POLITECNICO DI TORINO

Repository ISTITUZIONALE

The three dimensional knapsack problem with balancing constraints

Original
The three dimensional knapsack problem with balancing constraints / Baldi, MAURO MARIA; Perboli, Guido; Tadei, Roberto. - ELETTRONICO. - (2011), pp. 131-135. (Intervento presentato al convegno OR Peripatetic Post-Graduate Programme (ORP3) 2011 tenutosi a Cádiz (Spain) nel September 13-17, 2011).

Availability:

This version is available at: $11583 / 2464177$ since:
Publisher:
Servicio de publicaciones de la Universidad de Cádiz

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

The Three-Dimensional Knapsack Problem with Balancing Constraints

Mauro Maria Baldi ${ }^{* \dagger}$, Guido Perboli ${ }^{\dagger \dagger}$, and Roberto Tadei ${ }^{\dagger}$
*Department of Control and Computer Engineering
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
Email: mauro.baldi, guido.perboli, roberto.tadei @ polito.it
${ }^{\ddagger}$ CIRRELT, Montreal, Canada
${ }^{\dagger}$ Corresponding author

Abstract

In this paper we introduce a new packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints (3BKP), the extension of the standard Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the center of mass of the three-dimensional packing are given. Given a set of box items $i=1, \ldots, n$ with sizes w_{i}, d_{i} and k_{i}, a profit p_{i}, and a mass m_{i} and a container called knapsack of fixed dimensions W, D and H, 3BKP consists in orthogonally packing a subset of the items into the knapsack in order to maximize the sum of the profits of the loaded items. The items must be accommodated into the knapsack such that they do not overlap. Moreover, the center of mass of the overall packing must lie into a predefined boxed domain within the knapsack. We assume that items can be rotated. We give a MIP formulation of the problem, used to derive bounds, as well as an efficient heuristic method able to solve, with a limited computational effort, the test instances. Moreover, new test instances are introduced and used to derive extensive computational results. The results show how the MIP model is able to find better bounds than other relaxations, and how the heuristic method is able to efficiently solve both instances explicitly designed for 3BKP, as well as to be competitive with methods explicitly designed to solve 3KP.

Keywords-3D Knapsack, load balancing, Heuristics, MIP Models

I. INTRODUCTION

A major challenge in the loading problem is taking into account load balancing constraints. These kind of constraints arise in many practical applications as aircraft loading (Kaluzny and Shaw [23]), space cargo loading (Colaneri et al. [9], and Perboli Perboli2002) and maritime transportation (Bischoff and Ratcliff [6]). The issue is critical in some applications, as in the space cargo loading, while it is relevant from the safety and the economic points of view in air and maritime cargo applications. For example minor displacements from an ideal
center of mass can result in increased fuel consumption for aircrafts and ships (Mongeau and Bés [26]). Despite its importance, the issue of the loading balancing has not deeply studied. This is mainly due to the difficulty of extending formulations, exact and heuristic methods for multidimensional packing to the balanced case. In fact, the majority of these methods use geometric properties in order to reduce the computational effort which cannot be extended to the balancing constraints case. The aim of this paper is twofold. First, we introduce a new packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints, an extension of the standard Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the center of mass of the three-dimensional packing are given. Given a set of box items $i=1, \ldots, n$ with sizes w_{i}, d_{i} and k_{i}, a profit p_{i}, and a mass m_{i} and a container called knapsack of fixed dimensions W, D, and H, the ThreeDimensional Knapsack Problem with Balancing Constraints (3BKP) consists in orthogonally packing a subset of the items into the knapsack in order to maximize the sum of the profits of the loaded items. The items must be accommodated into the knapsack such that they do not overlap. Moreover, the center of mass of the overall packing must lie into a predefined boxed domain within the knapsack. We assume that items can be rotated. Second, we give a MIP formulation of the problem, used to derive bounds. Finally, we introduce 3BKPU , a heuristic method generalizing the UniPack heuristic for multi-dimensional packing (Crainic et al. [28]) and the extreme point rule (Crainic et al. [10]) for the accommodation of the items in order to deal with the center of mass constraints. New tests instances are introduced and used to derive extensive computational results. The results show how the MIP model is able to find better bounds than other relaxations, as well as the heuristic method is able to efficiently solve both
instances explicitly designed for 3BKP, as well as to be competitive with methods explicitly designed for solving 3KP.

In more details, the paper is organized as follows. In Section II we formally introduce the problem. After showing conventions and rules involved in 3BKP (most of them are common to other packing problems), in IIA we give a formulation for the model. In section III a state of the art is given; first for multidimensional packing problems, second for multidimensional knapsack problems and, finally, for problems dealing with balancing constraints. Section IV introduces UniPack and its history. It is based on the concept of Extreme Points, which are discussed in detail. UniPack specialization leads to 3BKP-U, the heuristic employed to solve 3BKP. In section V results of our work are shown and we conclude in section VI.

II. Problem description

The 3BKP is defined as follows: given a container C with dimensions W, D, and H, volume $V=W \times D \times H$, and a set of items $J=\{1, \ldots, n\}$ with profit p_{j}, dimensions w_{j}, d_{j}, and h_{j}, and specific weight $s w_{j}$, we want to assign a subset of items $J^{\prime} \subseteq J$ to the container C such that J^{\prime} is a feasible loading for the container itself, and the total profit of the loaded items is maximum. Feasibility requires that loaded items do not overlap and limits the position of the overall center of mass inside a given three-dimensional domain. Figure 1 shows an example of a three-dimensional domain with its projections on the $(X, Y),(X, Z)$, and (Y, Z) plans. Following the classification of Wäscher et al. [29], 3BKP is a Three-Dimensional Single Large Object Placement Problem (3D-SLOPP) with balancing constraints (3DBSLOPP).

