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Abstract.  The problem consists in finding a transshipment facility location which 

minimizes the expected total cost when the generalized transportation costs are random 

variables. The optimal location must satisfy supply, demand, and lower and upper 

capacity constraints. Each generalized transportation cost is given by a deterministic 

transportation cost from an origin to a destination via a transshipment facility in addition to 

a random handling cost of the facility, whose probability distribution is not known. In this 

paper we give the stochastic model, a deterministic approximation of it and an efficient 

heuristic for solving the deterministic approximation when real-life instances are 

considered. Computational results show a mean gap of 0; 87% between the stochastic 

model and its deterministic approximation and 0; 82% between the latter and the heuristic. 
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1 Introduction

Let us consider a set of origins with a given supply, a set of destinations with a given
demand, a set of potential transshipment locations with a deterministic fixed cost of
location, lower and upper capacity constraints for the facilities, and random general-
ized transportation costs from origins to destinations via transshipment facilities.
Each generalized transportation cost is a random variable given by the sum of a deter-
ministic transportation cost from an origin to a destination via a transshipment facility
plus a random term, with unknown probability distribution, which represents the han-
dling cost of the transshipment facility. The freight, when enters into a transshipment
facility, is subject to handling operations which are typically organized in alternative
operating paths, where an operating path is a set of options for how the freight may
be routed and processed within the transshipment facility. Each operating path has
its unit handling cost and a finite capacity. Given the finite capacity of the operating
path, congestion effects make the handling cost a random variable, whose distribution
is usually not known.
The Transshipment Location Problem under Uncertainty with Lower and Upper Ca-
pacity Constraints consists in finding a transshipment location which minimizes the
total cost, given by the sum of the total fixed cost and the expected minimum total
flow cost, subject to supply, demand, and lower and upper facility capacity constraints.
In other words, in this paper we try to integrate two of the main levels of a transship-
ment network, i.e. the network design (higher level), which leads to a network flow
formulation with origins, transshipment points and destinations as nodes of the net-
work, and the transshipment facility management (lower level), where the management
variables we consider are represented by the random handling costs of the freight at
the facilities.
Only a few papers concerning location problems with stochastic costs are currently
available. Among them, Ricciardi et al. [10] develop a heuristic for solving a p-median
problem where the throughput costs are random variables with a given probability
distribution. Snyder et al. [11] consider a scenario-based stochastic version of a joint
location-inventory model that minimizes the expected cost of locating facilities, allow-
ing costs, lead times, demand, and some other parameters to be stochastic. Tadei et al.
[12] consider a stochastic p-median problem where the costs for using the facilities are
random variables, with unknown probability distribution.
In this paper we address the Transshipment Location Problem under Uncertainty where
both upper and lower capacity constraints of the facilities are considered (C2TLPu).
We give the stochastic model, its deterministic approximation, and an efficient heuristic
for solving the deterministic approximation when large real-life instances are consid-
ered. We can note that taking into account both upper and lower bounds for the
facility size is particularly important from an economic point of view. In fact, this
avoids locating facilities whose size is either too large or too small, where both situa-
tions are economically inefficient.
Computational results show that the mean gap between the stochastic model and its
deterministic approximation is 0, 87%. Moreover, the performance of the proposed
heuristic, designed for solving larger instances of the deterministic model, is very good,
both in terms of running time and solution quality, showing a mean gap of 0, 82%
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between the optimum values.
The remainder of the paper is organized as follows. Section 2 introduces the Transship-
ment Location Problem under Uncertainty with Lower and Upper Capacity Constraints
as a stochastic programming model. In Section 3, its deterministic approximation is
given. Section 4 presents the heuristic for solving real-life instances of the deterministic
model. In Section 5, the computational results of both the deterministic approximation
and the proposed heuristic are given. Finally, the conclusions of our work are reported
in Section 6.

2 The Transshipment Location Problem under Un-
certainty with Lower and Upper Capacity Con-
straints

We consider the following parameters and data
• I: set of origins
• J : set of destinations
• K: set of potential transshipment locations
• Hk: set of operating paths at transshipment facility k ∈ K
• Pi: supply at origin i ∈ I
• Qj : demand at destination j ∈ J
• Lk: lower capacity of transshipment facility k ∈ K
• Uk: upper capacity of transshipment facility k ∈ K
• fk: fixed cost of locating a transshipment facility k ∈ K
• ckij : unit deterministic transportation cost from origin i ∈ I to destination j ∈ J

via transshipment facility k ∈ K

and the variables
• yk: binary variable which takes value 1 if transshipment facility k ∈ K is located,

0 otherwise
• θkl: random variable with unknown probability distribution which represents the

unit handling cost of operating path l ∈ Hk at transshipment facility k ∈ K
• skij : deterministic variable which represents the flow from origin i ∈ I to destina-

tion j ∈ J via transshipment facility k ∈ K.

Let us assume the system is balanced, i.e.
∑
i∈I Pi =

∑
j∈J Qj = T . This is a

standard assumption and is straightforward to balance the system, if necessary.

