evaluate the obstacles and
the status of a single node. Revising the content of
the environment matrix reduced the running time
of mask (together with the overall computational
time).

Another important routine used by Theta*
evaluates the line of sight between nodes and is
called LoS. As it was mentioned before, Theta*
evaluates two paths to define movements from a
node to the next one. The first is from the current
node to its neighbour and the second is from the

parent of the current node to the same neighbour.
To evaluate the last path the algorithm verifies the
presence of obstacles between the nodes. In other
words, the algorithm checks that the path between
the parent of the current cell and its neighbour
is free. If the path is free the two nodes are con-
nected by line of sight (LOS). Verify the LOS on a
mesh made of nodes instead of cells is a problem.
The use of nodes gives the possibility to neglect
information between the nodes and simplify the
mesh construction, but it has some drawbacks.
Without refined details between the nodes, a line
connecting two of them can pass near the obsta-
cles (i.e. interdicted nodes) without touching them
(Fig. 4). Therefore, evaluating LOS only on the
nodes walked by a line (orange coloured in Fig. 4),
if any, can generate paths that cross obstacles.
On the other hand, spotting the significant nodes
representing obstacles sufficiently near to the line
of sight (green coloured in Fig. 4) on a discrete
domain is not easy, particularly if the domain is
tri-dimensional.

The first strategy implemented to find sig-
nificant nodes in LOS was based on the analysis
of the nodes along lines parallel to the local path.
This means that, starting from the nodes used to
verify the LOS, the subroutine starts checking the
other nodes crossed by this line (continuous line

Fig. 7 Path 1: 3D
representation

10

in Fig. 4) and continues checking the presence
of further nodes on lines that are parallel to the
previous one (dashed lines in Fig. 4) within a
given range (�r). Figure 4 is a bi-dimensional
example that gives evidence of the sensitivity of
the algorithm, setting the range in order to eval-
uate accurately the LOS. For a tri-dimensional
path this problem is even more complicate and
requires a different approach. The line connecting
parent and neighbour is used as an approxima-
tion to evaluate the significant nodes (Fig. 5).
Given the line equation and using subscript p for
parent coordinates and subscript n for neighbour
coordinates:

y = a + b x where a = ypxn − ynxp

xn − xp
and

b = yn − yp

xn − xp

Substituting the x coordinates of nodes between
parent and neighbour inside the equation and
rounding results with the lower and higher integer,
the orange nodes in Fig. 4.

Figure 5 are obtained. These are the nodes
checked by the LoS subroutine in the bi-
dimensional case. The same method is applied to
the tri-dimensional space where two equations are
needed:

y = a1 + b 1x where a1 = ypxn − ynxp

xn − xp
and

b 1 = yn − yp

xn − xp

z = a2 + b 2x where a2 = zpxn − znxp

xn − xp
and

b 2 = zn − zp

xn − xp

Rounding the results obtained for the two co-
ordinates, the LOS is verified also in the tri-
dimensional case.

The approach used to verify the line of
sight is heuristic, therefore space coordinates are
independent one from another and their corre-
lation looks forced, but it was verified that di-

viding the general condition in mono, bi and tri
dimensional sub-conditions (according to parent
and neighbour coordinates) good solutions are
obtained and the line of sight is verified substan-
tially everywhere:

•

⎧
⎪⎪⎨

⎪⎪⎩

xp �= xn

yp �= yn

zp �= zn

(a)

(b)

Fig. 8 a Path 1: comparison between A* and Theta*
(longitude–latitude plane). b Path 1: comparison between
A* and Theta* (flight altitude)

