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The Three-Dimensional Knapsack Problem with Balancing Constraints 
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Abstract.  In this paper we introduce a new Packing problem, the Three-Dimensional 
Knapsack Problem with Balancing Constraints (3BKP), the extension of the Three-
Dimensional Knapsack Problem (3KP) where additional constraints related to the packing 
center of mass are given. The 3BKP consists in orthogonally packing a subset of three-
dimensional weighted items into a knapsack in order to maximize the total profit of the 
loaded items. The items must not overlap and the packing center of mass must lie into a 
predefined boxed domain inside the knapsack. We assume that items can be rotated. We 
give a MIP model for the problem, upper bounds and an efficient heuristic to solve large 
size instances. The computational results show that the MIP model cannot find optimal 
solutions, except for small size instances, but it can be used to calculate upper and lower 
bounds. It is shown that our heuristic outperforms both the model lower bounds and the 
heuristics available in the literature explicitly designed to solve 3KP. 
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1 Introduction

A major challenge in the loading problem is taking into account load balanc-
ing constraints. These kind of constraints arise in many practical applications
such as aircraft loading [1], space cargo loading ([2], and [3]), and maritime
transportation [4]. The balancing issue is extremely important in some very
risky applications, e.g. space cargo loading, but it is of great interest also
in other applications, e.g. air and maritime cargo loading, where safety and
cost of loading issues must be considered. From the cost viewpoint, it has
been shown (Mongeau and Bés [5]) that minor displacements from an ideal
center of mass can result in a significant increasing of fuel consumption for
aircrafts and ships. Despite its importance, the issue of the balance loading
has not been deeply studied. This is mainly due to the difficulty of extending
exact and heuristic methods developed for the multi-dimensional packing to
the balanced case. In fact, most of these methods use geometric properties
in order to reduce the computational effort and these properties do not hold
anymore when the balancing constraints are considered.

The aim of this paper is threefold. First, we introduce a new Packing
problem, the Three-Dimensional Knapsack Problem with Balancing Con-
straints, the extension of the Three-Dimensional Knapsack Problem (3KP)
where additional constraints related to the packing center of mass are given.

Second, we give a MIP model for the problem. Computational experi-
ence shows that the model, except for small size instances, cannot solve to
optimality the problem. Nevertheless, it can be used to calculate upper and
lower bounds.

Finally, we introduce 3BKP-H, a new heuristic which generalizes the ex-
isting heuristic UniPack, developed for multi-dimensional Packing (Crainic
et al. [6]), and the Extreme Point rule (Crainic et al. [7]) for the items ac-
commodation, in order to cope with the center of mass constraints. New test
instances are introduced and used to derive extensive computational results.
It is shown that our heuristic outperforms both the model lower bounds and
the heuristics available in the literature which are explicitly designed to solve
3KP.

The remainder of the paper is organized as follows. In section 2 we
introduce the problem and the MIP model. In section 3 a state of the art is
presented by considering 3D Packing problems, 3D Knapsack problems and,
eventually, 3D Knapsack problems with balancing constraints. Section 4 is
devoted to exact methods to solve the problem and to derive upper and lower

1

The Three-Dimensional Knapsack Problem with Balancing Constraints

CIRRELT-2011-51



bounds. Section 5 introduces our heuristic 3BKP-H. In section 6 extensive
computational results are given. Finally, the conclusions of our work are
reported in section 7.

2 Problem description and MIP model

The 3BKP is defined as follows: given a knapsack K with size W , D, and H,
and a set of items J = {1, ..., n} with profit pj, size wj (width), dj (depth),
and hj (height), and mass mj, we want to assign a subset of items J ′ ⊆ J
to the knapsack K such that J ′ is a feasible loading for the knapsack itself,
and the total profit of the loaded items is maximum. Feasibility requires
that loaded items do not overlap and the overall center of mass position
is inside a given three-dimensional domain. Figure 1 shows an example of
a three-dimensional domain with its projections on the (x, y), (x, z), and
(y, z) plans. Following Wäscher et al. classification [8], 3BKP is a Three-
Dimensional Single Large Object Placement Problem (3D-SLOPP) with bal-
ancing constraints (3DB-SLOPP).

Figure 1: A three dimensional domain

Furthermore the following assumptions are made:

• the items and the knapsack have parallelepiped shape

• the origin of the knapsack and of each item is located at their own
left-back-down corner (see Figure 2)

• the knapsack is located in the first octant of the 3D Cartesian coordi-
nate system, with its origin placed in position (0, 0, 0) (see Figure 2)
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• items can rotate so that each item side is parallel to one axis

• knapsack and items walls have negligible thickness

• knapsack and items size is assumed to be a non-negative integer.

Let |J ′| = k ≤ n be the number of the accommodated items; then the value
of the overall profit P can be calculated as:

P =
∑
j∈J ′

pj. (1)

Note that high or low values of P do not necessarily correspond to high or low
knapsack volume exploitations because, in principle, there is no correlation
among volumes and profits of items.

Given the radius vector (position) ~rCMj
of the center of mass of any

accommodated item j, and the overall mass of the accommodated items
M =

∑
j ∈ J ′ mj, the packing center of mass position is:

~rCM =
∑
j∈J ′

~rCMj
mj/M. (2)

Let U be the unbalancing index which measures the dispersion of the actual
packing center of mass ~rCM with respect to an ideal position ~r′CM .

In general, the standard deviation of a set of values xj, with j ∈ J ′ and
arithmetic mean x̄, is defined as follows:

σx =

√√√√√
∑
j∈J ′

(xj − x̄)2

k
. (3)

The formula for the unbalancing index U is obtained by plugging in (3)
the radius vectors of the centers of mass. Moreover, since we are dealing with
vectors, the modulus of their difference must be considered:

U =

√√√√√
∑
j∈J ′

∣∣~rCMj
− ~r′CM

∣∣2
k

. (4)
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Figure 2: knapsack and item placement

2.1 The model

Let us define:

• J : the set of items, with cardinality n and associated indexes i and j

• ∆: the set of dimensions {1, 2, 3}, with associated index δ

• R: the set of rotations, with cardinality 6 and associated index r

• sδir: the size of item i along dimension δ when the item is rotated with
rotation r

• Sδ: the knapsack size along dimension δ; in particular (S1, S2, S3) =
(W, D, H)

• Lδ, U δ: lower and upper bounds along dimension δ which limit the
domain where the packing center of mass must lie within

• γδir: the coordinate of the center of mass of item i along dimension δ
when the item is rotated with rotation r. This coordinate is calculated
with respect to the bottom-left point of the item

• χδi : the coordinate of the bottom-left point of item i along dimension δ

• ti: a binary variable which assumes value 1 if item i is loaded into the
knapsack, 0 otherwise

• bδij: a binary variable which assumes value 1 if item i comes before item
j along dimension δ, 0 otherwise

• ρir: a binary variable which assumes value 1 if item i is rotated with
rotation r, 0 otherwise.
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For the lack of space in the model representation, we implicitly assume that
i ∈ J , j ∈ J , δ ∈ ∆, and r ∈ R. Moreover, the notation i < j means that
index i precedes index j in the given items from 1 to n.

