
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Group evolution: Emerging synergy through a coordinated effort / SANCHEZ SANCHEZ, EDGAR ERNESTO; Squillero,
Giovanni; Tonda, ALBERTO PAOLO. - STAMPA. - (2011), pp. 2662-2668. (Intervento presentato al convegno
Evolutionary Computation (CEC)) [10.1109/CEC.2011.5949951].

Original

Group evolution: Emerging synergy through a coordinated effort

Publisher:

Published
DOI:10.1109/CEC.2011.5949951

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2464581 since: 2018-12-05T09:59:28Z

IEEE

Group Evolution: Emerging Synergy
through a Coordinated Effort

Ernesto Sanchez∗, Giovanni Squillero∗, Alberto Tonda∗
∗DAUIN, Politecnico di Torino,

Corso Duca degli Abruzzi 24, Torino, Italy
Email: {ernesto.sanchez,giovanni.squillero,alberto.tonda}@polito.it

Abstract—A huge number of optimization problems, in the
CAD area as well as in many other fields, require a solution
composed by a set of structurally homogeneous elements. Each
element tackles a subset of the original task, and they cumula-
tively solve the whole problem. Sub-tasks, however, have exactly
the same structure, and the splitting is completely arbitrary.
Even the number of sub-tasks is not known and cannot be
determined a-priori. Individual elements are structurally ho-
mogeneous, and their contribution to the main solution can
be evaluated separately. We propose an evolutionary algorithm
able to optimize groups of individuals for solving this class of
problems. An individual of the best solution may be sub-optimal
when considered alone, but the set of individuals cumulatively
represent the optimal group able to completely solve the whole
problem. Results of preliminary experiments show that our
algorithm performs better than other techniques commonly
applied in the CAD field.

Index Terms—Evolutionary Algorithms, Group Evolution,
Synergy, Coordinated Effort.

I. INTRODUCTION

In many fields, and especially in the CAD area, many
problems have an optimal solution composed by a set of
homogeneous elements, whose individual contribution to the
main problem solution can be evaluated separately. In this
context, by homogeneous we mean elements sharing the same
structure. A simple example is the placement of a set of lamps
to ensure that a certain area is fully brightened with light. The
minimum number of lamps required is unknown, and depends
on the topology of area. All lamps are alike, and each one
may be evaluated separately with respect to the final goal. In
the example, the optimal solution requires 4 lamps (Figure 1,
top).

Interestingly, when examined independently, all lamps do
waste a certain amount of light outside the target field.
However, if the first lamp is positioned in a local optimum, it
becomes impossible to brighten up the field with the remaining
three (Figure 1, bottom).

The example simplifies a common situation: the optimal so-
lution is composed of homogeneous sub-optimal elements. A
more mundane example is the code coverage of the description
of a electronic device. Such devices are commonly described
using hardware description languages (HDL), like Verilog or
VHDL. The HDL describes the device, and such a description
is evaluated by a simulator to determine how the unite behave
in presence of certain stimuli.

Fig. 1. Placement of a set of lamps. The aim is to enlighten all the square
area. It is interesting to notice how a solution where some of the light of each
lamp is wasted outside the area (top) overall performs better than a solution
where the grayed lamp maximizes its own performance (bottom).

In order to test all functionalities a large set of stimuli may
be required. The problem is strikingly similar to the example
of the lamps: each sub-group of input stimuli is able to activate
only a part of the device. Verification engineers look for the
minimum set able to reach a complete coverage.

The example in Figure 2 shows a simple circuit in VHDL,
where three completely distinct test cases are needed in order
to excite all the functionalities: the first input greater than the
second; the second greater than the first; two identical inputs.

library ieee;
use ieee.std_logic_1164.all;

entity SAMPLE is
port(

X: in std_logic;
Y: in std_logic;
F2:out std_logic

);
end SAMPLE;

architecture behv of SAMPLE is
begin

process(X,Y)
begin

if(X > Y) then
F2 <= X or Y; -- behavior #1

elsif(X < Y)
F2 <= X and Y; -- behavior #2

else
F2 <= 0; -- behavior #3

endif;
end process;

end behv;

Fig. 2. VHDL description of a simple circuit which needs three distinct test
cases in order to be fully covered properly.

