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Abstract. We introduce the Generalized Bin Packing Problem, a new packing problem 
where, given a set of items characterized by volume and profit and a set of bins with given 
volume and cost, one aims to select the subsets of profitable items and appropriate bins to 
optimize an objective function which combines the cost of the used bins and the profit 
derived by loading the selected items. The Generalized Bin Packing Problem thus 
generalizes many other packing problems, including the Bin Packing Problem and the 
Variable Cost and Size Bin Packing Problem, as well as the Knapsack, the Multiple 
Homogeneous and the Heterogeneous Knapsack Problem. We present two formulations 
of the problem, which are the basis for the lower bound computations, i.e. an aggregate 
knapsack lower bound and a column generation-based lower bound method. Upper 
bounds are obtained by using first fit, best fit, and column generation-based procedures. 
The paper also introduces new instance sets and analyzes the results of extensive 
computational experiments, which show that the proposed procedures are efficient and 
the bounds are tight. 
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1 Introduction

Packing problems consider sets of items and item-holding objects called bins, and aim
to group items in such a way that they all (or a maximum number of them) fit into
the minimum number of bins. The interest in packing problems follows from their own
importance as a hard combinatorial optimization problem class (in all but their simplest
form), as well as from the wide range of applications of theoretical and practical impor-
tance, e.g., loading, cutting, scheduling, and routing. Packing problems are particularly
relevant for transportation and logistics, not only in the classical operational settings of
loading items into “vehicles” (pallets, containers, trailers, trucks, rail cars, ships, and so
on) and warehousing spaces, but also in numerous planning activities, from the design of
plans and schedules to the participation to electronic markets.

The consideration of various rules and restrictions on the accommodation of items
into bins, as well as of different item and bin attributes, has yielded several particular
problem settings and a significant body of contributions (see (Wäscher et al., 2007) for
a detailed survey). A number of issues and challenges remain, however. Thus, despite
a number of recent efforts targeting the Variable Cost and Size Bin Packing Problem
(VCSBPP) (Correia et al., 2008; Monaci, 2001; Crainic et al., 2011), there is still no
general modeling framework able to address satisfactorily different variants of packing
problems. The specification of objective functions particular to each problem variant
appears as a major challenge in this respect. It is interesting to contrast this situation to
the vehicle routing field where common structures in the objective function have yielded
more general formulations and solution methods, e.g., (Cordeau et al., 2001; Pisinger and
Ropke, 2007). Moreover, there are no formulations simultaneously addressing the “cost”
attributes of bins and items, a problem setting of particular relevance for transportation
and logistics. The objective of this paper is to contribute to address both these issues.

In this paper, we introduce a new packing problem, the Generalized Bin Packing
Problem (GBPP) where, given a set of items characterized by volume and profit and a
set of bins with given volumes and costs, one aims to select the subsets of profitable items
and appropriate bins to optimize an objective function which combines the cost of using
the bins and the profit yielded by loading the selected items.

An important feature of the GBPP is that it generalizes many packing problems
present in the literature, such as the Bin Packing Problem (BPP), the VCSBPP, as well
as the Multiple Homogeneous and the Heterogeneous Knapsack Problem. It also provides
the means to identify and analyze the trade-off between item and bin selections that are
part of many transportation and logistics planning problems.

From a practical point of view, the GBPP models many real-life situations coming
from logistics, telecommunications, and machine scheduling. In logistics, the GBPP arises
in freight shipping, when a company has to ship orders to different customers. Some of
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these orders may be urgent whilst the others may wait before being shipped. This justifies
the introduction of compulsory and not compulsory items, which profit can represent
either a real profit but also the urgency of that item to be shipped. Other applications
are in telecommunications, where capacity planning and frequency assignment problems
arise, and in production scheduling, where a machine is represented by a bin and a task
is represented by an item.

We present two mixed integer programming formulations of the GBPP. The first is
based on item-to-bin assignment decisions and requires a polynomial number of variables
and constraints. This formulation is useful in discussing how the GBPP generalizes the
packing problems mentioned above, but it is not suitable for efficient computation. It
is, however, the starting point to compute the aggregate knapsack lower bound. We
thus introduce a second model based on feasible loading patterns and set covering ideas.
Despite requiring an exponential number of variables, this latter model facilitates the
development of efficient solution methods. We thus present several procedures to compute
lower and upper bounds for the GBPP and show their effectiveness through an extensive
experimental phase.

The contributions of this paper are threefold. We introduce a new packing problem
that is both relevant for many transportation and logistics planning problems and gener-
alizes a wide range of packing and knapsack problems. We present two formulations for
the problem, including one that yields an efficient column generation-based lower bound
method, as well as first fit, best fit, and column generation-based upper bound proce-
dures. Finally, new sets of instances specially designed for the GBPP are introduced. An
extensive set of experiments shows that the proposed procedures are very efficient and
the bounds are very tight.

The paper is organized as follows. Section 2 recalls the main contributions to the
BPP and VCSBPP literature, the two problems immediately generalized by the GBPP .
The GBPP formulations are introduced in Section 3, while lower and upper bounds are
presented in Sections 4 and 5, respectively. Instance sets and computational results are
presented and discussed in Section 6. We conclude in Section 7.

2 Literature Review

The problem settings most immediately generalized by the GBPP are the BPP and the
VCSBPP. We briefly recall the literature related to these problems.

The objective of the BPP is to load all the items while minimizing the number of used
bins. The problem has been extensively studied in the past decades, producing several
exact and heuristic methods (Martello and Toth, 1990). The first bounds were proposed
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by Martello and Toth (1990). New lower bounds were developed some ten years later by
Fekete and Schepers (2001) by means of dual feasible functions. Starting from this paper,
Crainic et al. (2007a,b) developed fast and more accurate lower bounds, able to reduce
the optimality gap for a number of hand instances. A different approach was defined
in Vanderbeck (1996), where the author proposed a formulation with an exponential
number of variables and a column generation lower bound procedure for the Bin Packing
and the Cutting Stock problems.

Several heuristics were also proposed, e.g., the polynomial-time approximation schemes
of de la Vega and Lueker (1981) and Karmarkar and Karp (1982) allowing to approximate
an optimal solution within 1 + ε for any fixed ε. However, these results are hardly usable
in practice, due to the enormous size of the constants characterizing the polynomials. The
literature thus shows that the most commonly used methods to achieve computational
efficiency together with solution quality are the First Fit Decreasing (FFD) and Best
Fit Decreasing (BFD) heuristics, sometimes combined with local improvement heuristics
(Schwerin and Wäscher, 2006).

The VCSBPP is a generalization of the BPP, where all the items must be loaded,
but the bins can be chosen among several classes differing in volume and cost. The total
accommodation cost, computed as the total cost of the used bins, must be minimized. A
number of studies were recently dedicated to the VCSBPP. Correia et al. (2008) proposed
a formulation that explicitly included the bin volumes occupied by the corresponding
packings, together with a series of valid inequalities improving the quality of the lower
bounds obtained from the linear relaxation of the proposed model. The authors also
introduced a large set of instances with up to 1000 items and used them to analyze
the quality of the lower bounds. Crainic et al. (2011) proposed tight lower and upper
bounds, which could be computed within a very limited computational time, and were
able to solve to optimality all the instances proposed in Correia et al. (2008). Moreover
a first computational study of the sensitivity of the optimal cost with respect to the cost
definition was presented. A special case of the VCSBPP is the Variable Size Bin Packing
Problem (VSBPP) where the bin costs are equal to their associated volumes. The aim
of VSBPP is then to minimize the wasted volume.