The model for the Three-Dimensional Knapsack Problem with Balancing
Constraints (3BKP-M) can then be formulated as follows:

max
∑
j ∈ J

pjtj (5)

s.t.
∑
j ∈ J

wjdjhjtj ≤ WDH (6)∑
δ ∈ ∆

(bδij + bδji) ≥ ti + tj − 1, i < j (7)

χδi +
∑
r ∈ R

sδirρir ≤ Sδ (8)

χδi +
∑
r ∈ R

sδirρir ≤ χδj +M(1− bδij), i < j (9)

χδj +
∑
r ∈ R

sδjrρir ≤ χδi +M(1− bδji), i < j (10)

χδi ≤Mti (11)

bδij ≤ ti (12)

bδji ≤ tj (13)∑
i ∈ J

miχ
δ
i +

∑
i ∈ J

∑
r ∈ R

miγ
δ
irρir ≥ Lδ

∑
i ∈ J

miti (14)

∑
i ∈ J

miχ
δ
i +

∑
i ∈ J

∑
r ∈ R

miγ
δ
irρir ≤ U δ

∑
i ∈ J

miti (15)

χδi ≥ 0 (16)

ti ∈ {0, 1} (17)

bδij ∈ {0, 1} (18)

ρir ∈ {0, 1}. (19)
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The objective function (5) gives the total profit of the selected items. (6)
expresses the capacity constraints, i.e. the sum of the volumes of the selected
items must not exceed the knapsack volume. Constraints (7) ensures that
two packed items do not overlap. Constraints (8) state that items must lie
inside the knapsack, i.e. for each dimension δ the sum of the coordinate of
the bottom-left point with the dimension of the item must give a value less or
equal than the size of the knapsack along dimension δ. Constraints (9) state
that, if item i comes before item j, then the sum of the position of item i plus
its size must be less or equal than the position value of item j along dimension
δ. Constraints (10) have the same meaning, this time with item j coming
before item i. Constraints (11) express that, if item i is not selected, then its
placement coordinates must be zero. A similar meaning have constraints (12)
and (13) that state that, if an item is not selected, then it cannot be placed
before another one. Constraints (14) and (15) ensure balancing conditions
and they can be derived from the center of mass definition (2). Finally, the
involved variables domains follow.

3 State of the art

3BKP is a problem belonging to the Cutting and Packing (C&P) family.
Wäscher et al. [8] have recently published a classification for C&P problems
which extends an older one due to Dyckhoff [9]. According to Wäscher
et al classification [8], 3BKP is a Three-Dimensional Single Large Object
Placement Problem (3D-SLOPP) with balancing constraints (3DB-SLOPP).
In the following we present the literature along two main components of
3BKP: multidimensional Packing and balancing constraints.

A first attempt to model multidimensional Packing was due to Gilmore
and Gomory [10]. Their column generation approach has been revisited by
Baldacci and Boschetti [11].

Other contributions come from Beasley [12], Hadjiconstantinou and Christofides [13],
Chung et al. [14], Berkey and Wang [15], George and Robinson [16],

Fekete and Schepers ([17, 18]), and Perboli [3].
Martello et al. [19] introduced the concept of Corner Points. Extensions

of their work can be found in den Boef et al. [20], Martello et al. [21], and
Crainic et al. [7].

In particular, Crainic et al. [7] introduced an extension of the Corner
Points, the Extreme Points. Being the basis of the heuristic introduced in
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this paper, the Extreme Points will be discussed in detail in Section 5.
In multidimensional Knapsack Packing problems the available knapsacks

reduce to one.
Papers tackling this problem are Beasley [22], Hadjiconstantinou and

Christofides [13], Boschetti et al. [23], and Fekete and Schepers ([17, 24, 18]).
To the best of our knowledge the latest contribution to 3D Knapsack prob-
lems comes from Egeblad and Pisinger [25], where the authors propose an
exact model and heuristics for 2D and 3D Knapsack problems. Unfortu-
nately, their model is useless to derive both lower and upper bounds, whilst
their heuristic manages instances up to 60 items for the 3D case.

A MIP model for the 3BKP can be found in Fasano [26], where additional
equations to meet balancing conditions are taken from Williams [27].

To the authors knowledge there are only few papers on Packing prob-
lems dealing with non-linear or balancing constraints. Various approaches,
including artificial intelligence or simulated annealing have been considered
to tackle different cargo issues (see [28], [29], [2], and [30]) and are related to
aircraft loading problems. MartinVega [31] focused his research on splitting
the set of items into groups to be assigned to different airplanes, without con-
sidering the Packing problem. Cochard and Yost [32] developed a heuristic
that firstly solves the Packing problem and then tries to balance the airplane
by swapping groups of items. The most relevant works on loading with bal-
ancing constraints are the ones led by Amiouny et al. [33] and Mathur [34].
In both papers the authors investigate on the accommodation of pre-loaded
containers in fixed positions, with balancing constraints to be satisfied in one
dimension only.

Colaneri et al. [2] presented a MIP-based heuristic to solve a specific 3D
Packing problem related to the space cargo loading, but the specific Packing
constraints make hard to use their model for the item accommodation in
3BKP.

An application more similar to 3BKP can be found in Kaluzny and
Shaw [1], where a variant of the 3D Packing problem is introduced, but
the balancing is not considered as a constraint. In fact, the authors use the
balancing in the objective function, minimizing its deviation from a specific
point. Moreover, they solved their instances by means of a MIP model, which
makes their approach impracticable even with 20 items.

Finally, we want to remark that balancing conditions are not equivalent
to stability conditions (see, for instance, Bischoff and Ratcliff [4]).

In fact, in Junqueira et al. [35] stability is related to the capacity of the
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loaded boxes to withstand the gravity force acceleration (vertical stability) or
the inertia of its own bodies (horizontal stability), and this is simply defined
in terms of items around or under any other item in the packing.

4 Exact methods and upper bounds

In the following, we will discuss why it is not possible to extend the available
exact methods for multi-dimensional Packing problems to 3BKP and how
upper bounds for this problem can be computed.