Let rklij (θkl) be the random generalized unit transportation cost from origin i to
destination j via transshipment facility k in operating path l given by

rklij (θkl) = ckij + θkl, i ∈ I, j ∈ J, k ∈ K, l ∈ Hk (1)

Let us define with θ̃k the minimum of the random handling costs within the alter-
native operating paths {l} at the transshipment facility k

θ̃k = min
l∈Hk

θkl, k ∈ K (2)
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As far as the management level is considered, we assume that the facility manage-
ment policies are efficiency-based, so that, among the alternative operating paths {l}
at the transshipment facility k, the one which minimizes the random costs {rkij(θkl)}
will be selected, then

r̃kij(θ̃
k) = min

l∈Hk

rklij (θkl) = ckij + min
l∈Hk

θkl = ckij + θ̃k, i ∈ I, j ∈ J, k ∈ K (3)

The C2TLPu is formulated as follows

min
y

∑
k∈K

fkyk + IEθ̃k

min
s

∑
i∈I

∑
k∈K

∑
j∈J

r̃kij(θ̃
k)skij

 (4)

subject to ∑
k∈K

∑
j∈J

skij = Pi, i ∈ I (5)

∑
i∈I

∑
k∈K

skij = Qj , j ∈ J (6)

∑
i∈I

∑
j∈J

skij ≤ Ukyk, k ∈ K (7)

∑
i∈I

∑
j∈J

skij ≥ Lkyk, k ∈ K (8)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (9)

yk ∈ {0, 1}, k ∈ K (10)

where IEθ̃k denotes the expected value with respect to {θ̃k}; the objective function (4)
expresses the minimization of the total cost given by the sum of the total fixed cost
and the expected total flow cost; constraints (5) and (6) ensure that supply at each
origin i and demand at each destination j are satisfied; constraints (7) and (8) ensure
the upper and lower capacity restrictions at each transshipment facility k; (9) are the
non-negativity constraints, and (10) are the integrality constraints.

In order to make numerical computation easier, instead of (4)-(10) we consider the
random-utility counterpart of C2TLPu, i.e. the utility maximizing approach rather
than the cost minimizing one is used and the min operator is replaced by the max
operator.

Let us define
• vkij = −ckij : unit deterministic utility from origin i ∈ I to destination j ∈ J via

transshipment facility k ∈ K
• ukl = −θkl: unit random utility of operating path l ∈ Hk at transshipment

facility k ∈ K.

3

The Transshipment Location Problem under Uncertainty with Lower and Upper Capacity Constraints

CIRRELT-2011-31



Let us assume {ukl} are independent and identically distributed (i.i.d.) random
variables with a common and unknown probability distribution

Pr{ukl ≤ x} = F (x) (11)

This assumption is necessary for deriving our deterministic approximation of the
stochastic model, but it can be also justified in practice. In fact, the random utility
due to the handling operations at any facility k is extremely difficult to measure, so
its probability distribution is generally not known and it would be rather arbitrary to
assume a particular shape for it. For this reason, we take a common unknown prob-
ability distribution for the random utilities, which justifies the identically-distributed
assumption. Moreover, for the sake of simplicity, we assume that the alternative oper-
ating paths interact only slightly with each other, allowing us to consider their random
utilities as independent variables.

Let ũk be the maximum of the random utilities within the alternative operating
paths {l} at the transshipment facility k

ũk = max
l∈Hk

ukl, k ∈ K (12)

which is still of course a random variable with unknown probability distribution given
by

Bk(x) = Pr
{
ũk ≤ x

}
(13)

As ũk ≤ x⇐⇒ ukl ≤ x, l ∈ Hk and ukl are independent, using (11) one gets

Bk(x) = Pr
{
ũk ≤ x

}
=
∏
l∈Hk

Pr
{
ukl ≤ x

}
=
∏
l∈Hk

F (x) = [F (x)]
nk (14)

where nk = |Hk| is the total number of alternative operating paths at the transship-
ment facility k.

Let us consider the unit random utility from origin i to destination j via transship-
ment facility k

ṽkij(ũ
k) = vkij + ũk, i ∈ I, j ∈ J, k ∈ K, l ∈ Hk (15)

C2TLPu as a random-utility model then becomes

max
y

∑
k∈K

−fkyk + IEũk

max
s

∑
i∈I

∑
k∈K

∑
j∈J

ṽkij(ũ
k)skij

 (16)

subject to ∑
k∈K

∑
j∈J

skij = Pi, i ∈ I (17)
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∑
i∈I

∑
k∈K

skij = Qj , j ∈ J (18)

∑
i∈I

∑
j∈J

skij ≤ Ukyk, k ∈ K (19)

∑
i∈I

∑
j∈J

skij ≥ Lkyk, k ∈ K (20)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (21)

yk ∈ {0, 1}, k ∈ K (22)

Let us take the Lagrangian of problem (16)-(22) obtained by relaxing the constraints
(18), (19), and (20) by means of the multipliers µj , j ∈ J , and λk ≥ 0, k ∈ K, and
ηk ≤ 0, k ∈ K, respectively

L =
∑
k∈K

−fkyk + IEũk

max
s

∑
i∈I

∑
k∈K

∑
j∈J

ṽkij(ũ
k)skij

+

+
∑
j∈J

µj

(∑
i∈I

∑
k∈K

skij −Qj

)
+
∑
k∈K

λk

Ukyk −∑
i∈I

∑
j∈J

skij

+

∑
k∈K

ηk

Lkyk −∑
i∈I

∑
j∈J

skij

 (23)

When the strong duality conditions are satisfied, we know that problem (16)-(22)
is equivalent to

min
µ,λ≥0,η≤0

max
y

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj +

+IEũk

max
s

∑
i∈I

∑
k∈K

∑
j∈J

yk
(
ṽkij(ũ

k) + µj − λk − ηk
)
skij

 (24)

subject to ∑
k∈K

∑
j∈J

yks
k
ij = Pi, i ∈ I (25)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (26)

yk ∈ {0, 1}, k ∈ K (27)

We can note that, because of the relaxation of the capacity constraints (19) and
(20), in order to prevent sending flows via closed transshipment facilities (i.e. those
facilities for which yk = 0), the term yk must be introduced into the objective function

5

The Transshipment Location Problem under Uncertainty with Lower and Upper Capacity Constraints

CIRRELT-2011-31



(24) and constraints (25).