Monaci (2001) in his Ph.D. thesis presented a series of lower bounds and solution
methods (both heuristic and exact) for the VSBPP. His exact method was able to solve
to optimality most of the instances. Some 500 item-instances are still open. Kang and
Park (2003) developed two greedy algorithms for another special case of the VSBPP,
where the unit cost of each bin does not increase as the bin size increases, and analyzed
their performances on instances with and without divisibility constraints (in the former
case, on both the item and bin sizes, or on the bin sizes only). Seiden et al. (2003)
proposed upper and lower bounds for the on-line version of the problem.

An integer linear formulation for the two-dimensional VSBPP was proposed by Pisinger
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and Sigurd (2005), together with lower bounds obtained applying Dantzig-Wolfe decom-
position and an exact branch-and-price algorithm. Alves and Valerio De Carvalho (2007)
applied a column generation approach to the mono-dimensional problem and proposed a
series of strategies aimed to accelerate the solution method.

3 Problem Definition and Formulation

The GBPP considers a set of items characterized by volume and profit and sets of bins
of various types characterized by volume and cost. Part of the items, which we denote
compulsory, must be loaded, while a selection has to be made among the non-compulsory
ones. The objective is to determine which non-compulsory items to take and to select
the bins to load the compulsory and the selected non-compulsory items to minimize the
total net cost, computed as the difference between the total cost of the used bins and the
total profit of the loaded items.

We start this section with a formal description of the GBPP and then we propose
two possible formulations of the problem. The first formulation extends to the GBPP
the assignment model of the BPP Martello and Toth (1990). Even though this type
of formulation is not often used in practice, we exploit it to derive a first lower bound,
called LB1. Then we propose a set covering formulation of the problem, which allows
us to introduce efficient algorithms. Indeed, the latter model is the startup for a column
generation procedure, which produces the lower bound LB2. Moreover, by exploiting the
patterns created during the column generation step, accurate upper bounds can also be
computed.

3.1 Notation

Let I denote the set of items, with n = |I|, and let wi and pi be the volume and the profit
of item i ∈ I, respectively. Define IC ⊆ I, the subset of items that must absolutely be
loaded, and INC = I \ IC the subset of non-compulsory items, some of which may be
chosen if profitable. Let J denote the set of available bins, with m = |J | and let T be
the set of bin types. For any bin j ∈ J , let σ(j) ∈ T be the type of bin j. Define for
each type t ∈ T , the minimum Lt and the maximum Ut number of bins of that type that
may be selected, as well as the selection cost Ct and volume Wt of a bin of type t ∈ T .
Finally, denote U ≤

∑
t∈T Ut the maximum number of bins of all types one can use. The

item-to-bin accommodation rules of the GBPP may then be stated as:

• All items in IC must be loaded;
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• For all used bins, the sum of the volumes of the items loaded into the bin must be
less than or equal to the volume of that bin;

• The number of bins used for each type t ∈ T must be within the lower and upper
availability limits Lt and Ut;

• The total number of used bins cannot exceed U .

3.2 Assignment formulation of the GBPP

Consider the following decision variables:

• Bin selection binary variables yj equal to 1 if bin j ∈ J is used, 0 otherwise;

• Item-to-bin assignment binary variables xij equal to 1 if item i ∈ I is selected (if
non-compulsory) and loaded into bin j ∈ J , 0 otherwise.

An assignment model of the GBPP can then be formulated as follows:

Minimize
∑
j∈J

Cjyj −
∑
j∈J

∑
i∈INC

pixij (1)

Subject to
∑
i∈I

wixij ≤ Wjyj j ∈ J (2)∑
j∈J

xij = 1 i ∈ IC (3)∑
j∈J

xij ≤ 1 i ∈ INC (4)∑
j∈J :σ(j)=t

yj ≤ Ut t ∈ T (5)

∑
j∈J :σ(j)=t

yj ≥ Lt t ∈ T (6)

∑
j∈J

yj ≤ U (7)

yj ∈ {0, 1}, j ∈ J (8)

xij ∈ {0, 1}, i ∈ I, j ∈ J (9)

The objective function (1) minimizes the total net cost of the operations, given by the
difference between the total cost of the used bins and the total profit of the selected non-
compulsory items. Let us note that the profit of the compulsory items is not included

5

The Generalized Bin Packing Problem

CIRRELT-2011-39



because it corresponds to a constant. Regarding the type of optimization, we choose
to present the minimization version to follow the tradition of packing problems. The
equivalent formulation obtained by maximizing the total net profit (total profit minus
total cost) would recall the knapsack problem settings.

Constraints (2) have the double effect of linking the usage of the bins to the accom-
modation of items and to limit the capacity of each used bin. Constraints (3) and (4)
ensure that each compulsory and not-compulsory item is loaded into exactly one and at
most one bin, respectively. Constraints (5) and (6) enforce the maximum and minimum
number of available bins, respectively. Finally, constraint (7) limits the total number of
selected bins.

The model (1)-(9) is named AM and R-AM its continuous relaxation. AM involves
a polynomial number of variables and constraints. It is not well suited, however, to
efficient algorithmic developments, due to the significant solution-space symmetry of the
item-to-bin assignment variables, which is typical of these compact models of packing
problems.

As mentioned above, AM is the starting point to compute our first Lower Bound,
LB1, as an aggregate knapsack lower bound.

Furthermore, AM is also suitable to show how this new problem generalizes some
classical packing problems.

3.3 Relationships to other packing problems

The GBPP generalizes several classical packing problems, including the BPP (Martello
and Toth, 1990), which may be obtained by considering a single bin type with Cj = 1, j ∈
J and INC = ∅, i.e., all the items must be loaded. Constraints (4) - (6) become then re-
dundant and the objective becomes the minimization of the number of bins characteristic
of the BPP.

Allowing several bin types but still with INC = ∅ yields the VCSBPP, where the total
cost of the selected bins

∑
j∈J Cjyj is minimized (constraint (4) is redundant) (Monaci,

2001; Crainic et al., 2011). Notice that an equivalent formulation for the VCSBPP can
be obtained by imposing IC = ∅ and setting the item profit higher than the cost of any
bin type, pi > maxj∈J Cj, which makes any bin profitable even when only one item is
accommodated into it.

The GBPP can similarly generalize several knapsack problems (see Dyckhoff, 1990,
for a detailed review). Since this underlines the generality of the problem we introduce
in this paper, we give the main simplifications of the GBPP that yield each particular
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model:

• Knapsack : |T | = 1, |J | = 1, and IC = ∅;

• Homogeneous Multiple Knapsack : |T | = 1, |J | = m, and IC = ∅;

• Heterogeneous Multiple Knapsack : |T | > 1, |J | = m, and IC = ∅.

3.4 Set Covering formulation of the GBPP

We introduce a set covering formulation for the GBPP based on feasible bin loading
patterns.