Most of the exact methods which are effective for standard multi-dimensional
Packing problems try to reduce the number of the possible locations of items
to be added to an existing packing, as for the Corner Points by Martello et
al. [19], or the number of possible packings by means of an implicit repre-
sentation of classes of equivalent packings, as in the Packing Class approach
by Fekete and Schepers [17]. Unfortunately, both approaches cannot be ex-
tended to the balanced case. While Corner Points push the items towards
a corner of the knapsack, which clearly makes impossible to represent some
optimal solutions of the balanced case, the representation used in Packing
Class loses its main advantage of collapsing several (potentially exponential)
packings in the same Packing Class when balancing constraints are present.
In fact, Packing Class works on the idea that, given two items which are
placed in a packing, one after the other, by swapping their mutual order the
packing volume usage does not change. Unfortunately, whilst this is true
from a geometrical point of view, it does not work from a balancing point of
view.

Thus, in order to solve to optimality 3BKP, the only current available ap-
proach is through the MIP model 3BKP-M, given by (5)-(19). 3BKP-M, even
if implemented by the most efficient commercial solvers, is not able to solve
instances with more than 20 items. This is mainly due to the poor quality
of its continuous relaxation. The 3BKP-M relaxation could be strengthened
by means of cut generation techniques as in [1]. Unfortunately, our com-
putational experience has shown that these cuts are not effective when the
number of items becomes larger than 20. Nevertheless, the MIP model can
be profitably used to calculate upper and lower bounds for 3BKP, as we will
show in Section 6.

A first upper bound, named UB1D, can be calculated by solving a one-
dimensional knapsack problem, i.e. the model 3BKP-M where the constraints
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(7)-(15) are ignored. The relaxed problem becomes a one-dimensional knap-
sack problem where the knapsack maximum weight is WDH and the weight
of each item j is wjdjhj.

In principle, this bound could be strengthen by means of dual feasible
functions ([17, 23]), but this approach can be used only if the original problem
does not allow item rotations, which is not the case of 3BKP.

A second upper bound, named UBRM , could be obtained from the linear
relaxation of model (5)-(19). Previous tests on similar models for the unbal-
anced case show that this bound has the same quality of UB1D ([26, 25]). In
the following UB1D will then be used.

5 The heuristic

It is trivial to show that 3BKP is NP-Hard, being an extension of Three-
Dimensional Knapsack Problem, which is NP-Hard [25]. In the following,
we present 3BKP-H, an efficient heuristic conceived to solve 3BKP, which
is an extension of the UniPack framework by Crainic et al. [6]. As stated
by Fasano [26], the MIP model is hard to solve using standard techniques,
while we showed in Section 4 how other properties used to compute exact
solutions for standard multi-dimensional Packing problems are not valid for
3BKP. Thus, that justifies a heuristic approach to solve 3BKP.

UniPack is a heuristic able to solve many Packing problems which differ in
the objective function and constraints. It is based on the concept of Extreme
Points (EPs), introduced by Crainic et al. [7]. These are a further extension
of the Corner Points introduced by Martello et al. [19].

Corner Points are the non-dominated locations where an item can be
placed into an existing packing. In two dimensions, Corner Points are defined
where the envelope of the items in the knapsack changes from vertical to
horizontal (the bold dots in Figure 3).

Heuristics using Corner Points can be inefficient in terms of knapsack
utilization. Consider, for example, the packing depicted in Figure 3 and
item 11. According to the Corner Points definition, one can add the item
on any of the bold dots. It is clear, however, that item 11 could also be
placed into one of the shaded regions, which the Corner Points do not allow
to exploit.

Extreme Points (EPs) provide the means to exploit the free space defined
inside a packing by the shapes of the items already in the knapsack. Figure 4
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Figure 3: Corner Points in 2D and 3D packings

illustrates EPs in 2D and 3D packings.

Figure 4: Extreme Points in 2D and 3D packings

The basic idea of the EPs is that when an item j with sizes (wj, dj, hj)
is added to a given packing and is placed with its left-back-down corner in
position (xj, yj, zj), it generates a series of new potential points, the EPs,
where additional items can be accommodated. The new EPs are generated by
projecting the points with coordinates (xj +wj, yj, zj), (xj, yj + dj, zj), and
(xj, yj, zj + hj) on the orthogonal axes of the knapsack. Figure 5 illustrates
the concept.

Beside the saving of space by applying Extreme Points rather than Corner
Points, another advantage is the time complexity to find an extreme point set.
As proved in Crainic et al. [7], the overall computational effort is O(n)- where
n is the number of items- whilst Corner Points require a O(n2) complexity.

The general scheme of the heuristic 3BKP-H is depicted in Figure 6.
The core of 3BKP-H is an accommodation procedure, the EP -based con-

structive heuristic, named EP-BPH. 3BKP-H is also used to build the initial
solution by applying several sorting criteria to the items and retaining the
best one as the initial solution. In the following, we refer to this composite
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Figure 5: Extreme Points (the triangles) defined by an item

Figure 6: General scheme of 3BKP-H

heuristic as PCH (Packing Constructive Heuristic).
We assign a score to each item, thus specifying the order in which items

are to be considered by the accommodation heuristic. The score definition
is problem specific.

Scores are thus first initialized through the Score Initialization procedure,
and then are dynamically modified by means of the Score Update and Long-
term Score Reinitialization procedures. Score Update proceeds through small
changes, aiming to adjust the scores used to sort the items at iteration k of
3BKP-H according to the quality of the solution built at iteration k − 1.
Long-term Score Reinitialization incorporates long-term decisions, as long-
term memory structures, and proceeds through larger score modifications in
the scores in order to avoid cycling on the same solutions and explore new
regions of the solution space.

Score computation and update depend upon a number of parameters.
We aim to keep this number as lower as possible to simplify their adjustment
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during computation. Indeed, no such adjustment is required for 2D Knap-
sack and Strip-Packing problems. For the other ones, 3BKP-H provides a
problem-specific, dynamically-adjusting parameter procedure denoted Pa-
rameter Update (see section 5.3).

The main steps on 3BKP-H are the following:

• Build an initial solution of the packing problem and set the best-
solution BS equal to the initial solution. We use the PCH heuristic

• Scoring Phase

– Initialize the score of the items: the Score Initialization procedure

– While Stopping Conditions are not encountered, repeat the fol-
lowing steps:

∗ Sort the items according to their scores and apply a construc-
tive heuristic to the sorted list, obtaining a new solution CS.
We use the EP-BPH procedure

∗ If a given number of successive non-improving iterations is
reached, reinitialize the scoring using the Long-term Score
Reinitialization procedure; otherwise, update the scores using
the Score Update procedure according to the CS solution

∗ If CS is better than BS, then set BS to CS

∗ The Parameter Update procedure then internally adjusts the
parameters.

5.1 EP-based Constructive Heuristics for Non-Guillotine
Orthogonal Higher-Dimensional Packing Problems

We now present the constructive heuristic PCH and the initial solution proce-
dure EP-BPH we propose for Non-Guillotine Orthogonal Higher-Dimensional
Packing problems. The procedures are based on the Best Fit Decreasing
(BFD) idea and generalize the heuristic presented in Crainic et al. [7].