Fig. 1. A three dimensional domain
Furthermore the following assumptions are made:

- the items and the container have parallelepiped shape;
- the origin of the container and the origin of each item is located at their own left-back-down corners (see Figure 2);
- the container is located in the positive quadrant of the Cartesian coordinate system, with its origin placed in position $(0,0,0)$ (see Figure 2);
- items can rotate so that each item side is parallel to one axis;
- container and items walls have negligible thickness;
- container and items dimensions are assumed to be non-negative integers;
- the mass of each item is uniformly distributed over its volume.
Let $\left|J^{\prime}\right|=k \leq n$ be the number of accommodated items; then the value of the overall profit P can be calculated as:

$$
\begin{equation*}
P=\sum_{j=1}^{k} p_{j} . \tag{1}
\end{equation*}
$$

Note that high or low values of P do not necessarily correspond to a high or a low exploitation of the bin because, in principle, there is no correlation between volumes and profits of items.
Given a parallepiped item j, its position \vec{x}_{j}, and its mass m_{j}, then the position of its center of mass is:

$$
\begin{equation*}
\vec{x}_{C M_{j}}=\left(x_{j}+w_{j} / 2, y_{j}+d_{j} / 2, z_{j}+h_{j} / 2\right) \tag{2}
\end{equation*}
$$

The position of the overall center of mass is then:

$$
\begin{equation*}
\vec{x}_{C M}=\frac{\sum_{j=1}^{k} \vec{x}_{C M_{j}} m_{j}}{\sum_{j=1}^{k} m_{j}} . \tag{3}
\end{equation*}
$$

Let the solution unbalancing index U be the dispersion index of packed items center of mass $\vec{x}_{C M}$ with respect to a desired position $\vec{x}_{C M}^{\prime}$. The standard deviation of a set of values x_{j}, with $j \in[1, k]$ and arithmetic average \bar{x}, is defined as follows:

$$
\begin{equation*}
\sigma_{x}=\sqrt{\frac{\sum_{j=1}^{k}\left(x_{j}-\bar{x}\right)^{2}}{k}} . \tag{4}
\end{equation*}
$$

Formula for the solution unbalancing index U is found by plugging in (4) centers of mass coordinates. Moreover, since positions are assumed to be vectors, the square power of the difference at the numerator must be applied to the modulus of the difference:

$$
\begin{equation*}
U=\sqrt{\frac{\sum_{j=1}^{k}\left|\vec{x}_{C M_{j}}-\vec{x}_{C M}^{\prime}\right|^{2}}{k}} . \tag{5}
\end{equation*}
$$

Fig. 2. Container and items placement

A. The model

Before showing the model, constants and variables need to be introduced. As mentioned above, J is the set of items and its cardinality is n. Associated indexes may be i or j. Δ is the set of dimensions. Its cardinality is 2 for two-dimensional problems and 3 for threedimensional ones. In the latter case $\Delta=\{1,2,3\}$. Its associated index is δ (Greek d delta stands for dimension). R is the set of rotations. Its cardinality is 4 for two-dimensional problems and 6 for threedimensional ones. These numbers represent the ways one can rotate items in a 2 D or 3D domain. Index associated to set R is r (r stands for rotation). Due to reason of space in the representation of the model, we omit (but we do mean it) $i \in J, j \in J$ and $\delta \in \Delta$ when subscripts appear within the constraints. p_{j}, v_{j} and m_{j} are, respectively, the profit, the volume and the mass of item $j . s_{i r}^{\delta}$ is the dimension (s stands for size) of item i along direction δ when rotated with respect to index r (see Figure 3). S^{δ} is the bin size along direction δ; in particular $\left(S^{1}, S^{2}, S^{3}\right)=(W, D, H)$. V is the bin volume (note that $V=\Pi_{\delta \in \Delta} S^{\delta}$). L^{δ} and U^{δ} are the bounds along direction δ which limit the domain where the overall center of mass must lie within. $\gamma_{i r}^{\delta}$ is the position of item i center of mass along direction δ when it is rotated according to rotation r and when it is placed with its bottom-left point in the axis origin. For instance, according to Figure 3 if item i undergo a rotation with $r=3$, then we have $\left(\gamma_{i 3}^{1}, \gamma_{i 3}^{2}, \gamma_{i 3}^{3}\right)=\left(d_{i} / 2, w_{i} / 2, h_{i} / 2\right)$. Greek g gamma stands for gravity because the center of mass is the point where gravity force acts on a body like if it were concentrated just on that point. $U B$ is an upper bound on the overall profit. Its value may come from a pre-processing step or may be known a priori. Talking about variables, t_{j} is a binary variable which value is 1 if item j is loaded in the container, 0 otherwise (t stands for taken). χ_{i}^{δ} is the coordinate of the bottomleft point of item i along direction δ. For instance, if such a point is placed in position $\left(x_{i}, y_{i}, z_{i}\right)$, then we have $\left(\chi_{i}^{1}, \chi_{i}^{2}, \chi_{i}^{3}\right)=\left(x_{i}, y_{i}, z_{i}\right) . b_{i j}^{\delta}$ is a binary variable
which value is 1 if item i comes before item j along direction $\delta, 0$ otherwise. Finally $\rho_{i r}$ is a binary variable which is 1 if item i is rotated according to rotation $r, 0$ otherwise. The model for the Three-Dimensional Knapsack Problem with Balancing Constraints can then be formulated as follows:

$$
\begin{align*}
& \max \sum_{j \in J} p_{j} t_{j} \tag{6}\\
& \text { s.t. } \quad \sum_{j \in J} v_{j} t_{j} \leq V \tag{7}\\
& \sum_{\delta \in \Delta}\left(b_{i j}^{\delta}+b_{j i}^{\delta}\right) \geq t_{i}+t_{j}-1, \quad i<j \tag{8}\\
& \chi_{i}^{\delta}+\sum_{r \in R} s_{i}^{\delta} \rho_{i r} \leq S^{\delta} \tag{9}\\
& \chi_{i}^{\delta}+\sum_{r \in R} s_{i r}^{\delta} \rho_{i r} \leq \\
& \chi_{j}^{\delta}+M\left(1-b_{i j}^{\delta}\right), i<j \tag{10}\\
& \chi_{j}^{\delta}+\sum_{r \in R} s_{j r}^{\delta} \rho_{i r} \leq \\
& \chi_{i}^{\delta}+M\left(1-b_{j i}^{\delta}\right), i<j \tag{11}\\
& \chi_{i}^{\delta} \leq M t_{i} \tag{12}\\
& b_{i j}^{\delta} \leq t_{i} \tag{13}\\
& b_{i j}^{\delta} \leq t_{j} \tag{14}\\
& \sum_{i \in J} m_{i} \chi_{i}^{\delta}+\sum_{i \in J} \sum_{r \in R} m_{i} \gamma_{i r}^{\delta} \rho_{i r} \geq \\
& L^{\delta} \sum_{i \in J} m_{i} t_{i} \tag{15}\\
& \sum_{i \in J} m_{i} \chi_{i}^{\delta}+\sum_{i \in J} \sum_{r \in R} m_{i} \gamma_{i r}^{\delta} \rho_{i r} \leq \\
& U^{\delta} \sum_{i \in J} m_{i} t_{i} \tag{16}\\
& \sum_{j \in J} p_{j} t_{j} \leq U B \tag{17}\\
& t_{i} \in\{0,1\} \tag{18}\\
& b_{i j}^{\delta} \in\{0,1\} \tag{19}\\
& \chi_{i}^{\delta} \geq 0 \tag{20}\\
& \rho_{i r} \in\{0,1\} . \tag{21}
\end{align*}
$$

The objective function (6) is expressed as the sum of the profit of the items (including the selection variables t_{j}). Constraint (7) expresses capacity constraints, i.e. the sum of the volumes of the selected items must not exceed the volume of the container. Constraints (8) ensures that two packed items do not overlap. Constraints (9) state that items must lie within the container, i.e., for each direction δ, the sum of the coordinate of the bottom-left

$$
\begin{aligned}
\left(s_{i 1}^{1}, s_{i 1}^{2}, s_{i 1}^{3}\right) & =\left(w_{i}, d_{i}, h_{i}\right) \\
\left(s_{i 2}^{1}, s_{i 2}^{2}, s_{i 2}^{3}\right) & =\left(w_{i}, h_{i}, d_{i}\right) \\
\left(s_{i 3}^{1}, s_{i 3}^{2}, s_{i 3}^{3}\right) & =\left(d_{i}, w_{i}, h_{i}\right) \\
\left(s_{i 4}^{1}, s_{i 4}^{2}, s_{i 4}^{3}\right) & =\left(d_{i}, h_{i}, w_{i}\right) \\
\left(s_{i 5}^{1}, s_{i 5}^{2}, s_{i 5}^{3}\right) & =\left(h_{i}, w_{i}, d_{i}\right) \\
\left(s_{i 6}^{1}, s_{i 6}^{2}, s_{i 6}^{3}\right) & =\left(h_{i}, d_{i}, w_{i}\right) .
\end{aligned}
$$

Fig. 3. List of all the possible rotations of an item in 3D
point with the dimension of the item must give a value less or equal than the size of the bin along dimension δ. Constraints (10) state that, if item i comes before item j, then the sum of the position of item i plus its size must be less or equal than the position value of item j along direction k. Constraints (11) have the same meaning, this time with item j coming before item i. Constraints (12) express that, if item i is not selected, then its placement coordinates must be zero. A similar meaning have constraints (13) and (14) that state that, if an item is not selected, then it cannot be placed before another one. Constraints (15) and (16) ensures balancing conditions and they can be derived from the center of mass definition (3). Constraint (17) is used if an upper bound $U B$ on the overall profit is known. Finally follow the involved variables domains.

III. State of the art

3BKP can be classified as a problem beloning to the Cutting and Packing (C\&P) family. Wäscher et al. [29] have recently published a classification for C\&P problems which extendes an older one due to Dyckhoff [12]. The authors characterize a C\&P problem with two sets of elements: a set of large objects (bins, containers, input, supply) and a set of small items (output, demand). Multidimensional packing literature is really widespread. As stated by Wäscher et al. [29], at the time of their publication, the number of pubblications in the area of C\&P has increased considerably over the last two decades. This issue was also one of the motivations to create a new typology for C\&P problems. A first attempt to model multidimensional packing was due to Gilmore and Gomory [19]. Their column generation approach has been reviseted by Baldacci and Boschetti [1]. Other contributions come from Beasley [3], Hadjiconstantinou and Christofides [21], Chung et al. [8], Berkey and Wang [5], George and Robinson [18], Fekete and Schepers [15], [17], and Perboli [27]. Martello et al. [24] introduced the concept of corner points. Extentions of their work can be found in den Boef et al. [11], and Martello et al. [25].

Crainic et al. [10] introduced the concept of extreme points, an extension of the corner points previously introduced by Martello et al. [24]. Extreme Points are the basis for UniPack, the heuristic introduced in this paper, able to efficiently solve several packing problems. In multidimensional knapsack problems the available bins reduce to one. Papers which tackle this problem are Beasley [2], Hadjiconstantinou and Christofides [21], Boschetti et al. [7], and Fekete and Schepers [15], [16], [17]. To the best of our knowledge the latest contribution comes from Egeblad and Pisinger [13], where the authors also propose an exact model. An exact MIP model for the 3BKP can be found in Fasano [14], where additional equations to meet the balancing conditions (i.e. the overall center of mass must lie within a given convex domain) are taken from Williams [30]. As stated in Fasano [14], the MIP model [...] is hard to solve using standard techniques and that justifies a heuristic way in the solution of 3 BKP . Note that balancing conditions must not be meant as of stability ones. In Junqueira et al. [22] stability is defined as the capacity of the loaded boxes to withstand the gravity force acceleration (vertical stability) or the inertia of its own bodies (horizontal stability), whilst in 3BKP balancing conditions are requirements on the overall center of mass of the loaded items. The latter, in fact, must lie within a given convex domain or, when possible, at a certain position inside the container.

IV. An EFFICIENT HEURISTIC

UniPack is based on the fundamental idea to separate the feasibility of a solution, i.e. the accomodation of the items, from its optimality, which is related to the specific packing problem. UniPack is a heuristic able to solve many packing problems having different objective functions and constraints. It has been created following the ideas of Crainic et al. [10] where Extreme Points ($E P$ s) have been introduced. These are a further extension of the Corner Points introduced by Martello et al. [24].