The term (ṽkij(ũ
k)+µj−λk−ηk) in (24) is called the unit “shadow” random utility

from i to j via transshipment facility k, due to the fact that the term contains the
shadow prices µj , λk, and ηk.
For any value of the multipliers {µj}, {λk ≥ 0} and {ηk ≤ 0}, a freight unit in i will
select the alternative (s, t) given by the transshipment facility s and the destination t
(for the sake of simplicity, we assume this alternative is unique), whose shadow random
utility (ṽsit(ũ

s) + µt − λs − ηs) is the maximum within those of the open transshipment
facilities and the destinations. So, the unit shadow random utility from i becomes

ṽi(ũ
s) = ṽsit(ũ

s) + µt − λs − ηs = maxk:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)

(28)

Problem (24)-(27), for any value of the multipliers {µj}, {λk ≥ 0}, and {ηk ≤ 0}
and any transshipment facility location {yk}, gives the following trivial optimal flows

skij = Pi if ṽkij(ũ
k) + µj − λk − ηk = ṽsit(ũ

s) + µt − λs − ηs
skij = 0 otherwise

and the objective function (24) becomes

min
µ,λ≥0,η≤0

max
y

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj + IEũs

[∑
i∈I

Piṽi(ũ
s)

]
=

min
µ,λ≥0,η≤0

max
y

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj +
∑
i∈I

PiIEũs [ṽi(ũ
s)] (29)

To calculate IEũs [ṽi(ũ
s)] in (29) we first need to know the probability distribution of

ṽi(ũ
s), named Gi(x)

Gi(x) = Pr{ṽi(ũs) ≤ x} = Pr

{
max

k:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x

}
(30)

As

max
k:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x⇐⇒

ṽkij(ũ
k) + µj − λk − ηk ≤ x, k ∈ K : yk = 1, j ∈ J (31)

and the random variables ũk are independent (because ukl are independent), (30)
becomes
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Gi(x) = Pr
{
maxk:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x

}
=

Pr
{
ṽkij(ũ

k) + µj − λk − ηk ≤ x, k ∈ K : yk = 1, j ∈ J
}

=∏
k∈K:yk=1

∏
j∈J

Pr
{
ṽkij(ũ

k) + µj − λk − ηk ≤ x
}

=

∏
k∈K:yk=1

∏
j∈J

Pr
{
vkij + ũk + µj − λk − ηk ≤ x

}
=

∏
k∈K:yk=1

∏
j∈J

Pr
{
ũk ≤ x− vkij − µj + λk + ηk

}
=

∏
k∈K:yk=1

∏
j∈J

Bk(x− vkij − µj + λk + ηk) =

∏
k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk)

]nk
(32)

3 The deterministic approximation of C2TLPu

The unknown probability distribution F (x) prevents the calculation of Gi(x) in (32).
A possible way to solve this problem and get an explicit form for Gi(x) is to consider
an asymptotic approximation for it.
The method we use to derive an asymptotic approximation of Gi(x) is based on the
following observation. Under mild conditions on the unknown probability distribution
F (x), the probability distribution Gi(x) tends towards a specific functional form as
the total number of alternative handling operating paths at transshipment facility k,
nk, becomes large.
Following Galambos [6], we will prove that the only condition requested for F (x) is
that is asymptotically exponential in its right tail, i.e. there is a constant β > 0 such
that

lim
y→∞

1− F (x+ y)

1− F (y)
= e−βx (33)

This is a very mild condition, as we observe that many probability distributions
show such behavior.

Firstly, let us consider the following aspect: the solution of problem (24)-(27) does
not change if an arbitrary constant is added to the random variables ũk.

Let us choose this constant as the root ank
of the equation

1− F (ank
) = 1/nk (34)

Replacing ũk with ũk − ank
in (32)

Gi(x | nk) =
∏

k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk + ank

)
]nk

. (35)
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Let us assume that nk, k ∈ K : yk = 1 are large enough to use limnk→∞Gi(x | nk)
as an approximation of Gi(x).

The following theorem holds

Theorem 1. Under condition (33), the unknown probability distribution Gi(x) becomes

Gi(x) = lim
nk→∞

G(x | nk) = exp
(
−Aie−βx

)
(36)

where

Ai =
∑

k∈K:yk=1

∑
j∈J

eβ(v
k
ij+µj−λk−ηk) =

∑
k∈K

∑
j∈J

yke
β(vkij+µj−λk−ηk), i ∈ I (37)

is the accessibility, in the sense of Hansen [8], of a freight unit in i to the overall system
of located transshipment facilities and destinations.