Trying to apply an Evolutionary Algorithm (EA) to solve
this problem raises a number of significant issues. The push
to optimize a single sequence of input stimuli, maximizing the
number of covered lines, may oppose the global goal of finding
a set of sequences able to cover the whole design [1]. On the
other hand, a certain amount of optimization for each single
sequence is usually beneficial. Not being known the number
of sequences in the optimal set, defining the individual as the
set is also not possible. Furthermore, since all sub-components
of the optimal solution are evaluated against the same fitness
function, Multi-Objective Evolutionary Algorithms (MOEA)
[2] are not applicable as well.

Literature reports different approaches to hardware opti-
mization problems resorting to Evolutionary Computation. The
simplest, and probably the most commonly used in practice,
consists in iterative runs. Since each individual contribution
can be evaluated separately, first the performance of a single
individual representing a solution is maximized. Then the part
solved by that individual is removed from the original problem.
A new problem is obtained, whose solutions does not take into
account at all the fraction where the first individual operated:
an evolutionary approach can be applied to the second problem
and a not complete but complementary solution is found.
This process iterates until a set of almost complementary
solutions is obtained. Individuals belonging to the final set
solve completely the original problem with a small quantity of
overlapping features. This approach can lead to good solutions
[3], but it usually requires an extensive a-priori knowledge of
the problem. In the following, we will refer to this procedure
as Multi-Run.

Another feasible approach is called Parisian evolutionary
process: by partitioning the original problem, a series of
simpler sub-problems is obtained. Those problems can be

solved through the evolution of a single individual. A group
of solutions (one from each sub-problem) is aggregated into
a composite solution which is then tested against the original
problem. New individuals are generated, and the process is
repeated until an optimal global solution is found. Interaction
between different search spaces is based on adjusting the pop-
ulation fitness values in accordance to the global fitness eval-
uation of a group. The Parisian evolutionary process has been
used in various fields of study [4][5] obtaining good results,
especially with regards to the computational time needed to
reach an optimal global solution: its implementation, however,
requires addressing aspects such as problem decomposition
and representation, local and global fitness integration, as well
as diversity preservation mechanisms. Again, in order to apply
the algorithm effectively, a great theoretical knowledge of
the problem and a preliminary study are needed to model
problem decomposition correctly: approaching the evolution
step without an accurate model would lead to inconsistent
results.

On the other side, Orthogonal Evolution of Teams (OET)
algorithms have been used with a significant degree of success
to evolve the behavior of multi-agent systems [6]. OET proves
to be particularly useful where the aim is to obtain teams
of heterogeneous individuals with pre-determined roles and
very specific competences that are known before the evolution
starts. OET algorithms apply pressure on both teams and
individuals during selection and replacement, because they
alternate between two orthogonal views of the population: as
a single population of teams of size N and as a set of N
independent populations of individuals, where each population
is associated to a specific individual role in the team.

Evolving sets of solutions able to collectively solve a given
problem is an interesting and thriving research line in the
Evolutionary Computation field [7] [8], with real applications
that range from robotics [9] to the study of animal behavior
[10].

II. PROPOSED APPROACH

We propose Group Evolution, a general approach to evolve a
set of solutions facing problems requiring a solution composed
by a set of homogeneous elements. The approach uses a
population of partial solutions, and exploits non-fixed sets of
individuals called groups. Group Evolution acts on individuals
and groups, managing both in parallel. During the evolution,
individuals are optimized as in a common EA, but concurrently
groups are turned into teams.

A group in itself does not necessarily constitute a team:
teams have members with complementary skills and generate
synergy through a coordinated effort which allows each mem-
ber to maximize his strengths and minimize his weaknesses.
A team comprises a group of entities, partial solutions in
our case, linked in a common purpose. Teams are especially
appropriate for conducting tasks that are high in complexity
and have many interdependent subtasks. Remarkably, in our
groups of individuals, there are no fixed roles: this feature is

particularly functional with regards to non-separable problems.
Pseudo-code for the algorithm is given in Figure 3.