A feasible loading pattern for a bin of type t ∈ T corresponds to a set of items that
may be loaded into the bin respecting all dimension restrictions and accommodation
rules. Let Kt = {k} be the set of all feasible loading patterns for the bin type t ∈ T ,
and K =

⋃
t∈T Kt. A feasible loading pattern k is described by a vector Ak of indicator

functions aik, k ∈ Kt, t ∈ T , such that aik = 1 if item i ∈ I is accommodated into
pattern k of bin type t, 0 otherwise. The cost of pattern k is then the difference between
the cost of the bin type and the profits of the non-compulsory items in the pattern:
ck = Ct −

∑
i∈INC aikpi.

We define the bin loading pattern selection variables λk, equal to 1 if the pattern
k ∈ Kt is used, 0 otherwise. The set covering formulation of the GBPP may then be
written as follows:

Minimize
∑

t∈T
∑

k∈Kt
ckλk (10)

Subject to
∑

t∈T
∑

k∈Kt
aikλk = 1 i ∈ IC (dual variable µi free) (11)∑

t∈T
∑

k∈Kt
aikλk ≤ 1 i ∈ INC (dual variable νi ≤ 0) (12)∑

k∈Kt
λk ≤ Ut t ∈ T (dual variable αt ≤ 0) (13)∑

k∈Kt
λk ≥ Lt t ∈ T (dual variable βt ≥ 0) (14)∑

t∈T
∑

k∈Kt
λk ≤ U (dual variable ε ≤ 0) (15)

λk ∈ {0, 1} k ∈ K (16)

The objective function (10) minimizes the total cost of the selected bin loading pat-
terns and, thus, of the selected bins and items. Since the feasibility of item-to-bin ac-
commodations is guaranteed by the definition of the decision variables, constraints (2)
are not required. Inequalities (11) and (12) have the same meaning as (3) and (4) in
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model AM , expressing the need to load all compulsory items exactly once, while non-
compulsory ones may be loaded at most once. Constraints (13), (14), and (15) replace
(5) - (7) and enforce the bounds on the number of bins one is allowed to use for each
type and globally, respectively.

We name SC the formulation (10)-(16) and R-SC its continuous relaxation. Com-
pared to the assignment formulation, model SC has the advantage to separate the op-
timality and feasibility issues, the latter being addressed in the pattern generation, not
directly considered in the model that focuses on identifying the optimal combination of
patterns only. This makes SC easier to generalize to, for example, the two and three
dimensional versions of the GBPP.

While it is clear that models AM and SC have the same optimum, their continuous
relaxations cannot be equal. In the following, we prove that the continuous relaxation of
SC dominates the continuous relaxation of AM .

Theorem 1. Let LR-AM = optimum(R-AM) and LR-SC = optimum(R-SC), then LR-AM ≤
LR-SC.

Proof. We prove the theorem by contradiction. Let us suppose that it exists an instance
I ′ such that LR-AM (I ′) > LR-SC (I ′). Let be x1 and x2 the optimal solutions associated
to LR-AM (I ′) and LR-SC (I ′), respectively.

Given any solution x2 of model R-SC , it is trivial to build an associated solution
x1(x2) of R-AM as follows:

• for any λk > 0, associate the pattern k to a different bin jk of the proper type in
model R-AM (recall that k ∈ Kt, where t is a given bin type);

• given λk > 0 and the associated bin jk, put xijk = aikλk.

Clearly, the objective functions of solutions x2 and x1(x2) have the same value by the
definition of the pattern cost ck. Moreover, all the constraints of R-AM are satisfied
because λk is a feasible bin loading pattern. Let x2 be the optimal solution associated
to LR-SC (I ′). Then, by the previously described rule, we can build a feasible solution
x′1(x2) of R-AM with objective function LR-SC (I ′) < LR-AM (I ′). This implies that x1 is
not optimal, which contradicts the hypothesis.

The set covering formulation requires a potentially exponential number of variables,
however. We thus use column generation to derive another lower bound to the GBPP.
We call it LB2.
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4 Lower Bounds

In this section, we introduce two lower bounds that can be computed starting from each
formulation of the problem. The assignment model is the basis for a lower bound which
can be calculated by solving an aggregate knapsack problem (see subsection 4.1).

The second lower bound is derived from the set-covering formulation and it is cal-
culated by applying a column generation technique, where, at each step, a new feasible
pattern (i.e. a new column for the restricted master problem) is found by solving a
knapsack problem (see subsection 4.2).

4.1 Lower Bound through Aggregate Knapsack Problem

The main idea is to consider the assignment model presented in subsection 3.2 and derive
an Aggregate Knapsack Problem.

We aggregate constraints (2) into a unique inequation by summing them up. We
have:

∑
j ∈ J

∑
i ∈ I

wixij ≤
∑
j ∈ J

Wjyj =⇒
∑
i ∈ IC

wi
∑
j ∈ J

xij +
∑

i ∈ INC

wi
∑
j ∈ J

xij ≤
∑
j ∈ J

Wjyj

Note that, by (3), for any compulsory item i,
∑
j ∈ J

xij = 1, whilst, for any non

compulsory item, the variables xij can be reduced to xi, which state wether item i is put
into the aggregate knapsack, which may be thought as a unique large bin with volume
equal to the sum of all bin volumes. Therefore, we have:

∑
i ∈ IC

wi +
∑

i ∈ INC

wixi ≤
∑
j ∈ J

Wjyj (17)

The lower bound LB1 can be found by solving the following Aggregate Knapsack
Problem:

9
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Minimize
∑
j∈J

Cjyj −
∑
i∈INC

pixi (18)

Subject to
∑
i ∈ IC

wi +
∑

i ∈ INC

wixi ≤
∑
j ∈ J

Wjyj (19)

yj ∈ {0, 1}, j ∈ J (20)

xi ∈ {0, 1}, i ∈ I (21)

Note that, when all the items are compulsory, we return to the VCSBPP and the
aggregate knapsack problem reduces to:

Minimize
∑
j∈J

Cjyj

Subject to
∑
i ∈ IC

wi ≤
∑
j ∈ J

Wjyj

yj ∈ {0, 1}, j ∈ J

which is the first model exploited in Crainic et al. (2011) to compute lower bounds to
the VCSBPP. Therefore, when only compulsory items are present, one can use bounds
from the literature.

4.2 Lower Bound through Column Generation

This lower bound, denoted as LB2, is computed from the linear relaxation of the set
covering formulation through column generation, which provides the means to implicitly
deal with the large number of variables in the model (and it is widely used in packing
problems (Alves and Valerio De Carvalho, 2007; Vanderbeck, 1996)).

