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INTRODUCTION

Freight transportation is:

a fundamental issue 1in urban areas (economic, social
reasons, etc.)

a disturbing factor in terms of traffic and environment
pollution
Bulky vehicles carrying goods stop at the so called
City Distribution Centers (CDCs), where consolidation
and coordination activities take place

In a two-tiered organization, intermediate platforms,
the satellites, among CDCs and final customers, are
present

The flows are consolidated and smaller vehicles
carrying goods are used to make the final tour in the
urban area where customers are reached



INTRODUCTION

Origin to destination costs are deterministic and
well measurable

Uncertainty must be taken into account at the
transshipment facilities (satellites)

Stochastic terms may represent:

Throughput costs at the facility due to handling
operations or consolidation activities

Time to wait to load the freight into smaller vehicles
A measure of the network congestion in the city, 1.e.
beyond the transshipment facility
The Capacitated Transshipment Location
Problem under Uncertainty helps to cope with
these 1ssues



A TWO-TIERED CITY LOGISTICS SYSTEM

SATELLITES

FIRST TIER SECOND TIER




THE STOCHASTIC PROBLEM

The goal 1s:
Find an optimal location for the facilities
Determine optimal freight flows
by
Minimizing the total cost:
Total fixed locating cost

plus
Total random generalized transportation cost

while
Satisfying balancing and capacity constraints



NOTATION

Let be:
I  :set of origins (CDCs)
J  :set of destinations (customers)

K :set of potential transshipment facility locations

: set of throughput operation scenarios at transshipment facility

ke K

n, :number of different throughput operation scenarios at the
transshipment facility &, 1.e. n, = | L, |

P. :supply at origini €/

@; :demand at destinationj €</

U, :throughput capacity of transshipment facility £ € K

fr :fixed cost of locating a transshipment facility £ € K

¥, :binary variable which takes value 1 if transshipment facility 2 € K
1s located, O otherwise

ck.. :unit transportation cost from origin i € / to destinationj €<
through transshipment facility k£ € K

6,; :unit throughput cost of transshipment facility £ € K in
throughput operation scenario / € L,

sk.. : flow from origin i € /to destination j € J through transshipment
facility £k € K



ASSUMPTIONS

The following assumptions are made:
the system 1s balanced (total demand = total supply)

the unit throughput costs 6,; are independent and identically
distributed (1.1.d.) random variables with a common and
unknown probability distribution

Pr{6,;, >x} = F(x)

TOWARDS THE MODEL

The stochastic generalized unit transportation cost from
origin i to destination j through transshipment facility % in
throughput scenario / is given by

ril(6) =ct; + 6, teljed keK el

Pri{rk(60) >x} = Pr{ct; + 6, >x} = Pr{6,>x - c*;} = F(x - c*;)



TOWARDS THE MODEL

We define
& =ming,, kekK

IGLk

Under independence assumption of 6,

H (%)= Pripx = xj= ] Prits = x} =] TF(x)=[F(X)]"
The stochastic generalized unit transportation
cost from origin i to destination j through
transshipment facility £ is the minimum among
the different throughput operation scenario costs

rijk(g):rlrE]iLD i (0)=c! +min 6, =c+6, iel,jedkeK



THE STOCHASTIC MODEL

The Capacitated Transshipment Location Problem under
Uncertainty (CTLPU) is as follows

min > fiy, + E{msin YYD (6?)55}

keK iel jeJ keK

S.t.

ZZSil}:Pi, =

jed keK

2.2.5=Q;, jel

iel keK

ZZSE <U,y,, kekK

el jed
Si‘}ZO,iel,jeJ,keK
yke{O, 1},keK



THE DETERMINISTIC APPROXIMATION

It can be proven that, by using the asymptotic
approximation method derived from the Extreme Value
Theory, the deterministic approximation of the Capacitated

Transshipment Location Problem under Uncertainty,
named CTLPD, becomes

in 3 4y, e <2333 ng T3 -5

keK Iel jed keK iel jed keK

ZEZS:} =P, iel

jed keK

2.2.5=Q; el

iel keK

ZZSE <U,y,, kekK

iel jel
SEZO,iel,jeJ,keK
y, €{0, 1Lk eK



INSTANCE GENERATION

Since no instances for CTLPU are available in literature, ten new

instances have been generated starting from a subset of those of Keskin
and Uster (2007).

In particular
number of depots || 1s drawn from U/2, 3]
number of customers || 1s drawn from U/[30, 40]

number of potential locations for the transshipments |K| 1s drawn
from U[10, 20]

supply P;is drawn from U/900, 1000]
demand ; is drawn from U[1, 2; Pi/ |J|].
capacity U, is drawn from U/[0.5 avU, 3 avU], where avU =2, Pi/ | K|

unit transportation cost ckij 1s drawn from U[1, 10]

fixed cost f, =TC U,/(|1I| |J|), where TC is the total unit
transportation cost over all the possible arcs

random costs are generated by using three different cumulative
probability distributions, Gumbel, Laplace, and Uniform, as follows



INSTANCE GENERATION

Gumbel: exp(-exp(-fx)) with f = 0.68, to have a mean (~ 5.7) close to the
mean of the distribution used to obtain the deterministic unit costs c;. In
this way, the random costs have the same order of magnitude of the
deterministic unit costs

Laplace: . B
O.Sem(XTﬂj if x < 1

L1—0.5e><p(—x_T“j if x> u

with mean equal to u. The parameters of the distribution are set such that
the mean of the Laplace distribution is the same of the Gumbel one

Uniform:
0 if x<a
X728 ifa<x<b
b-a
1 if x>b

The costs are generated in the range [a, b] =[1, 10], such that the mean of
the Uniform distribution is quite close to the Gumbel one.