1. create initial population (individuals and groups);
2. evaluate initial population (individuals and groups);
3. while (stop condition has not been reached)
4. {
5. choose group genetic operators;
6. choose parent groups;
7. apply group genetic operators to groups;
8. add offspring to group population;
9.
10. choose individual genetic operators;
11. choose parent individuals;
12. apply individual genetic operators to individuals;
13.
14. for each new individual
15. {
16. create new group;
17. }
18.
19. evaluate(new groups);
20. delete worst groups;
21. delete individuals not associated to groups;
22. }

Fig. 3. Pseudo Code for Group Evolution algorithm.

A. Individuals and groups

The algorithm proposed is population-based: we generate
and keep track of a set of distinct individuals which share
the same structure. In parallel we manage a set of groups: a
groups is defined as a set of individuals in the population. An
individual, at any step, is part of at least one group.

At the beginning of the evolutionary process (Figure 3, line
1) the initial population of individuals is randomly created on
the basis of a high-level description of a solution for the given
problem. Groups at this stage are randomly determined, so that
each individual can be included in any number of different
groups, but all individuals are part of at least one group.

Population size µ is the maximum number of individuals in
the population, and it is set by the user before the evolution
starts. Minimum and maximum size of the groups are set by
the user as well. Figure 4 shows a sample population where
minimum group size is 2, and maximum group size is 4.

1) Generation of new individuals and groups: We choose
to exploit a generational approach: at each evolutionary step,
a number of genetic operators is applied to the population.
Genetic operators can act on both individuals and groups, and
produce a corresponding offspring, in form of individuals and
groups.

The offspring creation phase comprehends two different
actions at each generation step:

1) Application of group genetic operators (Figure 3, line
5);

2) Application of individual genetic operators (Figure 3,
line 10).

Each time a genetic operator is applied to the population,
parents are chosen and offspring is generated. The children
are added to the population, while the original parents are

Fig. 4. Individuals and Groups in a sample population of 8 individuals. While
individual A is part of only one group, Individual B is part of 3 different
groups.

unmodified. Offspring is then evaluated, while it is not com-
pulsory to reconsider the fitness value of the parents again. It
is important to notice that the number of children produced at
each evolutionary step is not fixed: each genetic operator can
have any number of parents as input and produce in output
any number of new individuals and groups. The number of
genetic operators to apply at each step can be set by the user.

2) Group genetic operators: Group Genetic Operators
(GGOs) work on the set of groups. Each operator needs a
certain number of groups as parents and produces a certain
number of groups as offspring that will be added to the
population. GGOs implemented in our approach are:

1) crossover: generates offspring by selecting two individ-
uals, one from parent group A and one from parent
group B. Those individuals are switched, creating two
new groups;

2) union: generates offspring by selecting two parents
groups. One new group is created with individuals that
were in either of the original groups;

3) separation: generates offspring by selecting one parent
group. The parent group is divided into two (or more),
creating new groups;

4) adding-mutation: generates offspring by selecting one
or more individuals from the population and a group.
Chosen individuals are added (if possible) to the parent
group, creating a single new group;

5) removal-mutation: generates offspring by selecting a
group and one or more individuals inside it. Individuals
are removed from the parent group.

Parent groups are chosen via tournament selection [11].
3) Individual genetic operators: Individual Genetic Oper-

ators (IGOs) operate on the population of individuals, very
much like they are exploited in usual GA. The novelty we
propose is that for each individual produced as offspring, new
groups are added to the group population. For each group the
parent individual was part of, we choose to generate a copy
of it with the offspring taking the place of the parent.

This approach, however, could lead to an exponential in-

crease in the number of groups, as the best individuals are
selected by both GGOs and IGOs. To keep the number of
groups under a strict control, we choose to create a copy only
of the highest-fitness groups the individual was part of.

IGOs select individuals by a tournament selection in two
parts: first, a group is picked out through a tournament
selection with moderate selective pressure; then an individual
in the group is chosen with low selective pressure. The actual
group and the highest-fitness groups the individual is part of
are cloned once for each child individual created: in each
clone group the parent individual is replaced with a child. An
example is given in Figure 5: an IGO, ScanMutation, selects
individual C as a parent. The chosen individual is part of
only one group, Group 1. ScanMutation produces two children
individuals: since the parent was part of a group, a new group
is created for each new individual generated. The new groups
(Group 1’ and Group 1”) are identical to Group 1, except that
individual C is replaced with one of its children, C’ in Group
1’ and C” in Group 1” respectively.