Proof. By (35) one has

Gi(x) = lim
nk→∞

Gi(x | nk) =

lim
nk→∞

∏
k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk + ank

)
]nk

=

∏
k∈K:yk=1

∏
j∈J

lim
nk→∞

[
F (x− vkij − µj + λk + ηk + ank

)
]nk

(38)

As limnk→∞ ank
=∞, from (33) one obtains

lim
nk→∞

1− F (x− vkij − µj + λk + ηk + ank
)

1− F (ank
)

= e−β(x−v
k
ij−µj+λk+ηk) (39)

By (39) and (34) one has

lim
nk→∞

F (x− vkij − µj + λk + ηk + ank
) =

lim
nk→∞

(
1− [1− F (ank

)]e−β(x−v
k
ij−µj+λk+ηk)

)
=

lim
nk→∞

(
1− e−β(x−v

k
ij−µj+λk+ηk)

nk

)
(40)

and, by reminding that limn→∞(1 + x
n )n = ex

lim
nk→∞

[
F (x− vkij − µj + λk + ηk + ank

)
]nk

=

lim
nk→∞

[
1− e−β(x−v

k
ij−µj+λk+ηk)

nk

]nk

=

exp
(
−e−β(x−v

k
ij−µj+λk+ηk)

)
(41)
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Substituting (41) into (38) and using (37) one finally gets

Gi(x) =
∏

k∈K:yk=1

∏
j∈J

exp
(
−e−β(x−v

k
ij−µj+λk+ηk)

)
= exp

(
−Aie−βx

)
� (42)

It is interesting to observe that Gi(x) in (36) becomes a Gumbel (or double expo-
nential) distribution [7].

Having now an explicit form for Gi(x), we can calculate IEũs [ṽi(ũ
s)] in (29) as

follows

vi = IEũs [ṽi(ũ
s)] =

∫ +∞

−∞
xdGi(x) =

∫ +∞

−∞
x exp

(
−Aie−βx

)
Aie
−βxβdx, i ∈ I (43)

Substituting for t = Aie
−βx one gets

vi = −1/β

∫ +∞

0

ln(t/Ai)e
−tdt =

= −1/β

∫ +∞

0

e−t ln tdt+ 1/β lnAi

∫ +∞

0

e−tdt =

= γ/β + 1/β lnAi =

= 1/β(lnAi + γ) (44)

where γ = −
∫ +∞
0

e−t ln t dt ' 0.5772 is the Euler constant.
By substituting (44) in (29), the deterministic approximation of C2TLPu, named

C2TLPd, becomes the following nonlinear mixed-integer problem

min
µ,λ≥0,η≤0

max
y

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj + 1/β
∑
i∈I

Pi lnAi (45)

subject to ∑
k∈K

∑
j∈J

yks
k
ij = Pi, i ∈ I (46)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (47)

yk ∈ {0, 1}, k ∈ K (48)

where the constant γ
β

∑
i∈I Pi has been dropped in the objective function.

If we denote by

xkij = skij/Pi i ∈ I, j ∈ J, k ∈ K (49)
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the probability that a freight unit in i is delivered towards the alternative (k, j),
given by the transshipment facility k and the destination j, then xkij is equal to the
probability that the pair (k, j) is the alternative of maximum utility.

The following theorem holds

Theorem 2. At optimality, the probability xkij is given by

xkij =
eβ(v

k
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j′∈J e

β(vk
′

ij′+µj′−λk′−ηk′ )
, i ∈ I, j ∈ J, k ∈ K (50)

Proof. At optimality, the probability that a freight unit in i chooses the alternative
(k, j) is equal to the probability that (k, j) is the alternative of maximum utility. Then,
from the Total Probability Theorem [3], condition (33) and eq. (37), one obtains

xkij =

∫ +∞

−∞

∏
u 6=k

∏
v 6=j

exp
[
−e−β(x−v

u
iv−µv+λu+ηu)

]
d
[
exp

(
−e−β(x−v

k
ij−µj+λk+ηk)

)]
=

= eβ(v
k
ij+µj−λk−ηk)

∫ +∞

−∞
βe−βxexp(−Aie−βx)dx =

= eβ(v
k
ij+µj−λk−ηk)

∫ +∞

0

e−Aitdt =
eβ(v

k
ij+µj−λk−ηk)

Ai
=

=
eβ(v

k
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j′∈J e

β(vk
′

ij′+µj′−λk′−ηk′ )
i ∈ I, j ∈ J, k ∈ K (51)

where t = e−βx. �

The optimal flows skij then become

skij = Pix
k
ij = Pi

eβ(v
k
ij+µj−λk−ηk)∑

k′∈K yk′
∑
j′∈J e

β(vk
′

ij′+µj′−λk′−ηk′ )
, i ∈ I, j ∈ J, k ∈ K (52)

and it is trivial to check the satisfaction of constraints (46).

Eq. (50) represents a multinomial Logit model, which is widely used in choice
theory [4]. In our case, it describes how the freight delivered from i is split among
the pairs (k, j), due to the stochasticity of the random utilities of the transshipment
facilities which the freight passes through.

It is interesting to note that eq. (52), although it has been derived for open trans-
shipment facilities, holds for all k’s. So, for an open transshipment facility k, skij
represents the actual flow from i to j via that open facility. Vice versa, for a closed
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transshipment facility k, it represents the “potential” flow from i to j via that closed
facility. The potential flow will be used in our heuristic of Section 4.