Corner points are the nondominated locations where an item can be placed into an existing packing. In two dimensions, corner points are defined where the envelope of the items in the bin changes from vertical to horizontal (the large dots in Figure 4).

Heuristics using Corner Points can be inefficient in terms of container utilization. Consider, for example, the packing depicted in Figure 4 and item 11. According to the definition of the Corner Points, one can add the item on any of the large black dots. It is clear, however, that item 11 could also be placed into one of the shaded regions, which the corner points do not allow us to exploit.

Fig. 4. Corner points in 3D and 2D packings

Extreme Points (EPs) introduced in Crainic et al. [10] provide the means to exploit the free space defined inside a packing by the shapes of the items already in the container. Figure 5 illustrates $E P \mathrm{~s}$ in 3 D and 2D packings.

Fig. 5. Extreme Points in 3D and 2D packings
The basic idea of the $E P$ s is that when an item j with sizes $\left(w_{j}, d_{j}, h_{j}\right)$ is added to a given packing and it is placed with its left-back-down corner in position $\left(x_{j}, y_{j}, z_{j}\right)$, it generates a series of new potential points, the $E P \mathrm{~s}$, where additional items can be accommodated. The new $E P$ s are generated by projecting the points with coordinates $\left(x_{j}+w_{j}, y_{j}, z_{j}\right),\left(x_{j}, y_{j}+d_{j}, z_{j}\right)$, and $\left(x_{j}, y_{j}, z_{j}+h_{j}\right)$ on the orthogonal axes of the container. Figure 6 illustrates the concept.

Fig. 6. Extreme Points defined by an items (the triangles
Beside the saving of space in applying extreme points rather than corner points, another advantage is the time complexity to find an extreme points set. As proved in Crainic et al. [10], the overall computational effort is
$\mathcal{O}(n)$ - where n is the number of items- whilst corner points require a $\mathcal{O}\left(n^{2}\right)$ complexity.

As stated before, UniPack exploits the concept of Extreme Points. Its general scheme is depicted in Figure 7.

Fig. 7. General scheme of UniPack
The core of UniPack is an accomodation procedure, the $E P$-based constructive heuristic, EP-BPH.

When applied to the initial solution, the name of the heuristic becomes PCH because items undergo several sortings which lead to different initial solutions and only the best one is selected.

We assign a score to each item, thus specifying the order in which items are to be considered by the accomodation heuristics. The score definition is problem specific.

Scores are thus first initialized through the Score Initialization procedure, and then are dynamically modified by means of the Score Update and Long-term Score Reinitialization procedures. Score Update proceeds through small changes, aiming to adjust the scores used to sort the items at iteration k of UniPack according to the quality of the solution built at iteration $k-1$. Long-term Score Reinitialization incorporates long-term decisions, as long-term memory structures, and proceeds through larger score modifications in the scores in order to avoid cycling on the same solutions and explore new regions of the solution space.

Score computation and updates depend upon a number of parameters. We aim to keep this number as low as possible to simplify their adjustment during computation. Indeed, no such adjustment is required for 2D Knapsack and Strip-Packing problems. For the other ones, UniPack provides a problem-specific, dynamically-adjusting parameter procedure denoted Parameter Update (see IVC).

The main steps on UniPack are the following (refer to Figure 7 for a schema of the method):

- Build an initial solution of the packing problem and set the best-solution $B S$ equal to the initial solution;

We use the PCH heuristic;

- Scoring Phase
- Initialize the score of the items: the Score Initialization procedure;
- While Stopping Conditions not encountered, repeat the following steps:
* Sort the items according to their scores and apply a constructive heuristic to the sorted list, obtaining a new solution $C S$; We use the EP-BPH procedure;
* If a given number of successive nonimproving iterations is reached, reinitialize the scoring using the Long-term Score Reinitialization procedure; otherwise, update the scores using the Score Update procedure according to the $C S$ solution;
* If $C S$ is better than $B S$, then set $B S$ to $C S$;
* The Parameter Update procedure then internally adjusts the parameters.

A. EP-based Constructive Heuristics for Non-Guillotine Orthogonal Higher-Dimensional Packing Problems

We now present the constructive heuristic PCH and the initial solution procedure EP-BPH we propose for Non-Guillotine Orthogonal Higher-Dimensional Packing problems. The procedures are based on the Best Fit Decreasing (BFD) idea and generalize the heuristic presented in Crainic et al. [10].

Following an initial sorting of the items by nonincreasing order of their volumes, the BFD constructive heuristic for 1D Bin Packing problem tries to load each item into the best bin. The latter is defined as the bin which, after loading the item, has the maximum free volume, defined as the container volume minus the sum of the volumes of the items it contains. A new container is created whether the item cannot be accommodated into the existing bins. Despite its simplicity, the BFD heuristic offers good performances for 1D Bin Packing problems. Similar heuristics exist for other packing problems, e.g., Knapsack and Strip Packing. Unfortunately, extending these heuristics to a general constructive heuristics for Non-Guillotine Orthogonal Higher-Dimensional Packing problems is a non-trivial task. On the one hand, while in 1D cases the ordering is done considering a unique attribute characterizing both items and bins, i.e., their volume or profit, more choices exist in the multi-dimensional context. One may thus consider sorting items according to their width, height, or depth, as well as, derived from these attributes, according to their volume or the areas of their different faces. Consequently, the definition of the best bin in the BFD
heuristic is not unique. On the other hand, while the item accommodation does not need to be considered in 1 D problems, a 2 D or 3D packing may vary significantly according to how items are placed inside the bin, even when the ordering of the items and the rule selecting the best bin are not changed. Moreover, according to the packing problem, the number of available bins may be unlimited or fixed and all the items or just a subset must be loaded.

We propose a new constructive heuristics based on BFD ideas, denoted Extreme-Point Best Positioning Heuristic (EP-BPH), which places the items into containers by using the Extreme Points concept of Crainic et al. [10]. As indicated earlier, the Extreme Points define the points where one may place an item that one wants to add to an existing packing.