Our aim is to select individuals from well-performing
groups to create new groups with a slightly changed individual,
in order to explore the a near area in the solution space.

Fig. 5. Effects of ScanMutation, an IGO, applied to individual C. Since
individual C is part of Group 1, two groups are created and added to the
population.

B. Evaluation

During the evaluation phase, a fitness value is associated
to each group: the fitness value is a number that measures
the goodness of the candidate solutions with respect to the
given problem. When a group is evaluated, we also assign a
fitness value to all the individuals composing it. Those values
reflect the goodness of the solution represented by the single
individual and have the purpose to help discriminate during
tournament selection for both IGOs and GGOs.

An important strength of our approach resides in the
evaluation step: if we already have a fitness value for an
individual that is part of a new group, we can choose to take
it into account instead of re-evaluating all the individuals in
the group. This feature can be exceptionally practical when
facing a problem where the evaluation of a single individual
can last several minutes and the fitness of a group can be
computed without examining simultaneously the performance
of the individuals composing it. In that case, the time-wise
cost of both IGOs and GGOs becomes very small.

C. Slaughtering

After each generation step, the group population is resized.
The groups are ordered fitness-wise and the worst one is
deleted until we reach the desired population size. Every
individual keeps track of all the groups it belongs to in a
set of references. Each time a group ceases to exist, all its
individuals remove it from their set of references. At the end
of the group slaughtering step, each individual that has an
empty set of references, and is therefore not included in any
group, is deleted as well.

III. EXPERIMENTAL RESULTS

In order to perform the preliminary experiments on our
algorithm, we chose to expand an existing EA, µGP [12].
µGP is a versatile and easily expandable tool [13], which has
been developed by the CAD Group of Politecnico di Torino in
C++ and is available as a GPL software [14]. 32 new classes
have been added to the 110 of the original project, to manage
and evolve groups of individuals. µGP evolves a population
of graphs. Each node in the graph encodes a specific macro
with a defined number of variable parameters described in a
constraints file. Individuals are translated to text files before
being evaluated by an external application.

We tested the proposed algorithm against a classical EA on
two different sets of problems. To perform a comparison, the
EA is run several times, each time evolving a single individual,
following the well-known strategy that we label Multi-Run:
once a first individual is evolved, we zero the fitness value
of the part of the solution space covered by the individual
before we start the evolution of the second individual. For the
third individual, we exclude the parts of the solution space
covered by the first and the second, and so on. The individuals
obtained in a Multi-Run approach show a slight decrease of
the individual fitness values, but a great improvement in the
group fitness values. Determining the specific moment to start
the generation of a new individual, however, is not a trivial
task, and requires an extensive knowledge of the problem
under evaluation: a steady state parameter of µGP is
exploited to stop evolutionary runs that do not improve their
best individual after a certain number of generation steps.

For the sake of comparison, in each experiment the main
parameters of Group Evolution and Multi-Run were selected
trying to keep the initial conditions as fair as possible.

A. Lamp placement

As described in the introduction, the placement of a set of
lamps to ensure that a certain area is fully brightened with
light is a typical problem where a Group Evolution approach
could be beneficial, especially if the minimum number of
lamps required is unknown, and it is strongly dependent on
the topology of area.

In all the subsequent experiments all lamps have a radius
of light of 172 m and the objective is to enlighten a square
field with a side of 467 m. A lamp can be placed at any point
in space between (0,0) and (467,467), thus the search space
comprehends 2 · 105 different positions for each lamp. The
optimal solution is a set of several position that covers exactly
all the field. To mimic a situation often found in real problems,
both the Multi-Run and Group Evolution EAs have a limited
number of evaluations to find a solution to the problem, orders
of magnitude smaller than the search space dimension. We set
this limit to 2 · 103.