Following an initial sorting of the items by non-increasing order of their
volumes, the BFD constructive heuristic for 1D Bin Packing problem tries to
load each item into the best bin. The latter is defined as the bin which, after
loading the item, has the maximum free volume, defined as the bin volume
minus the sum of the volumes of the items it contains. If the item cannot
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be accommodated into the existing bins, a new bin is created . Despite its
simplicity, the BFD heuristic offers good performances for 1D Bin Packing
problems. Similar heuristics exist for other Packing problems, e.g. Knapsack
and Strip Packing. Unfortunately, extending these heuristics to a general con-
structive heuristics for Non-Guillotine Orthogonal Higher-Dimensional Pack-
ing problems is a non-trivial task. On the one hand, while in 1D cases the
ordering is done considering a unique attribute characterizing both items and
bins, i.e. their volume or profit, more choices exist in the multi-dimensional
context. One may thus consider sorting items according to their width,
depth, or height, as well as, derived from these attributes, according to their
volume or the areas of their different faces. Consequently, best bin definition
in the BFD heuristic is not unique. On the other hand, whilst items accom-
modation does not need to be taken into account in 1D problems, a 2D or
3D packing may significantly vary according to how items are placed inside
the bins, even when their ordering and the rule for selecting the best bin are
not changed. Moreover, according to the Packing problem, the number of
available bins may be unlimited or fixed and all the items or just a subset of
them must be loaded.

We propose a new constructive heuristic based on BFD ideas, denoted
Extreme-Point Best Positioning Heuristic (EP-BPH), which places the items
into bins using the Extreme Points concept. As indicated earlier, the Extreme
Points define the points where one may place an item to be added to an
existing packing.

The main steps of the algorithm are as follows:

• Order the items according to a sorting criterion

• For each item in the resulting sequence and each rotation r, find the
best EP of the best available bin where to load the item

• If such a bin exists, load the item into it on the given EP

• If the item cannot be loaded in any existing bin, a new bin is created if
the total number of bins does not exceed the given maximum, otherwise
the item is discarded

Changing the maximum number of available bins adapts EP-BPH to dif-
ferent Packing problems. For example, the number of bins is infinite in the
Bin Packing problem, but it is equal to 1 in the 3BKP problem. EP-BPH
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behavior depends on how the best EP is selected and how the items are
sorted. Computational experiments have shown that, from the EP selection
point of view, the best trade off between solution quality and computational
results is given by the Residual Space rule (see Crainic et al. [7]).

The Residual Space (RS ) measures the free space available around an
EP . Roughly speaking, the RS of an EP is the distance, along each axis,
from the bin edge or the nearest item. The nearest item can be different on
each axis. More precisely, when an EP is created, its Residual Space on each
axis is set equal to the distance from its position to the side of the bin along
that axis (Figure 7a). The algorithm puts an item on the EP that minimizes
the difference between its RS and the item size:

f = [(RSxe − wj) + (RSye − dj) + (RSze − hj)], (20)

where RSxe , RSye , and RSze are the RS s of a given EP e on x, y, and z
axes, respectively. Every time an item is added to the packing, the RS s of
all the EPs are updated. Figure 7b illustrates the concept. For “complex”
packings, the RS gives only an estimate of the effective volume available
around the EPs and, thus, potential overlaps with other items have to be
checked when accommodating a new item on the chosen EP . See Crainic et
al. [7] for further details.

Figure 7: Example of Residual Space

To build an initial solution, we apply EP-BPH using a number of sorting
criteria. The resulting PCH heuristic builds an initial solution by iteratively
applying the sorting criteria and then selecting the best one.

Items may have several attributes, but from the sorting algorithm per-
spective, the most important ones are:
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1. profit : the worth or priority of an item;

2. specific weight, sw ;

3. area: for three-dimensional problems it must be meant as the item
projection on the (x, y) plane (see Figure 8).

Figure 8: Definition of the item area

Since items show more than one attribute, many ways to sort them are
possible. Giving more importance to an attribute means to favor those items
showing the highest values of that attribute or score. Often sorting procedure
involves more than an attribute or more than a score. Sometimes items sorted
afterwards are grouped into clusters. A cluster is a set of items showing
“close” values of a particular attribute or score. By “close” we mean that
the values are inside a given set. Suppose, for instance, to sort the items by
clustered area (see Figure 8). Let Amin, Amax be the extreme values of the
area interval that we want to cluster. Each cluster will have a length which is
the length of the global interval Amax−Amin times a given percentage θ/100,
with θ ∈ [1, 100]. The number of clusters nc is the ratio between the overall
interval length and the length of a single cluster. This ratio is nc = d100/θe.
Each cluster Ai(θ) can then be expressed as:

Ai(θ) = [Amin + (i− 1)(Amax − Amin)θ/100,

Amin + i(Amax − Amin)θ/100], (21)

with i = 1, . . . , nc. Note that, if we want to cluster the overall bin (basis)
area, then Amin = 0 and Amax = W ×D and (21) becomes:
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Ai(θ) = [(i− 1)WDθ/100, iWDθ/100], (22)

with i = 1, . . . , nc. By combining the three item attributes, six different
sorting criteria can be performed:

1. a-sw : clustered area, sorted specific weight;

2. a-p: clustered area, sorted profit;

3. sw-a: clustered specific weight, sorted area;

4. sw-p: clustered specific weight, sorted profit;

5. p-sw : clustered profit, sorted specific weight;

6. p-a: clustered profit, sorted area.

When a solution has been calculated, its corresponding objective function
value is given by the following merit function:

F = P − αU (23)

where P is the total profit of the selected items, U is the unbalancing
index given by (4), and α is a nonnegative parameter. Note that (23) is a
Lagrangean relaxation of the sum of the selected items profits. This means
that, according to α, attention is also devoted to the balancing constraints,
even before the center of mass optimization procedure. For setting the α
values see subsection 5.3.

5.2 Center of mass optimization

Given a three-dimensional convex domain inside the bin, the balancing pro-
cedure tries to adjust the packed items position so that the packing center of
mass lies inside the domain. The heuristic just moves already packed items,
therefore neither items are added or removed from the knapsack, nor the
overall profit is modified by the procedure. The center of mass optimization
heuristic works as follows: first it calculates the position ~rCM of packed items
center of mass as reported in equation (2), then it moves one item after an-
other so that ~rCM will move towards the desired position. Two issues arise:
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where to move an item and how to avoid it overlapping other items and the
knapsack edges.