The general column generation approach applied to the GBPP consists in starting
with a relatively small set of feasible patterns P corresponding to a restricted GBPP
that we name R-GBPP. One then first solves the linear relaxation of the set covering
formulation SC of R-GBPP, and then attempts to generate new feasible patterns with
negative reduced cost. If successful, these are added to P and the procedure is restarted;
otherwise, one has identified the optimal solution of the R-SC and the procedure stops
with a lower bound to the GBPP. Formally,

1. Find an initial feasible solution of the GBPP and the corresponding set P ;
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2. Solve the linear relaxation R-SC of the R-GBPP and let LR-GBPP be its optimal
solution;

3. For each bin type t ∈ T

(a) Find the non-basic pattern variable λk of LR-GBPP, k ∈ Kt, with the smallest
reduced cost rk among all non-basic pattern variables for type t;

(b) If rk < 0, P = P ∪ {λk};
(c) Continue to the next bin type (go to 3a);

4. If rk ≥ 0 for all bin types t, then stop with LR-GBPP as the set covering lower bound
to the GBPP, otherwise, go to 2.

The main issue is how to find new negative reduced-cost feasible patterns. Consider
the dual variables associated to the constraints of the continuous relaxation of the R-
GBPP set covering formulation, then the reduced cost rk of a given pattern variable k
for a bin of type t is ck − [µ ν α β ε]T Ak. We expand this expression as follows:

rk = Ct −
∑
i∈INC

pi a
i
k −

[
µT νT αT βT ε

]
Ak

= Ct −
∑
i∈INC

pi a
i
k −

∑
i∈IC

µi a
i
k −

∑
i∈INC

νi a
i
k − αt − βt − ε

= Ct −
∑
i∈INC

(pi + νi) a
i
k −

∑
i∈IC

µi a
i
k − αt − βt − ε (22)

We now define a column generation subproblem which, given a bin of type t ∈ T ,
finds the non-basic pattern with the minimum reduced cost. Notice that the vector Ak
defining a not-yet-generated pattern k ∈ Kt of bin type t ∈ T is not known but may be
expressed in terms of item-to-bin assignment variables xi equal to 1 if item i ∈ I belongs
to the pattern, 0 otherwise (for simplicity of notation, we drop the k index). Since the
dual variables αt, βt, and ε, as well as the bin cost Ct, are constant for a given type t ∈ T ,
the reduced cost of the yet-unknown pattern one desires to minimize becomes

rk =

{
Ct −

∑
i∈INC

(pi + νi)xi −
∑
i∈IC

µi xi − αt − βt − ε

}

=

{
−
∑
i∈INC

(pi + νi)xi −
∑
i∈IC

µi xi

}
(23)

Finding the feasible pattern with minimum reduced cost for bin type t ∈ T then
becomes a knapsack problem:
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Maximize

{∑
i∈INC

(pi + νi)xi +
∑
i∈IC

µi xi

}
Subject to:

∑
i∈I

wixi ≤ Wt t ∈ T

xi ∈ {0, 1} i ∈ I

Any feasible solution may be used to initialize the procedure, including the trivial
solution obtained loading each compulsory item into a different bin. More accurate
heuristics are presented in Section 5. The procedure adds at most |T | columns to P at
every iteration (in Step 3), one for each bin type, yielding a feasible loading pattern with
rk negative.

Finally, note that a better lower bound can be obtained by taking the maximum be-
tween the two previous lower bounds. We call this new lower bound LB3 = max{LB1, LB2}.

5 Upper bounds

We present several upper bounds for the GBPP. Upper bounds can be found through
constructive heuristics. They are based on the well-known First Fit Decreasing (FFD)
and Best Fit Decreasing (BFD) heuristics for the BPP, and they are introduced in
subsection 5.1, together with the lower bound based on the constructive heuristics. Next,
in subsection 5.2, we show how to derive upper bounds from the column generation
procedure by solving an integer problem based on the created columns (or patterns), or
by iteratively rounding those columns along some given stategies. The latter procedure
is known as diving.

5.1 Constructive heuristics

We propose heuristics to load items into bins derived from the First Fit Decreasing
(FFD) and Best Fit Decreasing (BFD) heuristics for the BPP. Briefly, starting with an
initial sorting of the items in non-increasing order of their volumes, the FFD loads items
one after the other into the first bin where they fit, while BFD attempts to load each
item into the “best” bin where it can be accommodated, usually the bin which, after
loading the item, has the minimum free volume, defined as the bin volume minus the
sum of the volumes of the items it contains. Both heuristics create a new bin when an
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item cannot be accommodated into existing ones. Despite their simplicity, the FFD and
BFD heuristics offer good performances for the BPP (Martello and Toth, 1990).

Whilst in the classical BPP items are ordered by non-increasing volumes, here, due
to different items and bins attributes, many sortings may take place.

Note that the aggregate knapsack lower bound introduced in 4.1 yields the sets of
bins and items making up the lower bound itself. The key to derive an upper bound is
to consider two percentages δj and δi of, respectively, those bins and items which have
been selected in the lower bound computation. Of course, chosen bins will be taken into
account as empty. Therefore one gets two lists, one for the selected bins and one for
the selected items at their top plus the remaining bins and items following. When a
constructive heuristic is performed using the two mentioned lists, a new upper bound
is available. Since, in this case, information of the aggregate knapsack lower bound
is involved, we talk about Lower Bound-based FFD and Lower Bound-based BFD,
shortened respectively as L-FFD and L-BFD.

Applying the first or best fit idea to the GBPP presents a number of challenges,
however, which follow from the heterogeneity of the bins and the interplay among bin
cost, non-compulsory item profit, and the volumes of the respective bins and items. First,
one has to sort not only items but also bins. Furthermore, while volumes are, of course,
important, costs and profits could influence the order as well. Several sorting strategies
are thus possible and we examine four, all having in common the compulsory items sorted
in non-increasing values of their volumes and placed at the top of the item list. The four
sorting strategies are:

1. Bins: Non-decreasing order of Cj/Wj and non-decreasing values of their volumes;

Non-compulsory items: Non-increasing pi/wi and non-increasing values of their
volumes;

2. Bins: Non-decreasing order of Cj/Wj and non-decreasing values of their volumes;

Non-compulsory items: Non-increasing volumes wi and non-increasing values
of pi/wi;

3. Bins: Non-decreasing order of Cj/Wj and non-increasing values of their volumes;

Non-compulsory items: Non-increasing pi/wi and non-increasing values of their
volumes;

4. Bins: Non-decreasing order of Cj/Wj and non-increasing values of their volumes;

Non-compulsory items: Non-increasing volumes wi and non-increasing values
of pi/wi.
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When performing a lower bound-based constructive heuristic, we first have to compute
the aggregate knapsack problem, i.e. LB1. We take into account those items and those
bins which have been selected when solving the aggregate knapsack problem and we
select two portions among them, given by percentages (to be set during the calibration
step to be, introduced next) δi and δj, respectively. Such items and bins will appear at
the top of their respective lists and will be sorted according to one among the four above
sorting strategies. The remaining items and bins (i.e. those which have not been taken
into account when solving the aggregate knapsack problem) will follow in their respective
lists and they will be sorted according to the selected ordering strategy.

Given ordered sets of bins and items, the FFD and BFD heuristics proceed according
to the standard sequence, the former loading each item into the first already-selected bin
with sufficient available volume, while the latter selects the existing bin maximizing the
merit function(i, b) = 1

rb+1
, where rb stands for the resulting bin free volume as defined

above. In both cases, the next bin in the list is selected when a new bin is required to
load a compulsory item.