Solving the deterministic approximation C2TLPd is much faster than solving the
stochastic model C2TLPu and it also has a very good performance in terms of solution
quality, showing a mean gap of 0, 87% between the optimum values (see Section 5).
By using one of the best stochastic commercial solvers, C2TLPu is just able to solve
instances with up to a few origins and some decades of potential facility locations
and destinations in one hour of computing time, whereas in the same computing time
C2TLPd can solve instances which are roughly three times larger than those solved
by C2TLPu. Unfortunately, if one wanted to consider even larger instances (hundreds
of nodes for the total number of origins, destinations and potential facility locations)
which may appear in real-life applications, also C2TLPd becomes inefficient and some
heuristics must be used.
One of these heuristics is given in the next section.

4 A heuristic for solving C2TLPd

The heuristic for solving C2TLPd is based on three procedures which interact with
each other: the first is a procedure for calculating the Lagrangian multipliers {µj},
{λk ≥ 0}, and {ηk ≤ 0}, when a transshipment facility location {yk} is already given,
while the second and the third are, respectively, for opening and closing down facilities
in order to improve the given facility location.

Firstly, we are going to present the three procedures, while the overall heuristic is
given at the end of this section.

4.1 Lagrangian multipliers calculation

As assumed previously, a transshipment location {yk} is already given.
We calculate the Lagrangian multipliers {µj}, {λk}, and {ηk} by an efficient iterative
method as follows.

Let us start with λk = ηk = 0, k ∈ K.

Calculate {µj} such that the demand satisfaction constraints (18), where skij are
given by (52), are satisfied.
To do that, solve the following system of equations iteratively in eβµj , starting with
any value for {eβµj} (e.g., eβµj = 1 then µj = 0, j ∈ J)

eβµj = Qj/
∑
i∈I

∑
k∈K:yk=1

Pi
eβv

k
ije−βλke−βηk∑

k′∈K
∑
j′∈J yk′e

βvk
′

ij′ eβµj′ e−βλk′ e−βηk′
, j ∈ J (53)

Once {eβµj} are calculated, the multipliers {λk} and {ηk} are updated as follows
(note that these multipliers are also calculated for closed facilities).

11

The Transshipment Location Problem under Uncertainty with Lower and Upper Capacity Constraints

CIRRELT-2011-31



Let Dk(λ, η) be the throughput of facility k

Dk(λ, η) =
∑
i∈I

∑
j∈J

skij(λ, η), k ∈ K (54)

Dk(λ, η) is expressed only in the unknowns {λk} and {ηk}, because {µj} are known
yet.

Like flows {skij}, {Dk} are calculated also for closed facilities. When k is open, Dk

represents the actual throughput of the facility, whereas it represents its “potential”
throughput when k is closed.

By (52), eq. (54) becomes

Dk(λ, η) =e−βλke−βηk
∑
i∈I

Pi

∑
j∈J e

βvkijeβµj∑
k′∈K

∑
j∈J yk′e

βvk
′

ij eβµje−βλk′ e−βηk′
=

= e−βλke−βηkρk, k ∈ K (55)

where

ρk =
∑
i∈I

Pi

∑
j∈J e

βvkijeβµj∑
k′∈K

∑
j∈J yk′e

βvk
′

ij eβµje−βλk′ e−βηk′
, k ∈ K (56)

is the current size of facility k (actual if k is open or potential if k is closed).

The updating of the multipliers {λk} and {ηk} is made as follows

• if Lk ≤ ρk ≤ Uk, leave λk = ηk = 0 (then e−βλk = e−βηk = 1)
• if ρk > Uk, set e−βλk = Uk/ρk and e−βηk = 1
• if ρk < Lk, set e−βλk = 1 and e−βηk = Lk/ρk

The rationale for the above updating mechanism is the following one. If the current
size ρk of facility k does satisfy the lower and upper capacity constraints, then Dk is
kept like it is. Otherwise, if ρk is greater than the upper capacity, Dk will be reduced
by multiplying ρk by a proper coefficient e−βλk < 1 (because λk > 0). If ρk is smaller
than the lower capacity, Dk will be augmented by multiplying ρk by a proper coefficient
e−βηk > 1 (because ηk < 0).
Given the updated {λk} and {ηk}, the multipliers {µj} are then recalculated by (53)
and the iterative procedure goes on until the upper and lower capacity constraints (19)
and (20) are satisfied.
With the final values of {µj}, {λk}, and {ηk} one can calculate the optimal flows {skij}
for the given transshipment location {yk} by (52), then the optimum of C2TLPd by
(45).

4.2 Opening a transshipment facility

The second procedure of our heuristic is for opening facilities with the aim of improving
the given facility location.
By substituting (37) in (45), the optimum of C2TLPd can be written as follows
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min
µ,λ≥0,η≤0

max
y

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj

+ 1/β
∑
i∈I

Pi ln
∑
k∈K

∑
j∈J

yke
β(vkij+µj−λk−ηk) (57)

Let us consider in (57) the continuous relaxation of the binary variables {yk} in
the interval [0,1] and the Lagrangian multipliers {µj}, {λk}, and {ηk} obtained by the
procedure of Section 4.1.
By imposing to (57) the necessary first order conditions for {yk} one gets

∂

∑
k∈K

[−fkyk + λkUkyk + ηkLkyk]−
∑
j∈J

µjQj

+1/β
∑
i∈I

Pi ln
∑
k∈K

∑
j∈J

yke
β(vkij+µj−λk−ηk)

 /∂yk =

−fk + λkUk + ηkLk + 1/β
∑
i∈I

Pi

∑
j∈J e

β(vkij+µj−λk−ηk)∑
k′∈K

∑
j∈J yk′e

β(vk
′

ij +µj−λk′−ηk′ )
=

−fk + λkUk + ηkLk +
1

β
e−βλke−βηkρk (58)