In a first test, the Multi-Run EA and the Group Evolution
EA optimize the placement of exactly 4 lamps. The Multi-Run
EA uses a (µ, λ) strategy with parameters µ = 20, λ = 15, σ =
0.9. The steady state is set to 10, 20 and 50 generations
in different runs, marked as SS 10, SS 20 and SS 50 in I:
this means that the evolutionary process of a single individual
will stop after that number of generations have elapsed. The
Group Evolution algorithm has µindividuals = 20, µgroups =
20, λ= 15, σ = 0.9 . The possible IGO for each algorithm
are mutation and crossover. The Group Evolution EA
also has also all GGOs previously described. For both the
algorithms, the fitness value is expressed as a percentage of the
field covered by light. Table I shows the comparative results
for 100 runs of each algorithm.

Best Best Best Best Average of
IndividualIndividual Group Group Individuals

Fitness Fitness Fitness Fitness Fitness in
(Average) (St. Dev.) (Average) (St. Dev.) Best Group

Multi-
Run 0.43 0 0.92 1.11 · 10−3 0.35
SS 10
Multi-
Run 0.43 0 0.91 5.54 · 10−4 0.37
SS 20
Multi-
Run 0.43* 0* 0.8* 3.17 · 10−4* 0.38*
SS 50*
Group
Evolution 0.37 0.01 0.99 9.85 · 10−4 0.32

TABLE I
AVERAGE RESULTS FOR 100 RUNS OF MULTI-RUN AND GROUP

EVOLUTION, EVOLVING A GROUP OF 4 LAMPS. *WHEN THE STEADY

STATE PARAMETER IS SET TO 50, THE MULTI-RUN APPROACH OFTEN
CONSUMES ALL INDIVIDUALS EVALUATION AT ITS DISPOSAL IN THE
THIRD INDIVIDUAL GENERATION, SO THE GLOBAL FITNESS IS LOW.

Interestingly, the Multi-Run approach always finds the
best possible individual as the first individual generated (the
maximum coverage for a single individual is about 43%
of the field), but the groups obtained lack behind in field
enlightenment when compared to Group Evolution ones. Vice

versa, the best individual of a Group Evolution run is on
average less performing, but the group as a whole is able to
reach high coverage values on a solid basis: each individual
forsakes part of its potential fitness to benefit the whole group.
The average of individuals’ fitness in the best group is similar,
but in the Multi-Run approach there is a greater difference
between the best and the worst. The performance of the Multi-
Run approach is also strongly influenced by the number of
steady state generations after which the algorithm stops, that
we set tentatively to 10, 20 and 50. Even in such a simple
problem, setting the steady state parameter is not trivial
and it can be performed mainly tentatively.

In a second experiment, the only limit given to both the
Multi-Run and the Group Evolution EA is the maximum
number of evaluations, set to 1 ·104. The Multi-Run algorithm
is free to generate as many individuals as it can, and it stops
once the maximum possible fitness is obtained or when the
maximum number of evaluations is reached: the parameters
are µ = 20, λ = 15, σ = 0.9 and steady state is set to
10, 20 and 50 in different runs, marked as SS 10, SS 20 and
SS 50 respectively in II. The Group Evolution is set to work
with groups ranging from 2 to 8 individuals and parameters
µindividuals = 20, µgroups = 20, λ= 15, σ = 0.9 . Groups
obtained by the Group Evolution are also rewarded if the
number of individuals is low. The results of 100 runs of this
second experiment are reported in Table II.

Average Average Best Best Best Best
IndividualIndividual Group Group Group Group

Fitness Fitness Fitness Fitness Size Size
(Average) (St. Dev.) (Average) (St. Dev.) (Average)(St. Dev.)

Multi-
Run 0.31 0.14 1 0 7.67 0.33
SS 10
Multi-
Run 0.31 0.03 0.99 7.42 · 10−6 7.32 0.67
SS 20
Multi-
Run 0.37 0.02 0.93 1.52 · 10−3 4 0
SS 50
Group
Evolution 0.28 0.06 1 0 6.11 0.42

TABLE II
AVERAGE RESULTS FOR 100 RUNS OF MULTI-RUN AND GROUP

EVOLUTION, EVOLVING A GROUP WHERE THE NUMBER OF LAMPS IS NOT
FIXED.