Algorithm 1 The profitable(item i, container b) Heuristic for New Bin Selection

I∗ : sublist of I starting from the item i;
Load i into b and initialize the container profit Pb = pi;
for all i′ ∈ I∗ do

if i′ can be loaded into b then
Load i′ in b and update the container profit Pb = Pb + pi′ ;

end if
if Pb > cb, return true else return false.

end for

Major differences with the FFD and BFD heuristics for the BPP are that 1) one
must chose a profitable subset of non-compulsory items to load, that is, items for which
their total profits decrease as much as possible the total cost of all the selected bins, and
2) one must choose the bin to add to the solution given its particular cost and volume.
Consider a non-compulsory item i ∈ INC that cannot be loaded into any partially loaded
container and a new one should be selected. When the profit of i and those of the
remaining items in the list are so low that their sum does not exceed the cost of the new
container, then it is better not to select item i. To determine whether this is the case, it
is sufficient to solve a knapsack problem considering the not yet loaded items and each
bin type such that at least one bin is still available. To avoid the extra computational
burden, which could be significant, we take advantage of the ordering of the bins and use
Algorithm 1 to compute an approximation of the value of selecting bin b for item i.

Another issue one needs to address is the behavior of the procedures towards the end
of the item list, when there might not be sufficient items left to fill up the selected bin,
even though it offers a good cost/volume ratio measure. A bin with a worst ratio but an
absolute smaller cost might be appropriate in this case, and we include a post-processing
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Algorithm 2 The BFD and FFD Upper Bound Heuristics

Sort the bins and the items (compulsory items first), and let SCL and SIL be the
resulting ordered lists, respectively.
Let S be the set of the selected containers.
for all i ∈ SIL do

Identify the bin b ∈ S into which item i can be loaded:

• BFD: the best, i.e., the bin b maximizing the merit function(i, b);

• FFD: the first with sufficient empty space to accommodate i.

if b does not exist then
if i ∈ IC then

Identify the first container b′ ∈ SCL \S such that wi ≤ Wb′ .
else

Identify the container b′ ∈ SCL \S such that profitable(i, b′) returns true.
end if
b = b′, if b′ exists.

end if
If b exists, load i into b, reject item i, otherwise.

end for
for all j ∈ S do

for all k ∈ J \ S do
Uj =

∑
i loaded into j wi

if Wk ≥ Uj and Ck < Cj then
Move all the items from j to k
S = S \ {j} ∪ {k}

end if
end for

end for
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phase that attempts to improve the solution by evaluating such possible bin swaps. The
procedure iteratively examines each selected bin j ∈ S with a loaded volume Uj defined
as the sum of the volumes of the items assigned to it. Then, if an unused bin k ∈ J
exists such that Wk ≥ Uj and Ck < Cj, the items from bin j are transferred to bin k and
bin j is discarded. Algorithm 2 displays the FFD and BFD heuristics developed for the
GBPP.

Algorithm 3 The diving Heuristic

Let x be the optimal solution of the continuous relaxation of R-GBPP
while x is not integral do

Select a non-integer variable λk and set λk = 1;
Re-optimize R-GBPP.

end while

Finally, a few words about infeasibility are worthwhile. Indeed, when the number of
available bins is too limited, some compulsory items may be discarded. In such situa-
tions the constructive heuristics fail and the solution found so far is infeasible. However
infeasibility can be treated introducing extra bins. In a real logistics context, indeed,
when a shipping company ends its available containers and needs a new one, this can be
bought or rented or borrowed from partners or from other companies. This situation can
be modeled by creating an extra bin type which availability is in principle infinite but
which cost is very high. Such a high cost represents a penalty, discouraging the shipping
company in using extra containers (in fact these should be used only when no ordinary
ones are available).

5.2 Column Generation-based Heuristics

We present two approaches for computing upper bounds starting from the column generation-
based solution to the relaxation R-SC of the set covering formulation SC .

The first approach is to solve exactly the MIP formulation SC , by branch-&-bound,
for example, considering only the columns generated by the column-generation procedure
while computing the lower bound. This may still be quite time consuming, however.
Consequently, we stop with the branch-&-bound after a given computation time and we
name ZSC the resulting value of the objective function which is an upper bound to the
GBPP.

The second approach is based on diving, a well-known method for finding good qual-
ity integer solutions from continuous solutions to the respective relaxations (Atamturk
and Savelsbergh, 2005). The working principle is to iteratively round up variables and
re-optimize the continuous relaxation. Adapted to the GBPP, the diving heuristic mech-
anism is displayed in Algorithm 3.
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The heuristic assumes that the optimal bin loading patterns of the GBPP are in the
restricted set corresponding to the R-GBPP, and slightly and iteratively perturbs the
optimal continuous solution by fixing patterns to push toward an integer solution. The
key feature is how to choose the variable to be fixed. Preliminary experiments showed that
criteria based on the contributions of the items making up the pattern to its marginal
cost yield superior performances. Two strategies, selecting the pattern variable with
non-integral value maximizing expression (24) or (25), make up the two diving heuristics
included in the final comparative experiments of Section 6:∑

i∈INC

νi a
i
k +

∑
i∈IC

µi a
i
k (24)

(1− λk)

(∑
i∈INC

νi a
i
k +

∑
i∈IC

µi a
i
k

)
(25)

6 Computational results

The goal of the numerical experiments is to explore the performance of the proposed
lower bounds and heuristics.

The algorithms were coded in C++ and the models implemented with CPLEX Con-
cert Technology. ZSC was computed using Gurobi 4.0, due to its efficiency in finding
good feasible solutions within a limited computational time of 20 seconds. Experiments
were conducted on a Pentium IV 3.0 Ghz workstation with 4 Gb of RAM.

No instances are present in the literature for the GBPP. We generated 900 new in-
stances, partially based on those for the VSBPP and the BPP (Monaci, 2001; Vanderbeck,
1996; Correia et al., 2008; Crainic et al., 2011).

In particular, we started from Monaci’s instances (Monaci, 2001) (denoted as Class
0 in our instances) and we extended them to create two new instance sets, named Class
1 and Class 2. We chose Monaci’s instances because they are more challenging than
Correia’s ones (Correia et al., 2008), as shown in Crainic et al. (2011).

Ten instances were randomly generated for each combination of number of items, item
profit, item volume, and bin types defined as follows:

• Number of items: 25, 50, 100, 200, and 500

• Item profit:
Class 0 : all the items are compulsory
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Class 1 : pi ∈ dU(0.5, 3)wie, where U stands for the uniform distribution; no com-
pulsory items present
Class 2 : pi ∈ dU(0.5, 4)wie and no compulsory items

• Item volume:

I1: [1, 100]

I2: [20, 100]

I3: [50, 100]

• Number of bin types:
A: three types of bin, with volumes 100, 120, and 150, respectively, and costs equal
to the volumes
B: five types of bin, with volumes 60, 80, 100, 120, and 150, respectively, and costs
equal to the volumes.

We then selected 12 large size instances (500 items) from Class 1 and Class 2 with a
representative mix of characteristics in terms of item volumes, item profits, and bin types
and we built five instance sets with 0%, 25%, 50%, 75%, and 100% of the items which are
compulsory, by randomly selecting items to be compulsory. The resulting instance set is
named Class 3 and is made up by 60 instances (twelve for each percentage of compulsory
items).

