The Capacitated Transshipment Location Problem under Uncertainty: a computational study

Original
The Capacitated Transshipment Location Problem under Uncertainty: a computational study / Baldi M. M.; Ghirardi M.; Perboli G.; Tadei R.. - STAMPA. - (2011). ((Intervento presentato al convegno The Seventh International Conference on City Logistics tenutosi a Mallorca (Spain) nel June 7-9, 2011.

Availability:
This version is available at: 11583/2464178 since:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
THE CAPACITATED TRANSSHIPMENT LOCATION PROBLEM UNDER UNCERTAINTY: A COMPUTATIONAL STUDY

M.M. Baldi, M. Ghirardi, G. Perboli, and R. Tadei
Department of Control and Computer Engineering
Politecnico di Torino, Turin, Italy
PRESENTATION OUTLINE

- Introduction
- The Stochastic Problem
- The Deterministic Approximation
- Instance Generation
- Computational Results
- Conclusion
Introduction

- Freight transportation is:
 - a fundamental issue in urban areas (economic, social reasons, etc.)
 - a disturbing factor in terms of traffic and environment pollution
- Bulky vehicles carrying goods stop at the so called *City Distribution Centers (CDCs)*, where consolidation and coordination activities take place
- In a two-tiered organization, intermediate platforms, the satellites, among CDCs and final customers, are present
- The flows are consolidated and smaller vehicles carrying goods are used to make the final tour in the urban area where customers are reached
INTRODUCTION

- Origin to destination costs are deterministic and well measurable
- Uncertainty must be taken into account at the transshipment facilities (satellites)
- Stochastic terms may represent:
 - Throughput costs at the facility due to handling operations or consolidation activities
 - Time to wait to load the freight into smaller vehicles
 - A measure of the network congestion in the city, i.e. beyond the transshipment facility
- The Capacitated Transshipment Location Problem under Uncertainty helps to cope with these issues
A two-tiered City Logistics system

First Tier

Second Tier

City Center

Satellites

CDC
THE STOCHASTIC PROBLEM

The goal is:
- Find an optimal location for the facilities
- Determine optimal freight flows by
 - Minimizing the total cost:
 - Total fixed locating cost
 - Total random generalized transportation cost
while
- Satisfying balancing and capacity constraints
NOTATION

Let be:
- \(I \): set of origins (CDCs)
- \(J \): set of destinations (customers)
- \(K \): set of potential transshipment facility locations
- \(L_k \): set of throughput operation scenarios at transshipment facility \(k \in K \)
- \(n_k \): number of different throughput operation scenarios at the transshipment facility \(k \in K \), i.e. \(n_k = |L_k| \)
- \(P_i \): supply at origin \(i \in I \)
- \(Q_j \): demand at destination \(j \in J \)
- \(U_k \): throughput capacity of transshipment facility \(k \in K \)
- \(f_k \): fixed cost of locating a transshipment facility \(k \in K \)
- \(y_k \): binary variable which takes value 1 if transshipment facility \(k \in K \) is located, 0 otherwise
- \(c^k_{ij} \): unit transportation cost from origin \(i \in I \) to destination \(j \in J \) through transshipment facility \(k \in K \)
- \(\theta_{kl} \): unit throughput cost of transshipment facility \(k \in K \) in throughput operation scenario \(l \in L_k \)
- \(s^k_{ij} \): flow from origin \(i \in I \) to destination \(j \in J \) through transshipment facility \(k \in K \)
ASSUMPTIONS

The following assumptions are made:

- the system is balanced (total demand = total supply)
- the unit throughput costs θ_{kl} are independent and identically distributed (i.i.d.) random variables with a common and unknown probability distribution

$$Pr\{\theta_{kl} \geq x\} = F(x)$$

TOWARDS THE MODEL

- The stochastic generalized unit transportation cost from origin i to destination j through transshipment facility k in throughput scenario l is given by

$$r_{kl}^{ij}(\theta) = c_{ij}^k + \theta_{kl}, \quad i \in I, j \in J, k \in K, l \in L_k$$

- $Pr\{r_{kl}^{ij}(\theta) \geq x\} = Pr\{c_{ij}^k + \theta_{kl} \geq x\} = Pr\{\theta_{kl} \geq x - c_{ij}^k\} = F(x - c_{ij}^k)$
TOWARDS THE MODEL

- We define
 \[\bar{\theta}_k = \min_{l \in L_k} \theta_{kl}, \quad k \in K \]

- Under independence assumption of \(\theta_{kl} \)
 \[H(x) = \Pr\{\bar{\theta}_k \geq x\} = \prod_{l \in L_k} \Pr\{\theta_{kl} \geq x\} = \prod_{l \in L_k} F(x) = [F(x)]^{n_k} \]

- The stochastic generalized unit transportation cost from origin \(i \) to destination \(j \) through transshipment facility \(k \) is the minimum among the different throughput operation scenario costs
 \[\bar{r}_{ij}^k(\theta) = \min_{l \in L_k} r_{ij}^{kl}(\theta) = c_{ij}^k + \min_{l \in L_k} \theta_{kl} = c_{ij}^k + \bar{\theta}_k, \quad i \in I, \ j \in J, \ k \in K \]
THE STOCHASTIC MODEL