The Multi-Run approach is able to always reach an complete
enlightenment of the field if the steady state parameter
is suitably selected: for steady state 20, however, about
11% of the runs do not reach the optimal coverage, because
the algorithm terminates by meeting the maximum number
of evaluations condition. The same happens with steady
state 50: this time, the algorithm seeks small improvements
in the single individuals, obtaining sub-optimal groups with
a limited size in each run. The results obtained by Group
Evolution show a remarkable consistency in achieving the
optimal solution with respect to the enlightenment of the field,
and the average number of individuals in the best group is also
lower. Again, the average fitness of the individuals in the best

group is lower, with individuals forsaking part of their fitness
to improve the overall performance of the group.

B. Arena coverage

Another simple optimization problem consists in creating a
team of robots capable of efficiently exploring a circumscribed
space. Initially we have a 10 m x 10 m empty arena, divided
into 100 squares of 1 m x 1 m: each individual represents a
small robot able to wander inside the arena, executing a block
of instructions, one instruction per instant of time. There are
only two different kinds of instructions:

1) Move: the robot moves 1 square along the direction it
is facing;

2) R+/R-: the robot performs a rotation of +45 (R+) or -45
(R-) around its vertical axis (thus, a robot can only face
N, NE, E, SE, S, SW, W, NW).

Each robot starts from a specific square in the arena, facing
North. A group of robots is given only a limited amount of
time to explore the arena.

Our objective is to evolve a set of individuals which can
collectively visit the maximum possible numbers of squares
in the arena in a given time. The fitness of an individual
is the number of squares it touched during its path. Group
fitness, on the other side, is computed by adding up the
number of squares visited by only one individual composing
the group; in this way, an implicit penalty is provided to
groups containing individuals that intersect their trajectories.
It is interesting to highlight that information cannot be shared
between individuals.

In this experiment, we evolve a group of 4 individuals, that
together try to maximize the arena coverage. For the Multi-
Run strategy, we use µ = 150, λ = 100, steady state
= 5 and a generational approach with an elitist strategy that
preserves the best 4 individuals. Table III summarizes the
results obtained.

For the Group Evolution we have µindividuals = 150,
µgroups = 150, λ = 100, and groups ranging from 2 to
4 individuals. Table IV shows the results for the Group
Evolution.

Number of Avg. Fitness Avg. Fitness
Evaluations (Individual) (Group)

10,000 30.72 91.84
20,000 30.15 92.61
30,000 31.53 92.90
60,000 31.92 93.8

TABLE III
INDIVIDUALS OBTAINED THROUGH A MULTI-RUN APPROACH, FORCING A

MAXIMUM OF FOUR INDIVIDUALS.

Groups produced by Group Evolution outperform those
obtained by Multi-Run, this time evolving even fitter in-
dividuals, due to the problem’s characteristics: unlike what
happens in the lamp placement case study, an individual can
significantly improve the fitness of its group without sacrificing
its own performance. The evolved groups’ behavior show that

Number of Avg. Fitness Avg. Fitness
Evaluations (Individual) (Group)

10,000 32.15 95.41
20,000 32.47 97.39
30,000 33.72 99.25
60,000 34.02 99.46

TABLE IV
INDIVIDUALS OBTAINED THROUGH A GROUP EVOLUTION APPROACH,

WITH GROUPS RANGING FROM 2 TO 4 INDIVIDUALS.

individuals cooperate to explore the arena, filling the gaps of
the other members of their team.

IV. CONCLUSIONS

Problems that have an optimal solution composed by a set of
homogeneous elements are becoming more and more common
in CAD and in other fields of study.

We propose an EA capable of performing Group Evolu-
tion, thus obtaining a collection of individuals that together
represent a viable solution to a given problem. Unlike other
approaches that rely on an extensive a-priori knowledge both
of the problem and of the role each individual should play
in the global solution, our algorithm can obtain good results
starting only with the individual description.

Preliminary experiments show that our algorithm, with re-
spect to the objective of creating sets of solutions that together
reach a goal, performs better than other techniques currently
used in the CAD field, such as Multi-Run testing. Future works
will exploit the Group Evolution algorithm to solve real-world
testing-related problems.