The main steps of the algorithm are as follows:

- Order the items according to a sorting criterion;
- For each item in the resulting sequence, find the best $E P$ of the best available bin where to load the item;
- If such a bin exists, load the item into it on the given $E P$;
- If the item cannot be loaded in any existing bin, a new bin is created if the total number of bins does not exceed the given maximum, otherwise the item is discarded.
Changing the maximum number of available bins adapts EP-BPH to different packing problems. For example, the number of bins is infinite for the Bin Packing problem, but it is equal to 1 for the 3BKP problem. The behavior of EP-BPH depends on how the best $E P$ is selected and how the items are sorted. Computational experiments have shown that, from the $E P$ selection point of view, the best trade off between solution quality and computational results is given by the Residual Space rule (see Crainic et al. [10]).

The Residual Space ($R S$) measures the free space available around an $E P$. Roughly speaking, the $R S$ of an $E P$ is the distance, along each axis, from the bin edge or the nearest item. The nearest item can be different on each axis. More precisely, when an $E P$ is created, its Residual Space on each axis is set equal to the distance from its position to the side of the bin along that axis (Figure 8a). The algorithm puts an item on the $E P$ that minimizes the difference between its $R S$ and the item size:

$$
\begin{equation*}
f=\left[\left(R S_{e}^{x}-w_{j}\right)+\left(R S_{e}^{y}-d_{j}\right)+\left(R S_{e}^{z}-h_{j}\right)\right] \tag{22}
\end{equation*}
$$

where $R S_{e}^{x}, R S_{e}^{y}$, and $R S_{e}^{z}$ are the $R S$ of $E P e$ on X, Y, and Z axes, respectively. Every time an item is added to
the packing, the $R S \mathrm{~s}$ of all the $E P \mathrm{~s}$ are updated. Figure 8 b illustrates the concept. For "complex" packings, the $R S$ gives only an estimate of the effective volume available around the EPs and, thus, potential overlaps with other items have to be verified when accommodating a new item on the chosen $E P$. See Crainic et al. [10] for further details.

Fig. 8. Example of Residual Space

To build an initial solution, we apply EP-BPH using a number of sorting criteria. The resulting PCH heuristic builds an initial solution by iteratively applying the sorting criteria and selecting the best.

Items may have several attributes, but from the sorting algorithm perspective, the most important ones are:

1) profit: the worth or priority of an item;
2) specific weight;
3) area: for three-dimensional problems it must be meant as the item projection on the (X, Y) plane (see Figure 9).

Fig. 9. Definition of the area of an item

Since items show more than one attribute, many ways to sort them are possible. Giving more importance to an attribute means to favor those items showing the highest values of that attribute or score. Often sorting procedure involves more than an attribute or more than a score. Sometimes items are sorted after they have been grouped into clusters. A cluster is a set of items showing "close" values of a particular attribute or score. By "close" we
mean that the values are inside a given set. Suppose, for instance, to sort the items by clustered area (see Figure 9), let $A_{\min }, A_{\max }$ be the extreme values of the area interval that we want to cluster. Each cluster will have a length which is the length of the global interval $A_{\max }-A_{\min }$ times a given percentage $\theta / 100$, with $\theta \in[1,100]$. The number of clusters n_{c} is the ration of the overall interval length over the length of a single cluster. This ratio is $n_{c}=\lceil 100 / \theta\rceil$. Each cluster $A_{i}(\theta)$ can then be expressed as:

$$
\begin{gather*}
A_{i}(\theta)=\left[A_{\min }+(i-1)\left(A_{\max }-A_{\min }\right) \theta / 100\right. \\
\left.A_{\min }+i\left(A_{\max }-A_{\min }\right) \theta / 100\right] \tag{23}
\end{gather*}
$$

with $i=1, \ldots, n_{c}$. Note that, if we want to cluster the overall container (basis) area, then $A_{\min }=0$ and $A_{\max }=W \times D$ and (23) becomes:

$$
\begin{equation*}
A_{i}(\theta)=[(i-1) W D \theta / 100, \quad i W D \theta / 100] \tag{24}
\end{equation*}
$$

with $i=1, \ldots, n_{c}$. By combining the three items attributes, six different sortings can be performed:

1) $a-s w$: clustered area, sorted specific weight;
2) $a-p$: clustered area, sorted profit;
3) $s w-a$: clustered specific weight, sorted area;
4) $s w-p$: clustered specific weight, sorted profit;
5) $p-s w$: clustered profit, sorted specific weight;
6) $p-a$: clustered profit, sorted area.

When a solution has been calculated, its corresponding objective function value is given by the following merit function:

$$
\begin{equation*}
F=P-\alpha U \tag{25}
\end{equation*}
$$

Note that (25) is a Lagrangean relaxation of the sum of the selected items profits. This means that, according to α, attention is also devoted to the balancing constraints, even before the center of mass optimization procedure. For values of α see Section IV-C.

B. Center of mass optimization

Given a three-dimensional convex domain inside the container, the balancing procedure tries to adjust packed items positions so that the global center of mass lies inside the domain. The heuristic just moves already packed items, therefore no items are added or removed by the container, nor the overall profit is modified by the procedure. The center of mass optimization heuristic works as follows: it first calculates the position $\vec{x}_{C M}$ of packed items center of mass as reported in equations (2) and (3), then it moves one item after another so that $\vec{x}_{C M}$
moves towards the desired position. Two issues arise: where to move an item and how to avoid it overlapping other items and the edges of the bin.