Eq. (58) represents the impact on the optimum of a continuous variation of the
location yk. Let us consider only those closed facilities k for which (−fk + λkUk +
ηkLk + 1

β e
−βλke−βηkρk) > 0, because only they could improve the total utility (57) by

“increasing” their yk. Moreover, this improvement will be maximized when yk = 1.
So, if one wants to open one of those facilities by improving the total utility as much
as possible, the transshipment facility with the highest positive term (−fk + λkUk +
ηkLk+ 1

β e
−βλke−βηkρk) will be the candidate to be opened, i.e. the facility r for which

r = argmaxk:yk=0

[
−fk + λkUk + ηkLk +

1

β
e−βλke−βηkρk

]+
If we define the revenue of facility k as being the difference between its profit

(λkUk + 1
β e
−βλke−βηkρk) and its cost (−fk + ηkLk), the facility with the highest rev-

enue will be the candidate for opening.

Let us consider a closed facility k. Because of the Kuhn-Tucker conditions we know
that if the facility potential current size ρk is such that Lk ≤ ρk ≤ Uk, then λk = ηk = 0
and the facility revenue is given by (−fk + 1

β ρk).
Vice versa, if λk > 0 then the potential current size of that facility is over its upper
capacity (so opening that facility should be highly recommended) and the term λkUk
will encourage the choice of that facility to be the candidate for opening. In such a
case, the constraints (19) would be saturated, i.e. e−βλke−βηkρk = Uk, and the facility
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revenue would become [−fk + Uk(λk + 1/β)] (as, of course, ηk = 0).
If ηk < 0 then the potential current size of that facility is under its lower capacity (so
its opening should not be recommended) and the term ηkLk will discourage the choice
of this facility to be the candidate for opening. In such a case, the constraints (20)
would be saturated, i.e. e−βλke−βηkρk = Lk, and the facility revenue would become
[−fk + Lk(ηk + 1/β)] (as, of course, λk = 0).

We can note that the above criterion for opening facilities requires the possibility
to calculate the size ρk for closed facilities, but, as seen above, this can be done easily
by (56), which holds for all k’s.

4.3 Closing down a transshipment facility

The third and last procedure of our heuristic is for closing down facilities.
We observe that a mechanism similar to that of Section 4.2 can be adopted for find-
ing, within the open facilities, the candidate to be closed down. In such a case, the
transshipment facility q for which

q = argmink:yk=1

[
−fk + λkUk + ηkLk +

1

β
e−βλke−βηkρk

]−
(59)

will be the candidate to be closed down (provided that the total upper capacity of the
remaining open facilities is not less than the total flow T ).

We are now ready to put the three procedures together and build up the overall
heuristic to solve C2TLPd.

4.4 The overall heuristic

As assumed previously, a transshipment location {yk} is given. Using the procedure
developed in Section 4.1, we can calculate the Lagrangian multipliers and derive the
optimum of the problem and the optimal flows {skij}. Then, we try to improve the
given transshipment location by opening and closing down facilities. This process calls
the above procedure for the Lagrangian multipliers calculation as a subroutine. We
reiterate until no further improvements for the optimum are found.
More in detail, the heuristic to solve C2TLPd acts as follows

• Problem Feasibility check.
If the total upper capacity is less than the total flow, i.e.

∑
k∈K Uk < T or the

minimum lower capacity is greater than the total flow, i.e. mink∈KLk > T , then
STOP, the problem is infeasible.
• While the number of iterations is not greater than MAXITER (maximum number

of iterations) and the overall computational time is not greater than MAXTIME
(maximum computational time), apply the Core heuristic (see Subsection 4.4.1)
which, by opening and closing operations, builds a solution.
• Keep the best solution as the optimal one.
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4.4.1 Core heuristic

The core heuristic builds a solution according to the following steps

1. Open all facilities, i.e. yk = 1, k ∈ K.
2. Compute the Lagrangian multipliers as in Section 4.1. Calculate the optimal

flows and set the best solution BestSol to the optimal flows.
3. Repeat the following steps

(a) Decide whether to close down a transshipment facility or simultaneously
close down and open two different facilities. The decision is taken according
to a rule based on a randomized process and a short term search mem-
ory. This rule, called the operation choosing rule, is described in detail in
Subsection 4.4.2.

(b) Let q be the facility to be closed down and r the facility to be opened (if
any). Close down q and open r.

(c) Compute the Lagrangian multipliers and the optimal flows. Set the current
solution CurrSol to the optimal flows.

(d) If no opening operation has been performed and the objective function of
BestSol is worse than that of CurrSol, then exit from the heuristic and
return the value BestSol. Otherwise, set BestSol to CurrSol.

4.4.2 Operation choosing rule

In our heuristic, we can decide whether either to close down a facility (we remind
we start with all facilities open) or simultaneously close down and open two different
facilities. The operation choosing rule uses both a dynamic random process guided by
the search history and a short-term memory structure to take the above decision. The
short-term memory structure is a list FL which forbids, after opening a facility, its
closing down for a fixed amount m of iterations.
The rule works as follows:
• If we are at the first iteration of the overall heuristic, initialize the opening

probability step δO = 0 , otherwise set δO = 2/ |K|, where |K| is the number
of potential transshipment locations. Empty the list FL, set its size equal to
MAXFL and put vO = 0.