We want to move item i from its actual position ~ri = (r1, r2, r3) to an
unknown new position ~x′i = (r′1 r′2, r′3) such that the overall center of mass
moves from its actual position ~rCM to the new desired position ~r′CM in order
to meet the balancing conditions. By (2) the current center of mass can be
written as:

~rCM =
∑
j∈J′
j 6=i

mj~rCMi
/M +mi~rCMi

/M (24)

When item i, rotated with rotation r̃, moves from ~ri to ~r′i then its new center
of mass becomes ~r′CMi

, while the overall center of mass is:

~r′CM =
∑
j∈J′
j 6=i

mj~rCMi
/M +mi~r

′
CMi

/M. (25)

Subtracting (24) from (25) we have:

~r′CM − ~rCM = mi(~r
′
CMi
− ~rCMi

)/M, (26)

which leads to the new coordinates of item i center of mass:

~r′CMi
= ~rCMi

+ (~r′CM − ~rCM)M/mi. (27)

Finally, the new coordinates of item i can be found as:

~r′i = (r′1CMi
− γ1

i r̃, r
′2
CMi
− γ2

i r̃, r
′3
CMi
− γ3

i r̃) (28)

(b)

x
i’

D
i

x
i

x
i’’

x
i’

D
i

x
i

(a)

Figure 9: Example of Permitted Movements of an Item in 2D
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Unfortunately, due to overlapping issues, it is not always possible to move
item i to the position ~r′i. To overcome this problem a three-dimensional
convex connected domain is defined where item i can freely move without
overlapping neither other items nor the bin. Actually, we define such a
domain Di as the set of allowed positions for the the origin of item i. To
do so, an algorithm similar to the one used to calculate the RS of an EP is
used. Once Di has been defined, three possible scenarios may take place:

• Di = {∅}: item i cannot move

• ~r′i ∈ Di: item i moves to ~r′i thus letting the balancing to be achieved
(see Figure 9a for a two-dimensional example)

• ~r′i /∈ Di and Di 6= {∅}: item i moves to an intermediate position ~r′′i
defined as the point which better approximates ~r′i on each axis (see
Figure 9b for a two-dimensional example)

Items movements may lead to a state that does not take gravity effects
into account. That would result in faulty solutions for many real-life applica-
tions, so the algorithm simulates the force of gravity by compacting all items
along the z axis towards the (x, y) plan.

The heuristic stops when one of the following three conditions does hold:
the packing is balanced, no item can be moved anymore, a maximum number
of iterations has been reached.

5.3 Score and parameter setting

In this subsection we show how to set the scores and parameters of the
heuristic 3BKP-H.

5.3.1 Score Initialization

The idea is to use the score as a measure of the willingness to accommodate
an item into the bin. Consequently, we start from the initial solution deci-
sion, and prioritize the items selected by the accommodation procedure by
assigning them a higher score than the non loaded ones. Two criteria are
used to define such initial scores. First, the score should reflect the profit
associated to each item. Second, the gap between a loaded and a non loaded
item should be small enough to guarantee the possibility of changes in the
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ordered list. The initial score of an item is then set to si = kpi if the item
has been loaded in the initial solution, and to si = pi otherwise. The value
of k has been experimentally set to 3.

5.3.2 Score Update

Previous experience has shown that the various sorting criteria used by the
procedure for building the initial solution load into the bin a significant subset
of the items making up the optimal solution. “Mistakes” usually are caused
when selecting among items with similar profits, but with peculiar sizes,
resulting in an underutilization of the bin. The score update focuses on
a special subset of items: the less profitable items already loaded and the
most profitable non loaded ones. The goal is to force at each iteration swaps
between less profitable loaded and profitable non loaded items by changing
the scores as follows:

• Find the item k loaded during the last iteration, minimizing µi = (1 +
f li )pi/(widihi), where f li represents the number of iterations item i has
been loaded into the bin;

• Update the score of item k to sk = (1− α)sk, with α ∈ (0, 1);

• Find the item l non loaded during the last iteration, maximizing µi =
pi/(widihi(1 + fui )), where fui represents the number of iterations item
i has not been loaded into the bin;

• Update the score of item l to sl = (1 + β)sl, β ∈ (0, 1);

• Swap the scores of items k and l;

• Keep the score unchanged for all items i, i 6= k and i 6= l;

where, µi measures the willingness to accommodate an item into the bin, f li
and fui maintain a long-term memory of the selected items to avoid always
selecting from the same subset of items, and α and β represent the percentage
score decrease and increase, respectively, and are experimentally set to 0.1.
This procedure ensures that at least two items are swapped at each iteration.
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5.3.3 Long-term Score Reinitialization

Given the sorted list of items which built the best solution found so far,
we first give a score to each item according to the same rule used in Score
Initialization. A fixed number of item pairs are then randomly selected and
their scores are swapped.

If the best solution found so far is unfeasible, α = 2α. If the best solution
is feasible, α = α/2 if the center of mass lies in the central half of its feasibility
domain, while is unchanged otherwise.

5.3.4 Parameter Initialization and Stopping Criteria

• α = β = 0.1;

• Long-term Score Reinitialization every 1000 iterations;

• number of item pairs: 5% of the items.

The overall process stops after 5 seconds.

6 Computational results

In this section, we analyze the behaviour of the model and the heuristics in
term of solution quality and computational efficiency. As the 3BKP is intro-
duced in this paper for the first time, we introduce in Subsection 6.1 some
benchmark instances. The first two sets, namely Set1 and Set2, are obtained
by extending the instances in literature for the 3KP, while the third one,
Set3, extends the rules used in the previous sets in order to diversify the in-
stances. All the tests have been performed on a Intel I7 2.8 GhZ Workstation
with 4 Gb of Ram. The model has been solved by means of Gurobi 4.0 solver
limited to 1 core [36]. Subsection 6.2 is devoted to compare the computa-
tional results of the MIP model and the heuristic, while subsection 6.3 shows
the behaviour of the developed model and heuristic compared with state-
of-the-art algorithms. Being 3BKP a new problem, we compare the model
and the heuristic with the results of heuristics developed specifically for the
problem which is more similar to 3BKP, the Three-Dimensional Knapsack
Problem.
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6.1 Test Instances

In this section we introduce different instance sets for 3BKP. Following the
tests for the 3KP, the instances cover up to items and different types of
items, knapsack and weight distributions. The sets, namely Set1 and Set2,
are obtained by extending the instances by Egeblad and Pisinger [25]. All
instance sets can be downloaded from the web site of OR-Library [37]. In the
sets S1 and S2, the size of the knapsack as well as the size of the items are
the same of [25], while weights are considered as additional item attributes.
Thus, the two sets differ for the weight generation, i.e. the weights in Set1
are generated in a smaller interval than in Set2. In order to give a better
description of the instances, in the following we report the full list of the
parameters used to generate the instances:

• number of items : n ∈ {20, 40, 60};

• item generation strategy : t ∈ {C, R}, where:

– C alias clustered, because the instance consists of only 20 items
which are duplicated appropriately;

– R alias random, because the instance consists of independently
generated items;

• bin size: p ∈ {50, 90}, expressed as a percentage of the total volume
of the items.