We first examine the general performance of the proposed lower bounds and heuris-
tics. We then examine more in detail the impact on this performance of the relative
distribution of the number of compulsory and non-compulsory items, as well as of the
number of items.

Before showing the tables we would like to spend a few words about time consider-
ations that we gathered while performing computational tests. The fastest solution is
given by the constructive heuristics which time is negligible but they yield, on average,
a worse solution if compared to the other mentioned methods. LB1 took, on average,
1.2 seconds, while the column generation produced, on average, 424.16 patterns. The
ZSC upper bound has been solved within a time limit of 20 seconds and diving heuristics
took, on average, 0.22 seconds. However one must also take into account the column
generation time because it would be impossible to perform the diving heuristics without
generating any pattern.

Table 1 shows lower bound results. In particular, column 1 shows the class type,
column 2 the number of bin types, column 3 the number of items, columns 4 and 5 the
gap and the optimum for LB1, columns 6 and 7 the gap and the optimum for LB2, and
finally columns 8 and 9 the gap and the optimum for LB3. Each row of Table 1 gives the
results of 30 instances (3 item volume types times 10 random repetitions).
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Note that, since Class 0 instances are those by Monaci Monaci (2001), we can compute
gaps by referring to the Monaci’s optima when available, or to the best lower bounds
between those by Monaci (2001) and those by Crainic et al. (2011) (both optima and
lower bounds are below indicated by z∗). Therefore, the gap for any instance I of Class
0 is computed as ∣∣∣∣LBx(I)− z∗(I)

z∗(I)

∣∣∣∣× 100

where subscript x stands for 1, 2, or 3.

For the remaining classes, gaps are computed referring to the best lower bound, i.e.
LB3.

Table 1 shows very promising results: the overall gap is quite tight (0.07 %) and we
close almost half of the created instances (415 over 900).

In Table 2 we present the constructive heuristics results. In particular, column 1
shows the class type, column 2 the number of bin types, column 3 the number of items,
columns 4 to 7 the FFD gaps following the mentioned bin and item sorting rules, and
finally columns 8 to 11 the BFD gaps following the mentioned bin and item sorting rules.
The meaning of the rows is the same of those of Table 1.

Table 2 shows that, on average, BFD offers better results than FFD when applying
the same sorting rules. Furthermore we see that, always on average, BFD 3 is the best
performing constructive heuristic.

In the following two tables we compare lower bound-based constructive heuristics to
simple constructive heuristics. Since, as seen in Table 2, BFD outperforms, in practice,
FFD, we limit our analysis to BFD heuristics only. As seen at the end of subsection 5.1,
the sorting of bins and items depends on the percentages δj and δi of the selected bins
and items after applying LB1. The parameter calibration has been done by performing
all the L-BFD 3s (we limited to only consider the best constructive heuristic on average,
i.e. BFD 3) on some selected instances, varying both δj and δi from 0.1 to 1 with a step
of 0.1. This means that, for each instance, we performed 100 L-BFD 3s. In Table 3 we
give the mean gap for every combination of the two parameters δj and δi.

The best results are found by setting δj = 0.1 and δi = 1. Let us note that, again,
this calibration does not guarantee the best results for every instance but on average.
As an alternative a good range is given by varying δj and δi between 0.1 and 0.3. In
Table 4 we report such a comparison. More in detail, in column 4 the BFD 3 results
are given. Column 5 shows the L-BFD 3 results with δj = 0.1 and δi = 1. Column 6
shows the so called composite BFD 3 which is given by taking, for each instance, the
best (i.e. the minimum) between BFD 3 and all the L-BFD 3s, obtained by varying δj
and δi between 0.1 and 0.3. The meaning of the rows is the same of those of Table 1. The
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LB1 LB2 LB3

CLASS BINS ITEMS GAP OPT GAP OPT GAP OPT
25 1.16 10 0.26 13 0.13 21
50 0.62 12 0.17 5 0.09 16

3 100 0.50 16 0.06 8 0.03 22
200 0.31 19 0.04 6 0.02 24

0 500 0.31 20 0.02 3 0.01 23
25 0.80 10 0.20 13 0.12 20
50 0.51 15 0.12 9 0.05 21

5 100 0.49 18 0.07 6 0.02 22
200 0.27 20 0.04 6 0.01 24
500 0.25 20 0.01 6 0.00 24

0.52 160 0.10 75 0.05 217
25 2.16 4 0.27 16 0.19 20
50 0.86 1 0.17 6 0.15 5

3 100 0.72 2 0.12 3 0.11 5
200 0.45 1 0.13 6 0.12 7

1 500 0.33 0 0.10 3 0.10 3
25 1.42 5 0.18 13 0.13 16
50 0.75 3 0.10 12 0.09 13

5 100 0.57 5 0.04 10 0.03 13
200 0.29 4 0.03 6 0.02 9
500 0.29 2 0.08 6 0.07 8

0.78 27 0.12 81 0.10 99
25 1.31 5 0.18 14 0.16 17
50 0.61 4 0.12 4 0.10 8

3 100 0.41 3 0.06 7 0.06 8
200 0.30 1 0.10 5 0.10 5

2 500 0.26 0 0.08 4 0.07 4
25 0.98 4 0.12 14 0.09 16
50 0.52 8 0.06 8 0.05 15

5 100 0.40 6 0.04 6 0.03 11
200 0.18 4 0.05 5 0.04 9
500 0.19 1 0.05 5 0.05 6

0.52 36 0.09 72 0.07 99
OVERALL 0.61 223 0.10 228 0.07 415

Table 1: Lower bounds results
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CLASS BINS ITEMS FFD 1 FFD 2 FFD 3 FFD 4 BFD 1 BFD 2 BFD 3 BFD 4
25 12.65 12.65 3.55 3.55 12.65 12.65 3.33 3.33
50 13.15 13.15 2.35 2.35 13.15 13.15 2.27 2.27

3 100 12.17 12.17 1.63 1.63 12.17 12.17 1.59 1.59
200 10.26 10.26 1.26 1.26 10.26 10.26 1.23 1.23

0 500 8.96 8.96 1.07 1.07 8.96 8.96 1.06 1.06
25 10.35 10.35 1.80 1.80 10.35 10.35 1.80 1.80
50 11.54 11.54 1.74 1.74 11.54 11.54 1.73 1.73

5 100 10.61 10.61 1.25 1.25 10.61 10.61 1.24 1.24
200 10.82 10.82 0.82 0.82 10.82 10.82 0.81 0.81
500 10.44 10.44 0.65 0.65 10.44 10.44 0.63 0.63

11.09 11.09 1.61 1.61 11.09 11.09 1.57 1.57
25 13.18 17.03 4.07 8.89 12.89 16.67 3.96 8.72
50 13.62 17.93 3.22 7.59 13.57 17.87 3.20 7.54

3 100 12.67 16.60 2.18 7.36 12.55 16.52 2.16 7.34
200 11.30 15.08 1.47 7.15 11.26 15.05 1.45 7.13

1 500 9.83 13.44 0.94 6.58 9.81 13.46 0.94 6.58
25 9.74 14.86 3.38 8.40 9.79 14.54 3.33 8.37
50 10.56 16.12 3.49 7.60 10.56 15.88 3.46 7.56