11

•

⎧
⎪⎪⎨

⎪⎪⎩

xp �= xn

yp �= yn

zp = zn

or

⎧
⎪⎪⎨

⎪⎪⎩

xp �= xn

yp = yn

zp �= zn

or

⎧
⎪⎪⎨

⎪⎪⎩

xp = xn

yp �= yn

zp �= zn

•

⎧
⎪⎪⎨

⎪⎪⎩

xp �= xn

yp = yn

zp = zn

or

⎧
⎪⎪⎨

⎪⎪⎩

xp = xn

yp �= yn

zp = zn

or

⎧
⎪⎪⎨

⎪⎪⎩

xp = xn

yp = yn

zp �= zn

To complete the description of Theta*, the effect
of ambiguity between nodes must be introduced.
Ambiguities can be geometrical or functional and
arise when two or more nodes have the same
cost-function value. Basic Theta* exploits the cost
function of A* to expand the current cell. This
function (F) is made of two terms:

F = α · G + β · H

G moving cost from the current node to the
neighbour,

H moving cost (estimated) from the current
node to the last (target),

α, β gain factors.

In order to describe the generation of ambigu-
ities, a strategy to estimate H and G for a given
node in the bi-dimensional case is introduced. For
simplicity, consider that estimating H is equiv-
alent to fixing the cost for each horizontal or

vertical displacement from the node to the target
and multiplying this value for β. Then evaluate G,

to move from the current node to one of the neigh-
bours, fixing the cost of an horizontal/vertical dis-
placement with respect to a diagonal movement,
summing it to the G-value of the current node and
multiplying the result for α. Otherwise evaluate
G measuring the distance between the parent of
the current node to one of its neighbours with the
same method used to evaluate H and multiplying
the value for α. Figure 6 shows an example of
geometrical ambiguity, where the current node is
red coloured, the target is orange and the green
nodes are two of the eight neighbours. These
neighbours have the same value of the cost func-
tion, having equal distances from the current node
and the target one. For the cube of nodes in Fig. 6,
the third dimension increases the ambiguities and
the number of neighbours with same F-value
grows up.

Functional ambiguity is a more complex prob-
lem and regards possibility to find cells with the
same F-value, being far from each other, with
different parents and neighbours. This kind of
ambiguity is due to the structure of the cost func-
tional, obtained summing up the two components
H and G independently, both assuming similar
values and varying similarly. In other words, two

Fig. 9 Path 2: 3D
representation

12

cells can have a distance from the target and a
G-value combined in such a way to give the same
F-value. As for the geometrical ambiguity, the
tri-dimensional structure increases the problem,
but functional ambiguities grow substantially us-
ing Theta*. The algorithm evaluates the G-value
of two paths: from the current cell to one neigh-
bour and from the parent of the current cell to
the same neighbour, increasing the possibility to
find a combination of G and H giving the same
F-value.

(a)

(b)

Fig. 10 a Path 2: comparison between A* and Theta*
(longitude–latitude plane). b Path 2: comparison between
A* and Theta* (flight altitude)

A* and Theta* expand a node evaluating the
F-values of parents and placing them in the open
list. Then the algorithm sorts the list and choses
the cell with the smaller F-value, expands the
node and then places this node in the closed list.
If the graph search tends to converge, the al-
gorithm meets only geometrical ambiguities and,
randomly choosing one of the nodes with same
F-value, solves them automatically. Particularly
the algorithm moves to the closed list the first
node sorted into the open list according to the
sorting strategy. Then continues the expansion
converging to the solution. If the algorithm does
not tend to converge, it starts to add to the open
list nodes with geometrical but also functional
ambiguities. The algorithm expands each node
jumping from a point of the graph to another and
adding other nodes with same F-value. Ambigui-
ties increase and, if the graph is wide (like many
tri-dimensional graphs), the algorithm is not able
converge.

A first strategy to reduce the ambiguities re-
sides in a careful choice of the gain factors inside
the cost function. As a matter of fact the choice of
α andβ permits to separate the effects of G and H
over F, strongly reducing the loss of convergence.
Tests with different gain factors, applying the al-
gorithm to various maps were conducted and the
best ratio between the two gains was fixed to:

α

β
= 1

10

A set of tests using different gain ratios is re-
ported in Table 1. The results are obtained for the
assigned map, fixing the start and target nodes.
Other tests were also conducted changing these
assignments.