The first problem may be tackled starting from equations (2) and (3). Assuming k is the number of accommodated items, $M=\sum_{j=1}^{k} m_{j}$ is the overall mass of the items, and we want to move item i from its actual position $\vec{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ to an unknown new position $\vec{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}\right)$ so that the overall center of mass moves from the actual position $\vec{x}_{C M}$ to the new desired position $\vec{x}_{C M}^{\prime}$ in order to meet balancing conditions. By (3) the actual center of mass can be written as:

$$
\begin{equation*}
\vec{x}_{C M}=\sum_{j \neq i} m_{j} \vec{x}_{C M_{i}} / M+m_{i} \vec{x}_{C M_{i}} / M \tag{26}
\end{equation*}
$$

When item i moves from \vec{x}_{i} to \vec{x}_{i}^{\prime} then its new center of mass becomes $\vec{x}_{C M_{i}}^{\prime}$, while the overall center of mass is:

$$
\begin{equation*}
\vec{x}_{C M}^{\prime}=\sum_{j \neq i} m_{j} \vec{x}_{C M_{i}} / M+m_{i} \vec{x}_{C M_{i}}^{\prime} / M . \tag{27}
\end{equation*}
$$

Subtracting (26) from (27) we have:

$$
\begin{equation*}
\vec{x}_{C M}^{\prime}-\vec{x}_{C M}=m_{i}\left(\vec{x}_{C M_{i}}^{\prime} / M-m_{i} \vec{x}_{C M_{i}}\right) / M, \tag{28}
\end{equation*}
$$

which lead to the new coordinates of item i center of mass:

$$
\begin{equation*}
\vec{x}_{C M_{i}}^{\prime}=\vec{x}_{C M_{i}}+\left(\vec{x}_{C M}^{\prime}-\vec{x}_{C M}\right) M / m_{i} . \tag{29}
\end{equation*}
$$

Finally, the new coordinates of item i can be found by inverting equation (2); in particular:

$$
\begin{equation*}
\vec{x}_{i}^{\prime}=\left(x_{C M_{i}}^{\prime}-w_{i} / 2, y_{C M_{i}}^{\prime}-d_{i} / 2, z_{C M_{i}}^{\prime}-h_{i} / 2\right) \tag{30}
\end{equation*}
$$

(a)

(b)

Fig. 10. Example of Permitted Movements of an Item in 2D
Unfortunately, due to overlapping issues, it is not always possible to move item i to \vec{x}_{i}^{\prime}. Here comes the second problem: the definition of a three-dimensional convex connected domain where item i can freely move
without having to overlap other items nor the bin. Actually, we define such a domain D_{i} as the set of allowed positions for the the origin of item i. To do so, an algorithm similar to the one used to calculate the $R S$ of an $E P$ is used. Once D_{i} has been defined, three possible scenarios may take place:

- $D_{i}=\{\varnothing\}:$ item i cannot move;
- $\vec{x}_{i}^{\prime} \in D_{i}$: item i moves to \vec{x}_{i}^{\prime} thus letting the balancing to be achieved (see Figure 10a for a twodimensional example);
- $\vec{x}_{i}^{\prime} \notin D_{i}$ and $D_{i} \neq\{\varnothing\}:$ item i moves to an intermediate position $\vec{x}_{i}^{\prime \prime}$ defined as the point which better approximates \vec{x}_{i}^{\prime} on each axis (see Figure 10b for a two-dimensional example).
Items movements may lead to a state that does not take gravity effects into account. That would result in faulty solutions for many real-life applications, so the algorithm simulates the force of gravity by compacting all items along the Z axis towards the (X, Y) plan.

The heuristic stops when the packing is balanced, when no items can move, or after a given number of iterations.

C. Unipack specialization

In this Subsection we show how to adapt UniPack parameters and scores in order to deal with the 3BKP.

1) Score Initialization: The idea is to use the score as a measure of the willingness to accommodate an item in the knapsack. Consequently, we start from the initial solution decisions, and prioritize the items selected by the accommodation procedure by assigning them a higher score than to the non loaded ones. Two criteria are used to define such initial scores. First, the score should reflect the profit associated to each item. Second, the gap between a loaded and a non loaded item should be small enough to guarantee the possibility of changes in the ordered list. The initial score of an item is then set to $s_{i}=k p_{i}$ if the item has been loaded in the initial solution, and to $s_{i}=p_{i}$ otherwise. The value of k has been experimentally set to 3 .
2) Score Update: Previous experience has shown that the various sorting criteria used by the procedure building the initial solution load into the knapsack a significant subset of the items making up the optimal solution. "Mistakes" usually are caused when selecting among items with similar profits, but with peculiar sizes, resulting in an underutilization of the knapsack. The knowledge given by the sorting criteria and the profits being already taken into account by the Score Initialization procedure, the update of the scores thus focuses on a special subset of items: the less profitable
items already loaded and the most profitable non loaded ones. The goal is to force at each iteration swaps between less profitable loaded and profitable non loaded items by changing the scores as follows:

- Find the item k loaded during the last iteration, minimizing $\mu_{i}=\left(1+f_{i}^{l}\right) p_{i} /\left(w_{i} d_{i}\right)$, where f_{i}^{l} represents the number of iterations item i has been loaded into the container;
- Update the score of item k to $s_{k}=(1-\alpha) s_{k}$;
- Find the item l non loaded during the last iteration, maximizing $\mu_{i}=p_{i} /\left(w_{i} d_{i}\left(1+f_{i}^{u}\right)\right)$, where f_{i}^{u} represents the number of iterations item i has not been loaded into the container;
- Update the score of item l to $s_{l}=(1+\beta) s_{l}$;
- Swap the scores of items k and l;
- Keep the score unchanged for all items $i, i \neq k$ and $i \neq l$;
where, μ_{i} measures the willingness to accommodate an item into the knapsack, f_{i}^{l} and f_{i}^{u} maintain a long-term memory of the selected items to avoid always selecting from the same subset of items, and α and β represent the percentage score decrease and increase, respectively, and are experimentally set to 0.1 . This procedure ensures that at least two items are swapped at each iteration.

3) Long-term Score Reinitialization: Given the sorted list of items which built the best solution found so far, we first give a score to each item according to the same rule used in Score Initialization. A fixed number of item pairs are then randomly selected and their scores are swapped.
4) Initialization of Parameters and Stopping Criteria:

- $\alpha=\beta=0.1$;
- Long-term Score Reinitialization every 1000 iterations;
- number of item-pairs: 5% of the items.
- α. If the best solution is unfeasible, $\alpha=2 \times \alpha$. If the best solution is feasible, $\alpha=\alpha / 2$ remains unchanged if the center of mass lies in the central half of its feasibility domain, while is unchanged otherwise.
The overall process stops after 5 seconds.