The Capacitated Transshipment Location Problem under Uncertainty (CTLPU) is as follows

$$\min \sum_{k \in K} f_k y_k + E_\theta \left[\min_{s} \sum_{i \in I} \sum_{j \in J} \sum_{k \in K} r_{ij}^k (\theta) s_{ij}^k \right]$$

s.t.

$$\sum_{j \in J} \sum_{k \in K} s_{ij}^k = P_i, \quad i \in I$$

$$\sum_{i \in I} \sum_{k \in K} s_{ij}^k = Q_j, \quad j \in J$$

$$\sum_{i \in I} \sum_{j \in J} s_{ij}^k \leq U_k y_k, \quad k \in K$$

$$s_{ij}^k \geq 0, \quad i \in I, \quad j \in J, \quad k \in K$$

$$y_k \in \{0, 1\}, \quad k \in K$$
It can be proven that, by using the asymptotic approximation method derived from the Extreme Value Theory, the deterministic approximation of the Capacitated Transshipment Location Problem under Uncertainty, named CTLPD, becomes

$$\min_y \sum_{k \in K} f_k y_k + \max_s \left[-\frac{1}{\beta} \sum_{i \in I} \sum_{j \in J} \sum_{k \in K} s_{ij}^k \ln s_{ij}^k - \sum_{i \in I} \sum_{j \in J} \sum_{k \in K} s_{ij}^k \left(c_{ij}^k - \frac{1}{\beta} \right) \right]$$

s.t.

$$\sum_{j \in J} \sum_{k \in K} s_{ij}^k = P_i, \quad i \in I$$

$$\sum_{i \in I} \sum_{k \in K} s_{ij}^k = Q_j, \quad j \in J$$

$$\sum_{i \in I} \sum_{j \in J} s_{ij}^k \leq U_k y_k, \quad k \in K$$

$$s_{ij}^k \geq 0, i \in I, j \in J, k \in K$$

$$y_k \in \{0, 1\}, k \in K$$
Instance Generation

Since no instances for CTLPU are available in literature, ten new instances have been generated starting from a subset of those of Keskin and Uster (2007).

In particular
- number of depots $|I|$ is drawn from $U[2, 3]$
- number of customers $|J|$ is drawn from $U[30, 40]$
- number of potential locations for the transshipments $|K|$ is drawn from $U[10, 20]$
- supply P_i is drawn from $U[900, 1000]$
- demand Q_j is drawn from $U[1, \sum_i P_i / |J|]$.
- capacity U_k is drawn from $U[0.5 \text{avU}, 3 \text{avU}]$, where $\text{avU} = \sum_i P_i / |K|$
- unit transportation cost c_{ij}^k is drawn from $U[1, 10]$
- fixed cost $f_k = TC \frac{U_k}{(|I| \cdot |J|)}$, where TC is the total unit transportation cost over all the possible arcs
- random costs are generated by using three different cumulative probability distributions, Gumbel, Laplace, and Uniform, as follows
INSTANCE GENERATION

- Gumbel: \(\exp(-\exp(-\beta x)) \) with \(\beta = 0.68 \), to have a mean (\(\approx 5.7 \)) close to the mean of the distribution used to obtain the deterministic unit costs \(c^k_{ij} \). In this way, the random costs have the same order of magnitude of the deterministic unit costs.

- Laplace:

 \[
 \begin{cases}
 0.5 \exp \left(\frac{x - \mu}{b} \right) & \text{if } x < \mu \\
 1 - 0.5 \exp \left(- \frac{x - \mu}{b} \right) & \text{if } x \geq \mu
 \end{cases}
 \]

 with mean equal to \(\mu \). The parameters of the distribution are set such that the mean of the Laplace distribution is the same of the Gumbel one.

- Uniform:

 \[
 \begin{cases}
 0 & \text{if } x < a \\
 \frac{x - a}{b - a} & \text{if } a \leq x < b \\
 1 & \text{if } x \geq b
 \end{cases}
 \]

 The costs are generated in the range \([a, b] = [1, 10]\), such that the mean of the Uniform distribution is quite close to the Gumbel one.
Computational Results

- We compare CTLPU with its deterministic approximation CTLPD.
- The stochastic model CTLPU has been solved by using Xpress solver with 100 scenarios (set by the tuning procedure),
- The deterministic approximation CTLPD has been solved by using BonMin solver with $\beta = 0.68$.