• item attributes :

– size: si = (wi, di, hi), which must belong to one among the fol-
lowing geometric classes (see [25]):

∗ Cubes (C). The items are cubic and their sizes are defined as
wi ∈ [1, 100] , di = wi, hi = wi;

∗ Diverse (D). The sizes of the items are randomly chosen in
the following ranges wi ∈ [1, 50] , di ∈ [1, 50] , hi ∈ [1, 50];

∗ Long (L). The sizes of the items are randomly chosen in
the following ranges wi ∈ [1, 200/3] , di ∈ [50, 100] , hi ∈
[1, 200/3];

∗ Uniform (U). The sizes of the items are randomly chosen
in the following ranges wi ∈ [50, 100] , di ∈ [50, 100] , hi ∈
[50, 100].
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– profit : pi = 200 + wi di hi;

– Center of mass position: the center of mass of each item is placed
in the geometrical center of the item itself, i.e. ~rCMi

= {wi/2, di/2, hi/2}
– specific weight : swi, uniformly distributed in the interval Isw,

where the limits of the interval depend on the set:

∗ Set1: Isw = [70, 100];

∗ Set2: Isw = [10, 1000];

– CoM domain: the domain constraints are set as Lδ = {W/4, D/4, 0}
and U δ = {3W/4, 3D/4, H/2}. These limits are given by practical
issues in maritime and air cargo applications. In particular, for
the limits on z, for stability reasons the requirement is usually as
near as possible to 0, i.e. the bottom of the bin [1].

The combination of all the values give 120 instances, 60 for each set.

6.2 Model and Heuristic results

This section is devoted to compare the results of the different solution meth-
ods for 3BKP, 3BKP-M solved by means of a commercial solver and 3BKP-H.

As stated in Section 4, model 3BKP-M is not efficient in proving the op-
timality of the solutions due to the poor quality of its continuous relaxation.
On the other hand, if it is used in conjunction with a proper MIP solver, it
can give accurate solutions with a limited computational effort. In our tests
we used three well-know commercial solver, FICO XPress 2010, CPLEX 12.1
and Gurobi 4.0. The three solvers have been tested by using their default
parameter values, setting a maximum computation time of 200 seconds and
a mono-processor setting. Moreover, we tested them with their internal cut
generation on and off. We do not report the detailed results of our tests, but
we can say that for all solvers the best results in 200 seconds are found by
setting off the internal cut generator. Moreover, the solver able to find the
best solutions is Gurobi. In fact, Gurobi is not only able to find the overall
best results, but these results are found in the very first nodes of the search,
making possible to reduce the computational effort.

Table 1 compares the behaviour of UB1D with the continuous relaxation
of 3BKP-M. The first column reports the number of items in the instances,
while the two remaining columns give the percentage gap of UB1D with
respect to the continuous relaxation of 3BKP-M applied to Set1 and Set2 (a
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positive value means that the continuous relaxation is tighter than UB1D).
Each cell reports the main over the instances with the same number of items.
This aggregation is justified by the fact that the number of items has been
the only parameter affecting the results. The data show that the gap is large
on the 20 item instances only, while it decreases rapidly with the increasing
of the items. This is mainly due to constraints (9) and (10), that cluster a
lot the binary variables when a continuous relaxation is applied.

Finally, Table 2 is devoted to compare the results obtained by the MIP
model 3BKP-M and 3BKP-H, where the computational times have been set
to 200 seconds for 3BKP-M and 5 seconds for 3BKP-H. The meaning of the
columns is the following:

• Columns 1-4. The columns give the instance name defined in [25],
the number of items, the item geometry class and the item generation
strategy.

• Columns 5-6. The percentage gap between the solution obtained by
3BKP-H and the continuous relation of 3BKP-M in Set1 and Set2,
respectively. When we proved the optimality of the solution by means
of 3BKP-M, an asterisk is placed in the table.

The results show how the model performs better than the heuristic on small
sized instances (20 items), while starting from 40 items the heuristic is able
to give results which are about 10% better than the model and the computa-
tional effort of 3BKP-H is about two order of magnitude less than 3BKP-M.
Moreover, the accuracy gap between the model and the 3BKP-H in 20 item
instances can be reduced by increasing the computational time of 3BKP-H
to 10 seconds.

Finally, Table 3 reports the position of the packing center of mass. The
values are grouped by item geometry class. Due to the presence of different
knapsack sizes and in UB1D order to uniform the results, for each class we
give the position along the three axes of the center of mass as percentage
with respect to the full size of the knapsack. Thus, the geometric center of
the knapsack corresponds to the values 50%, 50%, 50%. According to these
results, we can notice that the packing is very well balanced, with its center
of mass almost in the center of the feasibility domain along x and y axes,
while is in the given domain in the z axis too. This axis is quite peculiar,
in fact in practical applications is very difficult to obtain a center of mass
in the lower half bottom of the knapsack without losing most of the bin
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n Set1 Set2
20 6.16 6.35
40 0.35 1.12
60 0.00 0.00

Table 1: Comparison of different upper bounds

loading volume. In our tests, we had a mean filling ration of 76% in Set2,
the most unbalanced, which raises to about 83% if we solve the instances like
a standard bin loading problem, i.e. the profit of the items is the volume
of the items themselves. These results are very promising, considering that
in the unbalanced applications the filling ration is around 92%. Moreover,
these gap is mainly due to the constraint on z. In fact, by relaxing it we can
fill the bin at 87% in average.

6.3 State of the Art results

As stated in Section 3, 3BKP is introduced in this paper for the first time.
Thus, no other method than our model and heuristic is present in the liter-
ature. Moreover, computing specific upper bounds for 3BKP is quite diffi-
cult. In fact, upper bounds obtained by model 3BKP-M are quite poor and
have mainly the same quality a trivial bound UB1D obtained by computing
the optimal solution of the mono-dimensional Knapsack Problem ([26, 25]).
Moreover, additional upper bounds that can be obtained by means of conser-
vative scales in the 3D Packing without rotation are not valid for the problems
where the rotations are allowed [25]. On the other hand, 3BKP is an exten-
sion of the 3KP and thus the solutions obtained by 3BKP-M and 3BKP-H
are valid for 3KP. Thus, in Table 4 we compare 3BKP-M and 3BKP-H with
the results obtained by HEP , heuristic by Egeblad and Pisinger [25] on their
instances for 3KP. The computational times have been set to 120 seconds for
HEP , 200 seconds for 3BKP-M and 5 seconds for 3BKP-H and they will be
not reported in the table. 3BKP-M is solved by means of Gurobi 4.0 [36],
while 3BKP-H is implemented in C++. For HEP the results have been given
by [25].