Table 3 Path 2 (characteristics)

Path 2 A* Theta*

Path length (m) 2776 2653
Computational time (s) 1.622 1.638
Number of heading changes 66 9
Number of altitude changes 174 8
Number of path points 220 11

13

Table 4 Urban path 1 (characteristics)

Urban path 1 A* Theta*

Path length (m) 287 269
Computational time (s) 5.718 3.081
Number of heading changes 15 2
Number of altitude changes 42 2
Number of path points 282 4

3 Results

In the chapter paths planned with the A* algo-
rithm are compared with the same paths obtained
using Theta* and its ability of improving the path
with comparable computational performance is
demonstrated. Path’s smoothing, obstacles sepa-
ration and covered distance are the parameters
used to evaluate the algorithms. Their application
to tri-dimensional environments is considered in
order to understand their merits and drawbacks,
even adding the vertical degree of freedom.

All the reported paths are obtained with the
MATLAB version 7.11.0 (R2010b), running on
MacBook Pro with Intel Core 2 Duo (2 ×
2.53 GHz), 4 Gb RAM and MAC OS X 10.5.8.

Two paths planned on alpine highlands are
reported (Aosta Valley): the first is a medium
distance path and the second is an orographic
obstacle separation. The first path shows the

ability of the algorithm to plan long tracks in
tri-dimensional environments, while the second
shows the approach to scaled obstacles.

Finally, other two paths generated in urban
environments are used to investigate separation
from obstacles and planning performance in clut-
tered environments.

3.1 Orographic Obstacles

Map characteristics:

• Number of points: 141,372.
• �lat: 10 m.
• �long: 10 m.
• �Z: 5 m.
• Environment matrix dimensions: 357 × 396 ×

54 (lat × long × Z).

Table 2 collects the characteristics of a medium
range planning exercise. The environment matrix
contains 7,634,088 nodes and the mean covered
distance is near to 5 km. The path obtained with
Theta* is shorter then that obtained with A*,
thanks to the strong reductions of heading and
altitude changes. This reduction is the key point
of the path search and filters out a huge num-
ber of nodes with their related heading and al-
titude changes. The computational time required
by Theta* is slightly higher, but the improvement

Fig. 11 Urban path 1: 3D
representation

14

on the path is winning. Indeed, the Theta*-based
path is smoother than the A*-based output and
it follows slopes and contours more efficiently as
shown in Figs. 7 and 8.

The second path crosses a rocky obstacle re-
quiring a steep altitude variation. In this case,
the impact on altitude changes of Theta* search
method is relevant and the path smoothing effect
is evident. The environment matrix contains
16,727,040 nodes and the mean covered distance
is 3 km.

(a)

(b)

Fig. 12 a Urban path 1: comparison between A* and
Theta* (X–Y plane). b Urban path 1: comparison between
A* and Theta* (flight altitude)

Map characteristics:

• Number of points: 152,064.
• �lat: 10 m.
• �long: 10 m.
• �Z: 5 m.
• Environment matrix dimensions: 384 × 396 ×

110 (lat × long × Z).

Figure 10 gives evidence that the path search
towards the target follows the local slope of the
terrain with small heading changes due to micro-
scale mountain peaks. Figures 9 and 10 show the
smoothing effects on the path and show the im-
provement in altitude change as already reported
in Table 3.

3.2 Urban Environments

Urban environments face the solution with dis-
crete obstacles (designed with sharp edges) set
within narrow and cluttered environments. In
the given exercise, the environment matrix has
9,990,000 nodes and distances between nodes are
�X = �Y = 1 m and �Z = 0.5 m (Table 4). The
first path is planned on a map with only one wide
building in the middle and with the starting and
target nodes selected to force the path across the
building. This is a test for graph search algorithms
experiencing convergence delays. The algorithm
is forced to expand the nodes along directions
far from the target with consequent dissipation of
computational time.