• While the solution is feasible
– Get a random number v ∈ (0, 1].
– If v ≥ vO, find the candidate q to be closed down as in Section 4.3 and check

that q /∈ FL. Increment vO by δO and, for all facilities in FL, decrement by
one the number of iterations for which they cannot be closed down. Remove
from FL the facilities for which the number of iterations is 0.

– Otherwise, set vO = δO, find the candidate q to be closed down and the
candidate p to be opened, as in Sections 4.3 and 4.2, respectively. If their
swap (i.e. closing down q and opening p) is feasible and improves the current
optimum, make the swap, add p to FL and set to MAXFL the number of
iterations for which p cannot be closed.

We can note that, in the first iteration of the overall heuristic, we only apply closing op-
erations. The opening operations will be considered in next iterations of the heuristic.
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In other words, we start with all facilities open and we close down one after another
according to the criterion of Section 4.3. When a local optimum has been reached, a
sort of local search is introduced through the swapping mechanism above described.

5 Computational results

In this section we compare C2TLPu and its deterministic approximation C2TLPd
solved both exactly, by means of one of the best state-of-the-art nonlinear solvers,
and by our heuristic. We consider three classes of instances, which contain identical
instances except for the facility lower capacity. In particular, the lower capacity of
Class I is set equal to zero. The lower capacity of Class II is set to 60% of the upper
capacity, whilst for instances belonging to Class III such percentage rises up to 85%.
For each class 10 instances are generated as follows

- the number of depots |I| is drawn from U [2, 3];
- the number of customers |J | is drawn from U [30, 40];
- the number of possible locations for the transshipments |K| is drawn from U [10, 20];
- supply Pi is drawn from U [900, 1000];
- demand Qj is drawn from U [1,

∑
i∈I Pi/ | J |]. If necessary, the demand of the

last customer is adjusted so that the total demand is equal to the total supply;
- upper capacity Uk is drawn from U [0.5avU, 3avU ], where avU =

∑
i∈I Pi/ | K |;

- unit transportation cost ckij is drawn from U [1, 10], k ∈ 1, .., |K|/2, and U [5, 10],
k ∈ |K|/2 + 1, .., |K|;

- fixed cost fk = 0.3Uk
TC
IJK , k ∈ 1, .., |K|/2, fk = 0.03Uk

TC
IJK , k ∈ |K|/2 + 1, .., |K|,

where TC is the total transportation cost;
- random utility ũk is drawn from U [1, 10].

The rationale for choosing the above values for ckij and fk is to have half of the facilities
with high fixed cost and low mean unit transportation cost, whereas for the other half
is the reverse. In this way, if one opens a facility in the first half of the potential
locations, the high fixed cost and low mean transportation cost force the model to
saturate the facility. On the other hands, in the second half of the potential locations
the cost structure pushes the model to spread flows within the open facilities, possibly
violating the lower capacity constraints.
Both C2TLPd and the heuristic need to know a proper value of the positive parameter
β, which must be calibrated. This is done as follows.
Let us consider the standard Gumbel distribution G(x) = exp (−e−x). If one accepts
an approximation error of 0.01, then G(x) = 1 ⇐⇒ x = 4.60 and G(x) = 0 ⇐⇒ x =
−1.52. Let us consider the interval [m,M ] where the random utility ũk is drawn from.
The following equations hold

β(m− ζ) = −1.52 (60)

β(M − ζ) = 4.60 (61)

where ζ is the mode of the Gumbel distribution G(x) = exp
(
−e−β(x−ζ)

)
.

From (60) and (61) one gets

β =
6.12

M −m
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In our case, as M −m = 10− 1 = 9, we get β = 0.68.

Table 1 shows the number of origins, destinations and potential locations for the ten
instances of each class. Let us note that these numbers are the same for all classes of
instances because these classes only differ for the lower capacity values of the facilities.

INST |I| |J| |K|
1 2 35 10
2 2 38 16
3 3 37 16
4 2 33 17
5 2 36 16
6 3 35 18
7 2 31 16
8 2 38 11
9 3 34 16
10 3 40 20

Table 1: Detail of the instance parameters

The solution of C2TLPu is generated by means of the stochastic programming
module provided in the XPress Optimization Suite [5]. The tests are performed by
generating an appropriate number of scenarios for each instance. In order to tune
this number, we start with 50 scenarios and increase them with step 50. Then we
solve each instance 10 times, reinitializing every time the pseudo-random generator of
the stochastic components with a different seed, and compute the standard deviation
and the mean of the optima over the 10 runs. The appropriate number of scenarios
is then fixed to the smallest value which ensures for each instance a maximum ratio
less than 1% between the standard deviation and the mean [9]. According to our
tests, this value is fixed to 200 scenarios, which show a maximum ratio of 0.34%. To
solve the deterministic approximation C2TLPd we use the nonlinear solver BonMIN
(release 1.1) within a time limit of 1000 seconds [1, 2]. The parameters are set to their
default values, which show a satisfactory behavior both in accuracy and computational
effort. The heuristic presented in Section 4.4 is implemented in Matlab 2007. After a
preliminary testing phase, the parameters of the heuristic are set as follows
• MAXTIME= 10000 seconds
• MAXITER= 50
• Size of FL= 3.

All the tests were performed on a Pentium Quad Duo 2.4 GhZ workstation with 2 Gb
of Ram.