The meaning of the columns is the following:

• Columns 1-4. The instance name defined in [25], the number of items,
the item geometry class, and the item generation strategy.
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Instance n IT Geom IT Strat 3BKP-M 3BKP-H
Set1 Set2 Set1 Set2

ep3d-20-C-C-50 20 C C 7.0 7.0 7.0 7.0
ep3d-20-C-C-90 20 C C * * * *
ep3d-20-C-R-50 20 C R * * * *
ep3d-20-C-R-90 20 C R 6.3 10.3 8.2 12.0
ep3d-20-D-C-50 20 D C * * 0.2 4.0
ep3d-20-D-C-90 20 D C 17.8 19.6 26.7 27.4
ep3d-20-D-R-50 20 D R 14.6 22.9 11.0 11.0
ep3d-20-D-R-90 20 D R 16.8 14.7 19.1 19.1
ep3d-20-F-C-50 20 F C 20.1 18.9 20.7 20.7
ep3d-20-F-C-90 20 F C 26.4 23.9 27.6 27.6
ep3d-20-F-R-50 20 F R 22.9 17.9 20.1 20.1
ep3d-20-F-R-90 20 F R 20.6 21.0 21.2 21.2
ep3d-20-L-C-50 20 L C 11.6 13.2 16.3 19.1
ep3d-20-L-C-90 20 L C 13.2 12.1 14.5 14.5
ep3d-20-L-R-50 20 L R 11.9 10.0 12.8 12.8
ep3d-20-L-R-90 20 L R 13.9 15.1 17.4 19.3
ep3d-20-U-C-50 20 U C 23.8 23.8 30.4 30.4
ep3d-20-U-C-90 20 U C 21.0 14.7 24.6 26.8
ep3d-20-U-R-50 20 U R 21.0 16.7 30.0 29.5
ep3d-20-U-R-90 20 U R 21.0 18.5 17.4 17.4
ep3d-40-C-C-50 40 C C 38.7 38.7 38.7 38.7
ep3d-40-C-C-90 40 C C 21.6 * 24.6 3.0
ep3d-40-C-R-50 40 C R 24.3 24.7 26.7 33.1
ep3d-40-C-R-90 40 C R 24.1 26.1 30.1 32.7
ep3d-40-D-C-50 40 D C 27.6 26.6 19.9 18.2
ep3d-40-D-C-90 40 D C 37.6 24.4 21.0 21.0
ep3d-40-D-R-50 40 D R 35.3 37.3 12.7 11.5
ep3d-40-D-R-90 40 D R 32.1 38.7 15.9 15.9
ep3d-40-F-C-50 40 F C 31.5 29.0 32.0 31.1
ep3d-40-F-C-90 40 F C 37.6 33.4 33.5 33.5
ep3d-40-F-R-50 40 F R 29.9 26.4 19.3 19.3
ep3d-40-F-R-90 40 F R 38.8 26.1 22.1 22.1
ep3d-40-L-C-50 40 L C 33.2 33.5 17.2 15.9
ep3d-40-L-C-90 40 L C 35.4 41.5 20.6 21.4
ep3d-40-L-R-50 40 L R 37.9 32.9 12.1 9.9
ep3d-40-L-R-90 40 L R 44.4 39.1 16.6 16.6
ep3d-40-U-C-50 40 U C 21.9 27.6 18.2 17.9
ep3d-40-U-C-90 40 U C 23.6 20.9 33.4 33.4
ep3d-40-U-R-50 40 U R 20.4 25.5 13.0 13.0
ep3d-40-U-R-90 40 U R 31.7 27.5 28.4 28.4
ep3d-60-C-C-50 60 C C 50.9 53.1 50.9 50.9
ep3d-60-C-C-90 60 C C 35.9 31.1 29.5 29.5
ep3d-60-C-R-50 60 C R 29.1 25.3 31.7 31.7
ep3d-60-C-R-90 60 C R 44.7 36.2 25.2 25.2
ep3d-60-D-C-50 60 D C 23.8 29.4 20.5 20.5
ep3d-60-D-C-90 60 D C 29.7 28.1 30.6 30.6
ep3d-60-D-R-50 60 D R 50.0 38.7 6.7 6.7
ep3d-60-D-R-90 60 D R 49.1 53.3 12.2 12.2
ep3d-60-F-C-50 60 F C 33.5 41.6 22.6 22.7
ep3d-60-F-C-90 60 F C 29.9 36.8 35.7 34.3
ep3d-60-F-R-50 60 F R 32.6 30.8 19.1 20.1
ep3d-60-F-R-90 60 F R 40.9 30.0 27.8 27.8
ep3d-60-L-C-50 60 L C 33.1 36.1 17.3 17.3
ep3d-60-L-C-90 60 L C 38.9 39.1 22.9 21.0
ep3d-60-L-R-50 60 L R 63.3 45.2 9.8 9.8
ep3d-60-L-R-90 60 L R 51.0 41.5 17.1 17.1
ep3d-60-U-C-50 60 U C 24.1 26.9 20.2 20.2
ep3d-60-U-C-90 60 U C 37.6 30.4 39.7 39.4
ep3d-60-U-R-50 60 U R 31.0 35.3 17.7 17.7
ep3d-60-U-R-90 60 U R 37.3 31.4 35.1 35.2

Table 2: Comparison of 3BKP-M and 3BKP-H
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IT Geom CMX CMY CMZ

C 56.82% 53.95% 49.72%
D 53.95% 52.23% 44.82%
F 53.99% 51.91% 45.56%
L 53.40% 52.24% 44.60%
U 55.04% 53.05% 45.82%

Table 3: Center of Mass position

• Column 5. The objective function of the upper bound UB1D, which is
the only one computed for all the methods.

• Columns 6-9. The objective function of the best solution found by
HEP , the Model 3BKP-M, our heuristic with (3BKP-H) and without
(3BKP-H UNB) the balancing constraints activated.

• Columns 10-14. The percentage gap between the upper bound UB1D

and objective function of the best solution found by HEP , the Model
3BKP-M, our heuristic with (3BKP-H) and without (3BKP-H UNB)
the balancing constraints activated. In the case of 3BKP-H with bal-
ancing constraints, we consider the weights of Set1. If we prove the
optimality of the solution by means of 3BKP-M, an asterisk is placed
in the table.

From the results we can notice that the model is not competitive, with a
gap almost doubled than HEP . However, the model is much more flexible
than the heuristic, making possible to easily introduce additional constraints
like fixed positions for the items, forbidden rotations and precedence con-
straints in items loading. Moreover, giving to the model a time limit equal
to 1000 seconds, the gap can be reduced, even if it is still about 10% more
than HEP . If we compare HEP with 3BKP-H with the balancing constraints
activated, we can notice that the results of 3BKP-H are about 3% worse
than HEP . However, this gap is given by the balancing constraints. In fact,
if we remove the balancing constraints we obtain a total mean gap of 16%,
which is about 2% less than Egeblad and Pisinger results. These results are
more impressive if we consider that 3BKP-H require a computational time
which is about 2 order of magnitude less than HEP . We also tried to in-
crease the computational time of 3BKP-H in order to obtain better results,
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but the computational experience show that the increase of quality is negli-
gible. From the means computed per item number, we can see how the gap
between HEP and 3BKP-H is constantly present in all the instances, even if
it reduces while the size of the instances increases. 3BKP-M is competitive
when the number of items is 20, but its gaps makes it unusable in practice
for larger instances. Finally, the consistent gap between UB1D and all the
presented methods is, how stated in [25], mainly due to the poor quality of
the relaxation, which is not able to take into account neither geometric nor
balancing issues.