ACKNOWLEDGMENT

The authors would like to thank Sonia Drappero, Danilo
Ravotto and Massimiliano Schillaci for their useful ideas and
invaluable advices.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. The University of Michigan Press, 1975.

[2] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International
Conference on Genetic Algorithms. Hillsdale, NJ, USA: L.
Erlbaum Associates Inc., 1985, pp. 93–100. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645511.657079

[3] E. Sanchez, M. Sonza Reorda, and G. Squillero, “Test program
generation from high-level microprocessor descriptions,” in System-
level Test and Validation of Hardware/Software Systems, ser.
Springer Series in Advanced Microelectronics, M. Sonza Reorda,
Z. Peng, and M. Violante, Eds. Springer London, 2005,
vol. 17, pp. 83–106, 10.1007/1-84628-145-8 6. [Online]. Available:
http://dx.doi.org/10.1007/1-84628-145-8 6

[4] E. Dunn, G. Olague, and E. Lutton, “Parisian camera
placement for vision metrology,” Pattern Recognition Letters,
vol. 27, no. 11, pp. 1209 – 1219, 2006, evolutionary
Computer Vision and Image Understanding. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V15-4HX477K-
2/2/e82b5b25f9a7a82607ac4b30c9fb9c45

[5] ——, “Automated photogrammetric network design using the parisian
approach,” in Applications on Evolutionary Computing, ser. Lecture
Notes in Computer Science, F. Rothlauf, J. Branke, S. Cagnoni, D. W.
Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero, G. D.
Smith, and G. Squillero, Eds. Springer Berlin / Heidelberg, 2005,
vol. 3449, pp. 356–365, 10.1007/978-3-540-32003-6 36. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-32003-6 36

[6] R. Thomason, R. Heckendorn, and T. Soule, “Training time and team
composition robustness in evolved multi-agent systems,” in Genetic
Programming, ser. Lecture Notes in Computer Science, M. O’Neill,
L. Vanneschi, S. Gustafson, A. Esparcia Alcazar, I. De Falco,
A. Della Cioppa, and E. Tarantino, Eds. Springer Berlin / Heidelberg,
2008, vol. 4971, pp. 1–12, 10.1007/978-3-540-78671-9 1. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-78671-9 1

[7] M. Waibel, L. Keller, and D. Floreano, “Genetic Team Composition and
Level of Selection in the Evolution of Cooperation,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 3, pp. 648–660, 2009.

[8] M. Potter and K. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving from Nature
PPSN III, ser. Lecture Notes in Computer Science, Y. Davidor, H.-P.
Schwefel, and R. Mnner, Eds. Springer Berlin / Heidelberg, 1994, vol.
866, pp. 249–257, 10.1007/3-540-58484-6 269. [Online]. Available:
http://dx.doi.org/10.1007/3-540-58484-6 269

[9] M. Quinn, L. Smith, G. Mayley, and P. Husbands, “Evolving
teamwork and role-allocation with real robots,” in Proceedings of
the eighth international conference on Artificial life. Cambridge,
MA, USA: MIT Press, 2003, pp. 302–311. [Online]. Available:
http://portal.acm.org/citation.cfm?id=860295.860344

[10] G. M. Werner and M. G. Dyer, “Evolution of herding behavior
in artificial animals,” in Proceedings of the second international
conference on From animals to animats 2 : simulation of
adaptive behavior: simulation of adaptive behavior. Cambridge,
MA, USA: MIT Press, 1993, pp. 393–399. [Online]. Available:
http://portal.acm.org/citation.cfm?id=171174.171220

[11] C. Oei, D. Goldberg, and S. Chang, “Tournament selection. niching and
the preservation of diversity,” lliGAL Report, vol. No. 91011, 1991.

[12] E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary Optimization:
the µGP toolkit, 1st ed. Springer, to be published in July 2011.

[13] F. Corno, E. Sanchez, and G. Squillero, “Evolving assembly programs:
how games help microprocessor validation,” Evolutionary Computation,
IEEE Transactions on, vol. 9, no. 6, pp. 695–706, Dec. 2005.

[14] SourceForge. Host of µgp3. http://sourceforge.net/projects/ugp3.