5 100 9.53 14.41 1.99 6.41 9.49 14.32 1.97 6.39
200 9.57 14.84 1.48 6.28 9.55 14.77 1.49 6.27
500 9.36 14.68 1.00 6.32 9.36 14.65 1.00 6.32

10.93 15.50 2.32 7.26 10.88 15.38 2.30 7.22
25 9.50 10.25 3.45 4.63 9.48 10.22 3.17 4.49
50 10.91 11.99 2.39 4.58 10.85 11.93 2.32 4.54

3 100 9.42 10.83 1.43 3.54 9.35 10.79 1.41 3.53
200 8.35 9.57 1.20 3.37 8.31 9.58 1.20 3.33

2 500 7.37 8.81 0.77 3.30 7.33 8.82 0.77 3.29
25 7.18 9.36 3.28 3.86 7.18 9.26 3.35 3.86
50 7.45 9.65 2.47 3.33 7.47 9.57 2.31 3.32

5 100 6.77 9.11 1.73 3.59 6.75 9.08 1.70 3.58
200 6.78 9.30 1.13 3.26 6.77 9.25 1.12 3.25
500 6.56 9.16 0.77 3.13 6.56 9.16 0.77 3.13

8.03 9.80 1.86 3.66 8.00 9.77 1.81 3.63
OVERALL 10.02 12.13 1.93 4.18 9.99 12.08 1.89 4.14

Table 2: Constructive heuristics results

δi
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 2.66 2.74 2.84 2.93 2.95 2.91 2.87 2.77 2.59 2.30
0.2 2.90 3.06 3.21 3.27 3.29 3.28 3.34 3.21 3.05 2.77
0.3 3.25 3.29 3.44 3.61 3.62 3.65 3.63 3.55 3.43 3.18
0.4 3.60 3.58 3.60 3.84 3.87 3.90 3.91 3.81 3.69 3.46

δj 0.5 3.86 3.89 3.92 4.02 4.10 4.16 4.21 4.06 3.92 3.65
0.6 4.13 4.16 4.22 4.27 4.34 4.40 4.45 4.38 4.21 3.90
0.7 4.40 4.45 4.52 4.54 4.54 4.63 4.69 4.66 4.57 4.23
0.8 4.70 4.73 4.75 4.80 4.82 4.87 4.89 4.87 4.80 4.54
0.9 4.91 5.01 5.00 5.02 5.11 5.10 5.09 5.11 5.00 4.76
1 5.09 5.18 5.19 5.25 5.27 5.25 5.29 5.32 5.16 4.98

Table 3: Parameter calibration
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results show that no heuristic (BFD 3 and L-BFD 3) dominates the other, although,
on average, BFD 3 performs better than L-BFD 3. The mean gap is around 2% which
can be, however, decreased if one considers the best solution between the two heuristics,
i.e. C-BFD 3.

Table 5 shows comparisons among all the upper bound techniques discussed in this
paper. As before, gaps are computed with respect to Monaci’s optima (when available)
for Class 0 instances and with respect to LB3 for Classes 1 and 2. In particular, column
1 shows the class type; column 2 the number of bin types; column 3 the number of items;
column 4 the ZSC gap; columns 5 and 6 the diving 1 and diving 2 gaps respectively, and
column 7 the gap when taking the best value between diving 1 and BFD 3. In fact,
when computing diving, we feed the column generation procedure with BFD 3 which
is, in principle, the best constructive heuristic among the others. Therefore, since it is a
feasible solution and the diving has been computed, we consider the minimum between
diving 1 and BFD 3. A similar issue holds for diving 2 and BFD 3 which gap is reported
in column 8. Column 9 shows the best constructive heuristic gap and finally column 10
shows the composite lower bound-based BFD 3 varying both bin and item percentages
between 0.1 and 0.3. The meaning of the rows is the same of those of Table 1.

In Table 5 the overall ZSC gap is quite tight: 0.09%. This means that the generated
columns are very good in two senses. In the first sense, because the associated IP problem
(which yields the upper bound ZSC) finds an optimal solution or a feasible solution
close to the optimum. In the second sense, because LB2 is a very good lower bound.
Furthermore, this holds for all the involved classes, not only for Class 0. Table 5 shows
also solution quality in terms of the available computational time. Referring to the
previously introduced time considerations, if the available computational time is short,
immediate solutions can be found by applying C-BFD 3 with a mean gap of 1.57%. Vice
versa if the available computational time is larger, the column generation procedure with
the ZSC computation can be used. Otherwise a compromise between solution quality
and time can be met by applying diving after the column generation. Depending on the
used diving strategy results may vary with a gap from 0.54% to 1.21%. In any case all
gaps are less than 2%.

We finally examine Class 3, i.e. the variation in the solution quality offered by the
best heuristic proposed when the cardinality of the compulsory items set IC varies.

We applied the BFD constructive heuristic, the ZSC heuristic with a time limit of
20 seconds, and the diving heuristics. Table 6a displays the average gaps (%) over the
12 instances with respect to the column generation lower bound for the three heuristics,
where the best result among the different versions was used for the BFD and diving
heuristics. Table 6b displays the corresponding computational measures expressed in
seconds.

22

The Generalized Bin Packing Problem

CIRRELT-2011-39



CLASS BINS ITEMS BFD 3 L-BFD 3 C-BFD 3
25 3.33 3.22 1.80
50 2.27 2.46 1.75

3 100 1.59 1.50 1.12
200 1.23 1.33 1.01

0 500 1.06 0.84 0.67
25 1.80 2.36 1.62
50 1.73 2.51 1.63

5 100 1.24 1.82 1.15
200 0.81 1.56 0.81
500 0.63 1.25 0.63

1.57 1.88 1.22
25 3.96 3.85 2.95
50 3.20 2.98 2.46

3 100 2.16 2.37 1.98
200 1.45 1.77 1.37

1 500 0.94 1.14 0.92
25 3.33 3.67 2.42
50 3.46 3.85 2.92

5 100 1.97 2.47 1.83
200 1.49 1.92 1.45
500 1.00 1.21 0.97

2.30 2.52 1.93
25 3.17 3.10 2.09
50 2.32 2.70 2.09

3 100 1.41 1.67 1.32
200 1.20 1.49 1.15

2 500 0.77 0.94 0.75
25 3.35 3.52 2.71
50 2.31 2.86 2.07

5 100 1.70 1.96 1.53
200 1.12 1.50 1.07
500 0.77 1.01 0.76

1.81 2.08 1.56
OVERALL 1.89 2.16 1.57

Table 4: Constructive heuristics best results
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CLASS BINS ITEMS ZSC DIVING 1 DIVING 2 BEST DIVING 1 BEST DIVING 2 BEST BFD C-BFD 3
25 0.13 1.82 1.89 1.18 1.41 3.33 1.80
50 0.10 1.19 1.30 0.85 0.96 2.27 1.75

3 100 0.13 1.81 1.42 0.81 0.62 1.59 1.12
200 0.16 1.73 1.13 0.58 0.49 1.23 1.01

0 500 0.30 2.11 1.03 0.58 0.50 1.06 0.67
25 0.00 1.14 0.74 0.55 0.47 1.80 1.62
50 0.01 0.75 0.50 0.59 0.47 1.73 1.63