7 Conclusions

In this paper, we introduced the Three-Dimensional Knapsack Problem with
Balancing Constraints, the extension of the Three-Dimensional Knapsack
Problem (3KP) where additional constraints related to the Center of Mass of
the three-dimensional packing are given. A MIP formulation of the problem
as well as an efficient and accurate heuristic have been presented. Exten-
sive computational results showed how the MIP model is able to find better
bounds than other relaxations and the heuristic is able to efficiently solve
both instances explicitly designed for 3BKP, as well as to be competitive
with methods explicitly designed to solve 3KP. Presently, we are extending
the test instances in order to give a better insight of the relationship between
solution quality and balancing constraints tightness.
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Instance n IT Geom IT Strat UB1D HEP 3BKP-M 3BKP-H 3BKP-H HEP 3BKP-M 3BKP-H 3BKP-H
UNB UNB

ep3d-20-C-C-50 20 C C 1026348 633672 633672 633672 633672 7.0 7.0 7.0 7.0
ep3d-20-C-C-90 20 C C 1834340 916241 916241 916241 916241 * * * *
ep3d-20-C-R-50 20 C R 2188245 1492413 1492413 1492413 1492413 * * * *
ep3d-20-C-R-90 20 C R 3925057 2497691 2497691 2449089 2497691 * * 1.9 *
ep3d-20-D-C-50 20 D C 395916 239532 316492 315964 315964 24.3 * 0.2 0.2
ep3d-20-D-C-90 20 D C 718692 468112 559756 526480 526480 34.9 22.1 26.7 26.7
ep3d-20-D-R-50 20 D R 240621 195937 206026 214227 214227 18.6 14.4 11.0 11.0
ep3d-20-D-R-90 20 D R 414188 318848 368476 335123 335123 23.0 11.0 19.1 19.1
ep3d-20-F-C-50 20 F C 2395087 1900250 1900250 1900250 1900250 20.7 20.7 20.7 20.7
ep3d-20-F-C-90 20 F C 4304020 2989393 2510887 3118132 3118132 30.5 41.7 27.6 27.6
ep3d-20-F-R-50 20 F R 2252037 1563997 1698795 1800399 1800399 30.5 24.6 20.1 20.1
ep3d-20-F-R-90 20 F R 4099982 2918002 2353072 3232580 3232580 28.8 42.6 21.2 21.2
ep3d-20-L-C-50 20 L C 1064487 834335 941069 891283 891283 21.6 11.6 16.3 16.3
ep3d-20-L-C-90 20 L C 1894489 1589303 1546821 1619190 1619190 16.1 18.4 14.5 14.5
ep3d-20-L-R-50 20 L R 718561 569900 633463 626381 626381 20.7 11.8 12.8 12.8
ep3d-20-L-R-90 20 L R 1282710 1051084 1114602 1056699 1056699 17.9 12.9 17.5 17.5
ep3d-20-U-C-50 20 U C 4495440 3088676 2796072 3127252 3127252 31.3 37.8 30.4 30.4
ep3d-20-U-C-90 20 U C 8067424 5360280 4289980 6074000 6074000 33.5 46.7 24.6 24.6
ep3d-20-U-R-50 20 U R 4413077 3509748 2677316 3087569 3509748 20.5 39.3 30.0 20.5
ep3d-20-U-R-90 20 U R 8041072 6921250 4156121 6638762 6921250 13.9 48.3 17.4 13.9
Mean 19.7 20.5 15.9 15.2

ep3d-40-C-C-50 40 C C 2065540 1265664 1265664 1265664 1265664 38.7 38.7 38.7 38.7
ep3d-40-C-C-90 40 C C 3652448 2828160 2335561 2717385 2828160 21.8 35.4 24.8 21.8
ep3d-40-C-R-50 40 C R 4102972 3002269 2503936 3008658 3008658 26.8 39.0 26.7 26.7
ep3d-40-C-R-90 40 C R 7335602 5972946 3498247 4900577 5972946 4.1 43.8 21.3 4.1
ep3d-40-D-C-50 40 D C 788124 539040 580512 630996 630996 31.6 26.3 19.9 19.9
ep3d-40-D-C-90 40 D C 1423896 1126300 1032016 1124788 1126300 20.9 27.5 21.0 20.9
ep3d-40-D-R-50 40 D R 399894 349470 248518 349152 349470 12.6 37.9 12.7 12.6
ep3d-40-D-R-90 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1
ep3d-40-F-C-50 40 F C 4816926 3590244 2596874 3274502 3590244 25.5 46.1 32.0 25.5
ep3d-40-F-C-90 40 F C 8664122 6435962 4039655 5760960 6435962 25.7 53.4 33.5 25.7
ep3d-40-F-R-50 40 F R 4518343 3477469 2623783 3644680 3644680 23.0 41.9 19.3 19.3
ep3d-40-F-R-90 40 F R 8199224 7336067 3560051 6386094 7336067 10.5 56.6 22.1 10.5
ep3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2
ep3d-40-L-C-90 40 L C 3819412 2943657 2054950 3032364 3032364 22.9 46.2 20.6 20.6
ep3d-40-L-R-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8
ep3d-40-L-R-90 40 L R 3224295 2699629 1722617 2689260 2699629 16.3 46.6 16.6 16.3
ep3d-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2
ep3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4
ep3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4
ep3d-40-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8
Mean 19.3 43.5 22.4 18.0

ep3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9
ep3d-60-C-C-90 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9
ep3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3
ep3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5
ep3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9
ep3d-60-D-C-90 60 D C 2143544 1843584 1440492 1488020 1843584 14.0 32.8 30.6 14.0
ep3d-60-D-R-50 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7
ep3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9
ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0
ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4
ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3
ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7
ep3d-60-L-C-50 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3
ep3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8
ep3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 2158105 14.6 51.6 9.8 9.8
ep3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0
ep3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9
ep3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7
ep3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2
ep3d-60-U-R-90 60 U R 21893096 19304585 4374061 14216597 19304585 11.8 80.0 35.1 11.8
Mean 15.7 56.1 24.6 14.8

Total mean 18.2 40.0 21.0 16.0

Table 4: 3KP: results of 3BKP-M and 3BKP-H without balancing constraints
compared to HEP
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