<table>
<thead>
<tr>
<th>Instances</th>
<th>Det</th>
<th>Objective function</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Det</td>
<td>Gumbel</td>
</tr>
<tr>
<td>1</td>
<td>142713</td>
<td>137460</td>
<td>139664</td>
</tr>
<tr>
<td>2</td>
<td>209429</td>
<td>207613</td>
<td>209823</td>
</tr>
<tr>
<td>3</td>
<td>150860</td>
<td>144510</td>
<td>145031</td>
</tr>
<tr>
<td>4</td>
<td>167359</td>
<td>164393</td>
<td>165939</td>
</tr>
<tr>
<td>5</td>
<td>157160</td>
<td>151061</td>
<td>152683</td>
</tr>
<tr>
<td>6</td>
<td>211108</td>
<td>210291</td>
<td>210657</td>
</tr>
<tr>
<td>7</td>
<td>244105</td>
<td>243214</td>
<td>245251</td>
</tr>
<tr>
<td>8</td>
<td>248086</td>
<td>243645</td>
<td>245213</td>
</tr>
<tr>
<td>9</td>
<td>247005</td>
<td>243887</td>
<td>246621</td>
</tr>
<tr>
<td>10</td>
<td>188291</td>
<td>181987</td>
<td>184353</td>
</tr>
</tbody>
</table>

| Mean | 196612 | 192746 | 194456 | 192248 | 2.25% | 1.43% | 2.93% |
Computational Results

<table>
<thead>
<tr>
<th>Instances</th>
<th>Number of open facilities</th>
<th>Common open facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Det</td>
<td>Gumbel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
COMPUTATIONAL RESULTS

≈ 75% of open facilities in common.

When the open facilities are exactly the same, a gap between the two models is still present (≈0.4%), given by a different flow distribution in the two solutions.

<table>
<thead>
<tr>
<th>Instances</th>
<th>Gumbel</th>
<th>Laplace</th>
<th>Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2</td>
<td>0.22%</td>
<td>0.16%</td>
<td>0.36%</td>
</tr>
<tr>
<td>3</td>
<td>0.19%</td>
<td>0.47%</td>
<td>0.34%</td>
</tr>
<tr>
<td>4</td>
<td>0.73%</td>
<td>0.08%</td>
<td>0.29%</td>
</tr>
<tr>
<td>5</td>
<td>1.31%</td>
<td>0.40%</td>
<td>0.77%</td>
</tr>
<tr>
<td>6</td>
<td>0.57%</td>
<td>0.81%</td>
<td>0.03%</td>
</tr>
<tr>
<td>7</td>
<td>0.36%</td>
<td>0.45%</td>
<td>0.06%</td>
</tr>
<tr>
<td>8</td>
<td>0.27%</td>
<td>0.40%</td>
<td>0.79%</td>
</tr>
<tr>
<td>9</td>
<td>0.53%</td>
<td>0.26%</td>
<td>0.15%</td>
</tr>
<tr>
<td>10</td>
<td>0.38%</td>
<td>0.45%</td>
<td>0.84%</td>
</tr>
</tbody>
</table>

Mean | 0.49% | 0.35% | 0.38% |
When $\beta \to +\infty$ the coefficient of the Entropy term tends to 0 and CTLPD turns into the classical CTLP

<table>
<thead>
<tr>
<th>Instances</th>
<th>Gap</th>
<th>Common open facilities</th>
<th>Comparison</th>
<th>Common open facilities (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.68%</td>
<td>5</td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td>2</td>
<td>11.89%</td>
<td>6</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>3</td>
<td>6.48%</td>
<td>8</td>
<td></td>
<td>73%</td>
</tr>
<tr>
<td>4</td>
<td>10.59%</td>
<td>5</td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td>5</td>
<td>13.66%</td>
<td>6</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>6</td>
<td>3.85%</td>
<td>10</td>
<td></td>
<td>77%</td>
</tr>
<tr>
<td>7</td>
<td>8.93%</td>
<td>9</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>8.87%</td>
<td>6</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>9</td>
<td>10.24%</td>
<td>5</td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td>10</td>
<td>3.89%</td>
<td>11</td>
<td></td>
<td>92%</td>
</tr>
<tr>
<td>Mean</td>
<td>9.31%</td>
<td>7</td>
<td></td>
<td>78%</td>
</tr>
</tbody>
</table>
COMPUTATIONAL RESULTS
TUNING OF THE MODEL IN REAL SITUATIONS

- In order to use the model with actual data, it requires to tune the value of β and the costs c_{ij}^k of CTLPD
- c_{ij}^k can be derived by considering historical data from databases by simple statistical computations
- Vice-versa tuning of β requires to consider the full probability distribution of θ_{kl} (which is now a Gumbel one)
- Let the costs be distributed in the interval $[m, M]= [1, 10]$ and consider the Gumbel distribution with mode ζ
 \[G(x) = \exp(-\exp(-\beta(x - \zeta))) \]
- If an approximation error of 0.01 is accepted then, after some manipulations, one gets
 \[\beta = 6.12/(M - m) = 6.12/(10 - 1) = 0.68 \]
CONCLUSION

- The Capacitated Transshipment Location Problem under Uncertainty, CTLPU, has been approximated by a non-linear deterministic model (CTLPD) belonging to the class of Entropy maximizing models.
- The results are very promising showing a mean gap between stochastic and deterministic around 2%.
- The facilities opened by the two models are almost the same.
- The role of the Entropy term is relevant but when $\beta \to +\infty$ the Entropy contribution disappears and the CTLPD turns into the classical Capacitated Transshipment Location Problem.
THANK YOU FOR YOUR ATTENTION!