COMPUTATIONAL RESULTS

We compare CTLPU with its deterministic approximation CTLPD

The stochastic model CTLPU has been solved by using Xpress
solver with 100 scenarios (set by the tuning procedure),

The deterministic approximation CTLPD has been solved by
using BonMin solver with = 0.68

Objective function Gap
Instances Det Stoch
Gumbel  Laplace  Uniform | Gumbel Laplace  Uniform
142713 | 137460 139664 134570 3.82% 2.18% 6.05%
209429 | 207013 209238 202495 1.17% 0.09% 3.42%
150860 | 144510 145031 147152 4.39% 4.02% 2.52%
167359 | 164393 165939 161654 1.80% 0.86% 3.53%
157160 | 151061 152683 148561 4.04% 2.93% 5.79%
211108 | 210201 210567 213969 0.39% 0.26% -1.34%
244105 | 243214 245251 239280 0.37%  -047% 2.02%
248086 | 243645 245213 249019 1.82% 1.17% -0.37%
247005 | 243887 246621 239930 1.28% 0.16% 2.95%
188291 | 181987 184353 185853 3.46% 2.14% 1.31%
Mean 196612 | 192746 194456 192248 | 2.25% 1.43%  2.93%

e e R B R T N




COMPUTATIONAL RESULTS

Number of open facilities Common open facilities
Instances | Det Stoch
Gumbel Laplace  Uniform Gumbel Laplace Uniform

Number %  Number %  Number %

1 8 i 8 8 4 67% 8 100% 8 100%

2 9 7 7 8 5 1% 5 1% 6 5%

3 12 10 10 10 8 80% 8 80% 7 0%

4 9 i 7 8 4 67% 3 43% 6 75%

5 9 8 8 8 5 63% 6 5% 6 5%

6 13 12 12 12 9 5% 10 83% 10 83%

7 g 7 7 7 5 1% 3 43% 5 1%

8 9 8 9 8 7 83% 9 100% 6 75%

9 9 8 9 6 5% 6 67% 5 63%
10 13 12 11 11 11 92% 9 82% 9 82%
Mean | 10 8 9 3 5% 7 74% 7 1%




COMPUTATIONAL RESULTS

~ 75% of open facilities in common.

When the open facilities are exactly the same, a gap between
the two models 1s still present (=0,4%), given by a different
flow distribution in the two solutions.

Instances | Gumbel | Laplace | Uniform
1 0.30% 0.00% 0.00%
p 0.22% 0.16% 0.36%
3 0.19% 0.47% 0.34%
4 0.73% 0.08% 0.29%
5 1.31% 0.40% 0.77%
6 0.57% 0.81% 0.03%
7 0.36% 0.45% 0.06%
8 0.27% 0.40% 0.79%
9 0.53% 0.26% 0.15%
10 0.38% 0.45% 0.84%
Mean 0.49% 0.35% 0.38%




COMPUTATIONAL RESULTS

When f — .o the coefficient of the Entropy term
tends to 0 and CTLPD turns into the classical
CTLP

Comparison
Instances Gap Common Common
open facilities  open facilities (%)
1 14.68% 5 71%
2 11.89% 6 5%
3 6.48% 8 73%
4 10.59% 5 71%
5 13.66% 6 75%
5! 3.85% 10 7%
7 8.93% 9 100%
8 8.87% 6 75%
9 10.24% 5 1%
10 3.89% 11 92%
Mean 9.31% 7 8%




COMPUTATIONAL RESULTS

9.00%
8.00%
7.00%
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TUNING OF THE MODEL IN REAL
SITUATIONS

In order to use the model with actual data, it requires to
tune the value of fand the costs c*;; of CTLPD

c*; can be derived by considering historical data from
databases by simple statistical computations

Vice-versa tuning of frequires to consider the full
probability distribution of 8,; (which is now a Gumbel
one)

Let the costs be distributed 1n the interval /m, MJ/=[1, 10]
and consider the Gumbel distribution with mode ¢

G(x) = exp(-exp(-fi(x - £))

If an approximation error of 0.01 1s accepted then, after
some manipulations, one gets

L=6.12/(M-m)=6.12/(10-1)=0.68



CONCLUSION

The Capacitated Transshipment Location Problem
under Uncertainty, CTLPU, has been approximated
by a non-linear deterministic model (CTLPD)
belonging to the class of Entropy maximizing models

The results are very promising showing a mean gap
between stochastic and deterministic around 2%

The facilities opened by the two models are almost the
same

The role of the Entropy term is relevant but when

S —+00 the Entropy contribution disappears and the
CTLPD turns into the classical Capacitated
Transshipment Location Problem
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