5 100 0.01 0.57 0.43 0.41 0.37 1.24 1.15
200 0.05 0.63 0.45 0.33 0.28 0.81 0.81
500 0.05 0.76 0.41 0.16 0.13 0.63 0.63

0.10 1.25 0.93 0.60 0.57 1.57 1.22
25 0.19 1.30 1.42 0.87 0.89 3.71 2.95
50 0.15 1.05 0.94 0.88 0.82 3.19 2.46

3 100 0.11 0.81 2.18 0.66 0.68 2.16 1.98
200 0.12 1.57 2.28 0.55 0.61 1.45 1.37

1 500 0.10 1.89 2.79 0.40 0.55 0.94 0.92
25 0.12 0.74 0.76 0.55 0.58 3.26 2.42
50 0.09 0.37 0.52 0.37 0.52 3.46 2.92

5 100 0.03 0.53 0.52 0.35 0.36 1.97 1.83
200 0.02 0.55 1.11 0.28 0.32 1.49 1.45
500 0.07 0.73 1.18 0.15 0.18 1.00 0.97

0.10 0.95 1.37 0.51 0.55 2.26 1.93
25 0.16 1.99 2.07 1.05 0.95 2.86 2.09
50 0.10 0.83 1.25 0.77 0.84 2.31 2.09

3 100 0.06 0.98 1.64 0.38 0.48 1.41 1.32
200 0.10 1.37 2.12 0.41 0.52 1.20 1.15

2 500 0.07 1.36 2.50 0.24 0.40 0.77 0.75
25 0.09 0.48 0.66 0.43 0.61 2.68 2.71
50 0.05 0.47 0.46 0.37 0.31 2.17 2.07

5 100 0.03 0.21 0.43 0.21 0.30 1.70 1.53
200 0.04 0.36 0.87 0.25 0.28 1.12 1.07
500 0.05 0.46 1.20 0.13 0.17 0.77 0.76

0.07 0.85 1.32 0.42 0.49 1.70 1.56
OVERALL 0.09 1.02 1.21 0.51 0.54 1.84 1.57

Table 5: Upper bound comparisons

24

The Generalized Bin Packing Problem

CIRRELT-2011-39



The results clearly show a trend. The most challenging instances for all the heuristics
and for which these yield the poorest quality results are those where compulsory and non-
compulsory items are more or less of the same quantity. All heuristics perform very well
when one type of items dominates, with their performance which is degrading with the
decrease in domination. The ranking observed previously is confirmed in this study: the
constructive heuristic is extremely fast but yields worse results than the diving methods,
which are outperformed by the ZSC heuristic, i.e., solving the branch-&-bound of the
set covering formulation starting from the patterns generated by the column generation
lower bound process.

It is worth noting that the performance of the ZSC heuristic is very satisfactory
even with respect to the most difficult instances. Moreover, it offers a very good global
performance, with an average gap of 0.8% and an average computational effort of less
than 13 seconds.

IC (%) BEST BFD ZSC BEST DIVING
0 0.77 0.12 0.37
25 1.73 0.51 1.00
50 12.21 2.72 7.52
75 2.04 0.52 1.15
100 0.84 0.15 0.50

MEAN 3.52 0.80 2.11
(a)

IC (%) BEST BFD ZSC BEST DIVING
0 < 0.01 11.37 0.39
25 < 0.01 11.94 0.55
50 < 0.01 13.95 0.42
75 < 0.01 13.41 0.33
100 < 0.01 13.42 0.25

MEAN < 0.01 12.82 0.39
(b)

Table 6: Performance of best heuristics with different cardinality of IC

The experimental results discussed so far point to the ZSC heuristic as the upper
bound procedure offering the best performance in terms of solution quality. Because the
procedure is based on solving a branch-&-bound algorithm for the MIP model SC , the
heuristic may also serve as a good proxy to examine the behavior of exact methods in
addressing the GBPP, as well as the impact of problem size on algorithmic efficiency.

A new set of experiments was thus performed by extending the time limit of the ZSC
heuristic to 10000 seconds. All instances with up to 200 items were solved to optimality
in at most 60 seconds, independently of the parameters used to generate the instance

25

The Generalized Bin Packing Problem

CIRRELT-2011-39



data. The behavior drastically changed when the number of items was increased to 500.

Figures 1a and 1b plot the evolution of the average gap (in %) between the column
generation-based lower bound and the best solution of the ZSC heuristic as the compu-
tational effort, in seconds, is increased. Instances are grouped by item size (I1, I2, and
I3) in Figure 1a, while the item profit (Class 0, Class 1, and Class 2) are used to group
instances in Figure 1b.
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Figure 1: Computational effort versus quality gap of ZSC heuristic for 500-item instances

The results show how the most challenging instances are characterized by a wider
variance in item sizes (item volume I1). In fact, Zsc requires about 4000 seconds to
converge with a gap of less than 0.1% from the lower bound. After this time limit, the
convergence process slows down considerably. This is partially explained by the fact that
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the column generation generates a larger number of patterns when the item volumes are
different. Thus, the commercial Branch & Bound used to obtain Zsc has to consider a
considerably larger number of variables, causing the reduction of the convergence rate.
Moreover, a larger choice in terms of patterns contributes to degrade the lower bound pre-
cision as well. This contributes to the interest of developing an ad-hoc exact method for
the GBPP taking advantage of the peculiar characteristics of this new class of problems.

Not surprisingly, ZSC is most challenging when all items are compulsory, i.e., belong-
ing to Class 0, as it requires about 500 seconds, on average, to reach a gap under 0.1%.
It is very encouraging, however, to witness this not-so-bad behavior on instances that are
different (no item profits) from those the algorithms were developed for. This, combined
to the excellent performance on the other instance classes, shows the efficiency of the
proposed algorithms and the interest to continue the research in this area.

7 Conclusion

We introduced the Generalized Bin Packing Problem, a new packing problem where,
given a set of items characterized by volume and profit and a set of bins with given
volume and cost, one aims to select the subsets of profitable items and appropriate bins
to optimize an objective function obtained by combining the cost of using the bins and
the profit derived by loading the selected items. The GBPP generalizes many other
packing problems, including Bin Packing and Variable Cost and Size Bin Packing, as
well as Multiple Homogeneous and Heterogeneous Knapsack, and is relevant for many
transportation and logistics planning problems.

We presented two formulations of the problem, based on item-to-bin assignment de-
cisions and set covering, respectively. The set covering formulation proved to be more
interesting in algorithmic terms, conducting to an efficient column generation-based lower
bound method. We also presented first fit, best fit, and column generation-based upper
bound procedures.

The paper also introduced a large number of new instances. The analysis of the
results of extensive computational experiments showed that the proposed procedures are
quite efficient and the bounds are tight.

27

The Generalized Bin Packing Problem

CIRRELT-2011-39



Acknowledgments

While working on this project, the second author was the NSERC Industrial Research
Chair on Logistics Management, ESG UQAM, and Adjunct Professor with the Depart-
ment of Computer Science and Operations Research, Université de Montréal, and the
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