V. Computational results

In this section, we analyze the behaviour of the model and the heuristics in term of solution quality and computational efficiency. While the standard 3 KP is known in the literature, the 3BKP is introduced in this paper for the first time. Thus, in Subsection V-A we define some benchmark instances. The first two sets, namely Set1 and Set2, are obtained by extending the instances for 3 KP literature, while the third one, Set3, extends the
rules used in the previous sets in order to diversify the instances. All the tests have been performed on a Intel I7 2.8 GhZ Workstation with 4 Gb of Ram. The model has been solved by means of Gurobi 4.0 solver limited to 1 core [20]. Subsection V-B is devoted to compare the computational results of the MIP model and the heuristic, while subsection V-C shows the behaviour of the developed model and heuristic compared with state-of-the-art algorithms. Being 3BKP firstly introduced in this paper, we compare the model and the heuristic with the results of heuristics developed specifically for the problem which is more similar to 3BKP, the ThreeDimensional Knapsack Problem.

A. Test Instances

In this section we introduce different instance sets for 3 BKP . Following the test for the 3 KP , the instances cover up to items and different types of item, knapsack and weight distributions. The sets, namely Set1 and Set2, are obtained by extending the instances by Egeblad and Pisinger [13]. All instance sets can be downloaded from the web site of OR-Library [4]. In the following we give a detailed description of the different set parameters. In these two sets of instances, the size of the knapsack, as well as the sizes of the items are the same that the ones in [13], while weights are added as additional items' attribute. Thus, the two sets differ for the weight generation, i.e., the weights in Set1 are generated in a smaller interval than in Set2. In order to give a better of the instances, in the following we report the full list of the parameters used to generate the instances.

- number of items: $n \in\{20,40,60\}$;
- items' generation strategy: $t \in\{C, R\}$, where:
- C alias clustered, because instance consists of only 20 items which are duplicated appropriately;
- R alias random, because instance consists of independently generated items;
- bin size: $p \in\{50,90\}$, expressed in percentage of the total volume of the items.
- the items' attributes; assuming $i=1, \ldots, n$ is the $i^{\text {th }}$ item, then i is identified by:
- size: $s_{i}=\left(w_{i}, d_{i}, h_{i}\right)$, which must belong to one among the following geometric classes:
* Cubes (C). The items are cubic and their sizes are defined as $w_{i} \in[1,100], d_{i}=$ $w_{i}, h_{i}=w_{i} ;$
* Diverse (D). The sizes of the items are randomly chosen in the following ranges $w_{i} \in[1,50], d_{i} \in[1,50], h_{i} \in[1,50]$;
* Long (L). The sizes of the items are randomly chosen in the following ranges $w_{i} \in$ $[1,200 / 3], d_{i} \in[50,100], h_{i} \in[1,200 / 3] ;$
* Uniform (U). The sizes of the items are randomly chosen in the following ranges $w_{i} \in$ $[50,100], d_{i} \in[50,100], h_{i} \in[50,100]$.
- profit: $p_{i}=200+w_{i} d_{i} h_{i}$;
- Center of mass position: the center of mass of each item is placed int he geometrical center of the item itself, i.e. $C M_{i}=\left\{w_{i} / 2, d_{i} / 2, h_{i} / 2\right\}$
- specific weight: $s w_{i}$, uniformly distributed on the interval $I_{s w}$, where the limits of the interval depend on the set:
* Set1: $I_{s w}=[70,100]$;
* Set2: $I_{s w}=[10,1000]$;
- CoM domain: the domain constraints are fixed as $L^{\delta}=\{W / 4, D / 4,0\}$ and $U^{\delta}=$ $\{3 W / 4,3 D / 4, H / 2\}$. These limits are given by practical issues in maritime and air cargo applications. In particular, for the limits on Z , for stability reasons the requirement is usually to be as near a s possible to 0 , i.e., the bottom of the container [23].
The combination of all the values give 120 instances, 60 for each set.

B. Model and Heuristic results

C. State-of-the-Art results

As stated in Section III, 3BKP is introduced in this paper for the first time. Thus, no other method than our model and heuristic is present in the literature. Moreover, computing specific upper bounds for 3 BKP is quite difficult. In fact, upper bounds obtained by model 3BKPM are quite poor and have mainly the same quality a trivial bound obtained by computing the optimal solution of the mono-dimensional Knapsack Problem where the size of the knapsack is the volume of the 3 D one and the size of the items is the volume of the 3 D items, in the following referred as 1DB, [14], [13]. Moreover, additional upper bounds that can be obtained by means of conservative scales in the 3D packing without rotation are not valid for the problems where the rotations are allowed [13]. On the other hand, 3BKP is an extension of the standard 3 KP and thus the solutions obtained by 3BKP-M and 3BKP-U as valid for 3KP. Thus, in Table I we compare $3 \mathrm{BKP}-\mathrm{M}$ and $3 \mathrm{BKP}-\mathrm{U}$ with the results obtained by $H_{E P}$, heuristic by Egeblad and Pisinger on their instances for 3 KP . The computational times have been fixed to 120 seconds for $H_{E P}, 200$ seconds for $3 \mathrm{BKP}-\mathrm{M}$ and 5 seconds for 3BKP-U. 3BKP-M is
solved by means of Gurobi 4.0 [20], while $3 \mathrm{BKP}-\mathrm{U}$ is implemented in $\mathrm{C}++$. For $H_{E P}$ the results have been given by Egeblad and Pisinger.