In this case Theta* is more effective then A*
in searching for the optimal path reducing the
computational time. Less heading and altitude
changes are required using Theta* (the distance
between start ant target nodes is 300 m). As for

Table 5 Urban path 2 (characteristics)

Urban path 2 A* Theta*

Path length (m) 264 247
Computational time (s) 1.047 1.176
Number of heading changes 14 4
Number of altitude changes 22 3
Number of path points 244 5

15

Fig. 13 Urban path 2: 3D
representation

the other cases, the smoothing effect is shown in
Figs. 11 and 12.

Map characteristics:

• Number of points: 90,000.
• �X: 1 m.
• �Y: 1 m.
• �Z: 0.5 m.
• Environment matrix dimensions: 300 × 300 ×

111 (X × Y × Z).

The second urban path is obtained reproducing
an environment with different kinds of buildings.
This field strongly stresses the FOV verification,
forcing the algorithm to check the separation from
buildings. Some paths exhibit penetration of the
smaller obstacles, taking up few nodes (difficult to
detect).

Map characteristics:

• Number of points: 90,000.
• �X: 1 m.
• �Y: 1 m.
• �Z: 0.5 m.
• Environment matrix dimensions: 300 × 300 ×

111 (X × Y × Z).

The environment matrix dimensions and the mean
path length are the same of the previous case
(Table 5). The computational time is substan-
tially reduced, together with heading and altitude
changes. Figures 13 and 14 show the paths ob-
tained with the two algorithms and outline the ca-
pability of the Theta* algorithm to connect points
with LOS exploiting any heading variation.

(a)

(b)

Fig. 14 a Urban path 2: comparison between A* and
Theta* (X–Y plane). b Urban path 2: comparison between
A* and Theta* (flight altitude)

16

4 Conclusions and Future Works

Implementing Theta* on 3D graphs requires fair
effort, struggling with some drawbacks. Current
results show that reasonable computational time
is required, considering the number of nodes used
in the graphs and the available computers. Then,
comparing the two graph search methods, the
advantages of Theta* become evident. This al-
gorithm reduces the length of the track avoid-
ing a considerable number of nodes, requiring
just a slightly larger computational time than A*.
Theta*-generated paths are smooth and useless al-
titude changes are avoided. When obstacles block
the path, Theta* is able to reduce the searching
time, exploiting a more effective nodal expansion
strategy.

Both algorithms don’t consider vehicle kine-
matics as part of the path generation. This is
the main issue for non-holonomic vehicles like
fixed-wing UAVs, requiring a smoothing process
to reallocate the waypoints sequences in order
to obtain flyable paths. A solution, adopted to
smooth the path according with turning radius
and rate of climb limitations is the use of the
Dubins curves. This is the current solution
adopted as post-smoother in the path planning
tools developed.

Another option, that is attractive for its low
computational impact, is the introduction of the
kinematic constraints inside the graph search algo-
rithm: the Dubins airplane model is implemented
as a constraint in the evaluation of the nodes,
combined with obstacles separation and command
optimization.

Future developments aim to implement more
effective approaches, even for the simulation of
the sense and avoid case. Safe paths (in terms
of separation from the static obstacles distributed
on the map) may be obtained introducing the
vehicle kinematics inside the waypoints sequence
elaboration by means of a Model Predictive ap-
proach, regenerating the output path piecewise.
Using a simple model of the aircraft it is possible
to generate an optimal path over a finite time
horizon, minimizing the distance with respect to
the reference path (given by the graph search
algorithm) while maintaining adequate separation
also from obstacles eventually detected by the

sensors. Within this approach the updated path is
also constrained by the vehicle’s kinematics.

However, within the current analysis, Theta*
still resulted the best choice for path planning on
graphs with the above described characteristics
(typical of alpine environments cluttered with ob-
stacles). Future work on this algorithm aims to
improve the LOS verification and the overcome of
ambiguities. The first task is mandatory for appli-
cations within urban environments, enforcing the
robustness of the solver. The second task requires
a deeper revision of the algorithm. The presence
of ambiguities is strictly connected with the al-
gorithm expansion method and with the graph’s
structure.