Table 2 compares the optimal solution of the stochastic problem C2TLPu with its
deterministic approximation C2TLPd. The table columns have the following meaning

- Column 1: instance class
- Column 2: mean objective function of C2TLPu
- Column 3: mean objective function of C2TLPd
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- Column 4: percentage gap between the two objective functions with respect to
the first one

- Column 5: mean computational time in seconds for C2TLPu
- Column 5: mean computational time in seconds for C2TLPd.

For each value, the mean results of the 10 random generated instances in each class
are given in the first three rows, while the last row gives the overall mean over the
three classes.
According to figures, the deterministic approximation of the stochastic model is quite
good. In fact, it shows a mean gap less than 1%, while reducing the computational
time of 70%. One can also notice how this gap slightly increases for higher values of
the lower capacity. Moreover, the computational time of the stochastic model increases
a lot in such cases, while the deterministic approximation is less affected.

The good behavior of C2TLPd is also confirmed by analyzing the number of open
facilities, as well as the number of those facilities which are opened by both models.
Table 3 shows these results. In particular, its columns have the following meaning

- Column 1: instance class
- Column 2: number of open facilities for C2TLPu
- Column 3: number of open facilities for C2TLPd
- Column 4: percentage of common open facilities. Such percentage is calculated

as the ratio of the number of common facilities over the number of open facilities
for C2TLPu.

The results show how the solutions of the stochastic model and its deterministic ap-
proximation share about 90% of the open facilities.

The results of our heuristic are summarized in Table 4, where the meaning of each
column is as follows
• Column 1: instance class
• Columns 2 and 3: percentage gap between the heuristic (first iteration and best

solution) and the deterministic approximation solved by BonMIN (we remind
that the first iteration of the procedure starts with all facilities open and only
closing down operations are performed)
• Columns 4, 5 and 6: computational time (s) of the heuristic (first iteration and

best solution) and BonMIN
• Columns 7 and 8: total computional time (s) at the end of the heuristic and

BonMIN.
The results show how the gap between the first and the best solution is increasing

with the value of the lower capacity, giving a mean gap between the BonMIN solution
and the first iteration solution of the heuristic of 3.12%. On the other hand, after
applying the closing and opening operations (column HeurBest) the heuristic is able
to reduce the overall gap to 0.82%. These results are more impressive considering that
they can be obtained in a short computing time. In fact, the mean computing time
of the heuristic is half of that of BonMIN. Moreover, if we consider the time when
the best solution has been found, we discover that our heuristic needs only a mean
computing time of 20 seconds, which is one fifth of the BonMIN computing time (and
one twentieth of that of the stochastic model). Furthermore, the computing time of the
heuristic could be further reduced by implementing an ad hoc fixed point method to
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compute the Lagrangian multipliers in Section 4.1. In fact, the present implementation
uses the standard Matlab fsolve function, which becomes inefficient when the network
size increases.

If we consider the impact of the opening operations on the final heuristic solution,
we can see that a certain number of transshipment facilities which have been opened
by the heuristic are still open in the final solution. So, it would seem that the first
iteration has made some mistake in closing down these facilities, but it is not true.
Actually, this situation is due to the fact that the criterion for closing down a facility
is satisfied by more than one facility.

CLASS
OBJECTIVE FUNCTION TIME
STOCH DET GAP % STOCH DET

1 15741.7 15836.3 0.60 73 65
2 16122.8 16291.9 1.05 452 145
3 16898.5 17062.2 0.97 796 178

MEAN 16254.3 16396.8 0.87 440 129

Table 2: Comparison between the stochastic model and its deterministic approxima-
tion: objective function and computational time

CLASS
OPEN FACILITIES

STOCH DET COMMON (%)
1 14.1 14.2 95.1
2 11.5 11.7 89.8
3 10.2 10.5 90.3

MEAN 11.9 12.1 91.7

Table 3: Comparison between the stochastic and its deterministic approximation: open
facilities

CLASS GAP % OPT TIME (s) TOT TIME (s)
HEURFIRST HEURBEST HEURFIRST HEURBEST DET HEURBEST DET

1 0.75 0.29 1.8 8.7 36.4 45.1 65.0
2 3.78 1.15 2.9 25.4 120.8 67.8 145.0
3 4.83 1.03 3.1 24.8 137.4 75.2 178.0

MEAN 3.12 0.82 2.60 20.30 98.2 62.7 129.3

Table 4: Comparison between the deterministic approximation and the heuristic
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6 Conclusions

In this paper we have addressed the problem of locating transshipment facilities for
freight transportation to minimize the total cost of different operations. This cost
consists of a fixed cost of locating the facility, a transportation cost from origin to
destination via the facility, and a cost for freight handling operations at the facility. In
reality, the handling operations are organized in alternative operating paths and, given
the finite capacity of the paths, congestion effects make the handling costs random
variables, with unknown probability distribution.
To the authors’ knowledge, this paper is among the first ones which

• integrate in a comprehensive model the two main levels of a transshipment net-
work, i.e. the design level and the management level
• address the congestion effects inside the transshipment facilities, leading to a

stochastic location-allocation problem.

Moreover, from a theoretical perspective, the paper shows that, under mild assump-
tions, the unknown probability distribution of the maximum random utility converges
to a Gumbel distribution and the expected optimal flows are multinomial Logit func-
tions.

Finally, from a computational point of view both the deterministic approximation
of the stochastic model and the heuristic presented in the paper show a mean gap
between the optimum values which is less than 1%.
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