Acknowledgements This research work is part of the
project SMAT-F1 (Sistema per il Monitoraggio Avan-
zato del Territorio—Fase 1) funded by Regione Piemonte
(Italy).

References

1. Bellman, R.: On a routing problem. Q. Appl. Math.
16(1), 87–90 (1958)

2. Bertuccelli, L.F., How, J.P.: Robust UAV search for
environmentas with imprecise probability maps. In:
IEEE Conference of Decision and Control, Seville,
Spain (2005)

3. Capozzi, B.J.: Evolution-based path planning and man-
agement for autonomous UAVs. Ph.D. Dissertation,
University of Washington, USA (2001)

4. De Filippis, L., Guglieri, G., Quagliotti, F.: A minimum
risk approach for path planning of UAVs. J. Intell.
Robot. Syst. 1(2011), 203–222 (2011)

5. De Filippis, L., Guglieri, G., Quagliotti, F.: Flight
Analysis and Design for Mini-UAVs. XX AIDAA
Congress, Milano, Italy (2009)

6. Dijkstra, E.W.: A note to two problems in connexion
with graphs. Numer. Math. 1, 269–271 (1959)

7. Ferguson, D., Stentz, A.: Using interpolation to im-
prove path planning: the field D* algorithm. J. Field
Robot. 23(2), 79–101 (2006)

8. Floyd, R.W.: Algorithm 97: shortest path. Commun.
ACM 5(6), 345 (1962)

9. Ford, L.R., Jr., Fulkerson, D.R.: Flows in Networks.
Princeton University Press (1962)

10. Guglieri, G., Quagliotti, F., Speciale, G.: Optimal tra-
jectory tracking for an autonomous Uav. In: Automatic
Control in Aerospace, vol. 1(1) (2008)

11. Hart, P., Nilsson, N., Raphael, B.: A formal basis for
the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybern. SCC-4(2), 100–107
(1968)

17

12. Horner, D.P., Healey, A.J.: Use of artificial potential
fields for UAV guidance and optimization of WLAN
communications. In: Autonomous Underwater Vehi-
cles, 2004 IEEE/OES, pp. 88–95, 17–18 June 2004

13. Koenig, S., Likhachev, M.: D* Lite. In: Proceeding
of the AAAI Conference on Artificial Intelligence,
pp. 476–483 (2002)

14. Koenig, S., Likhachev, M.: Incremental A*. In: Pro-
ceeding of the Natural Information Processing Systems
(2001)

15. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*:
any-angle path planning on grids. In: Proceedings
of the AAAI Conference on Artificial Intelligence,
pp. 1177–1183 (2007)

16. Nikolos, I.K., Tsourveloudis, N.C., Valavanis, K.P.:
Evolutionary algorithm based offline/online path plan-
ner for UAV navigation. IEEE Trans. Syst. Man
Cybern., Part B, Cybern. 33(6), 898–912 (2003)

17. Pfeiffer, B., Batta, R., Klamroth, K., Nagi, R.: Path
planning for UAVs in the presence of threat zones
using probabilistic modelling. In: Handbook of Mili-
tary Industrial Engineering. Taylor and Francis, USA
(2008)

18. Stentz, A.: Optimal and efficient path planning for un-
known and dynamic environments. Carnegie Mellon
Robotics Institute Technical Report, CMU-RI-TR-93-
20 (1993)

19. Stentz, A.: The focussed D* algorithm for real-time
replanning. In: Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1652–1659
(1995)

20. Warshall, S.: A theorem on Boolean matrices. J. ACM
9(1), 11–12 (1962)

21. Waydo, S., Murray, R.M.: Vehicle motion planning us-
ing stream functions. In: 2003 IEEE International Con-
ference on Robotics and Automation (2003)

18

	Path Planning Strategies for UAVS in 3D Environments
	Abstract
	Introduction
	Algorithm Description
	Modelling of the Tri-Dimensional Environment
	Theta* and the Minimum Path Search

	Results
	Orographic Obstacles
	Urban Environments

	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