The meaning of the columns is the following:

- Columns 1-4. The columns give the instance name defined in [13], the number of items, the item size geometry and the item generation type.
- Column 5. The objective function of the upper bound $1 D$.
- Columns 6-9. The objective function of the best solution found by $H_{E P}$, the Model 3BKP-M, our heuristic 3BKP-U with and without the balancing constraints activated.
- Columns 10-14. The percentage gap between the upper bound upper bound $1 D$ and objective function of the best solution found by $H_{E P}$, the Model 3BKP-M, our heuristic 3BKP-U with and without the balancing constraints activated. In the case of 3BKP-U with balancing constraints, we consider the weights of Set1.
The computational times are not reported, being fixed for each method to 120 seconds for $H_{E P}, 200$ seconds for 3BKP-M and 5 seconds for 3BKP-U. From the results we can notice how the model is not competitive, with a gap almost doubled than $H_{E P}$. However, the model is much more flexible than the heuristics, making possible to easily introduce additional constraints like fixed positions for the items, forbidden rotations and precedence constraints in items loading. Moreover, giving to the model a time limit equal to 1000 seconds, the gap can be reduced, even if it is still about 10% more than $H_{E P}$. If we compare $H_{E P}$ with $3 \mathrm{BKP}-\mathrm{U}$ with the balancing constraints activated, we can notice how the results of 3BKPU are about 3% worst than $H_{E P}$. However, this gap is given by the balancing constraints. In fact, if we remove the balancing constraints we obtain a mean gap of 16%, which is about 2% less than Egeblad and Pisinger results. These results are more impressive if we consider that $3 \mathrm{BKP}-\mathrm{U}$ require a computational time which is about 2 order of magnitude less than $H_{E P}$. We also tried to increase the computational time of $3 \mathrm{BKP}-\mathrm{U}$ in order to obtain better results, but the computational experience show that the increase of efficacy is negligible.

VI. CONClUSIONS

In this paper, we introduced the Three-Dimensional Knapsack Problem with Balancing Constraints Problem, the extension of the standard Three-Dimensional Knapsack Problem Problem (3KP) where additional constraints related to the Center of Mass of the threedimensional packing are given. A MIP formulation of

| Instance | \mathbf{n} | IT Geom | IT $\mathbf{G e n}$ | $\mathbf{1 D}$ | \mathbf{H} | EP | Model | 3BKP-U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 3BKP-U

$\mathbf{H}_{E P}$	Model	3BKP-U	3BKP-U
		UNB	
7.0	7.0	7.0	7.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	1.9	0.0
24.3	0.0	0.2	0.2
34.9	22.1	26.7	26.7
18.6	14.4	11.0	11.0
23.0	11.0	19.1	19.1
20.7	20.7	20.7	20.7
30.5	41.7	27.6	27.6
30.5	24.6	20.1	20.1
28.8	42.6	21.2	21.2
21.6	11.6	16.3	16.3
16.1	18.4	14.5	14.5
20.7	11.8	12.8	12.8
17.9	12.9	17.5	17.5
31.3	37.8	30.4	30.4
33.5	46.7	24.6	24.6
20.5	39.3	30.0	20.5
13.9	48.3	17.4	13.9
38.7	38.7	38.7	38.7
21.8	35.4	24.8	21.8
26.8	39.0	26.7	26.7
4.1	43.8	21.3	4.1
31.6	26.3	19.9	19.9
20.9	27.5	21.0	20.9
12.6	37.9	12.7	12.6
12.1	29.8	15.9	12.1
25.5	46.1	32.0	25.5
25.7	53.4	33.5	25.7
23.0	41.9	19.3	19.3
10.5	56.6	22.1	10.5
21.3	33.7	17.2	17.2
22.9	46.2	20.6	20.6
9.8	40.2	12.1	9.8
16.3	46.6	16.6	16.3
22.0	52.0	18.2	18.2
13.4	65.6	33.4	13.4
10.4	49.0	13.0	10.4
15.8	60.0	28.4	15.8
50.9	55.2	50.9	50.9
18.9	53.0	29.5	18.9
12.3	55.1	31.7	12.3
12.5	63.9	25.2	12.5
11.9	33.3	20.5	11.9
14.0	32.8	30.6	14.0
10.0	39.8	6.7	6.7
10.9	55.1	12.2	10.9
13.0	48.6	22.6	13.0
19.4	71.2	35.7	19.4
11.7	52.9	19.1	9.3
27.5	66.2	27.8	11.7
15.8	46.8	17.3	17.3
14.6	51.7	22.9	15.8
10.0	51.6	9.8	9.8
10.9	59.4	17.1	10.0
	84.1	20.2	39.7
		17.7	18.9 .7
10.0	35.1	11.8	

TABLE I
3KP: RESULTS OF 3BKP-M AND 3BKP-U without balancing constraints compared to $H_{E P}$.
the problem as well as an efficient and accurate heuristic method are presented. Extensive computational results showed how the MIP model is able to find better bounds than other relaxations and the heuristic method is able to efficiently solve both instances explicitly designed for 3 BKP , as well as to be competitive with methods explicitly designed for solving 3 KP . Presently, we are extending the test instances in order to give a better insight of the relationship between solution quality and balancing constraints tightness.

ACKNOWLEDGMENTS

We express our gratitude to Prof. David Pisinger, who graciously provided us with sets of test instances, as well as their detailed results. Moreover, the authors are grateful to Roberto Marcellino for his contribution to a previous version of the paper. This project has been partially supported by the Ministero dell'Istruzione, Università e Ricerca (MIUR) (Italian Ministry of University and Research), under the Progetto di Ricerca di Interesse Nazionale (PRIN) 2007 'Optimization of Distribution Logistics", and the Natural Sciences and Engineering Council of Canada (NSERC), through its Industrial Research Chair and Discovery Grants programs, and by the partners of the Chair, CN, Rona, Alimentation CoucheTard and the Ministry of Transportation of Québec.

References

[1] R. Baldacci and M. A. Boschetti, "A cutting plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, vol. doi: 10.1016/j.ejor.2005.11.060, 2007.
[2] J. E. Beasley, "Algorithms for two-dimensional unconstrained guillotine cutting," Journal of the Operational Research Society, vol. 36, p. 297306, 1985.
[3] -_, "An exact two-dimensional non-guillotine cutting stock tree search procedure," Operations Research, vol. 33, pp. 4964, 1985.
[4] - , "Or-library: distributing test problems by electronic mail," Journal of the Operational Research Society, vol. 41, pp. 1069-1072, 1990. [Online]. Available: http://people.brunel.ac.uk/ mastjjb/jeb/info.html
[5] J. O. Berkey and P. Y. Wang, "Two dimensional finite bin packing algorithms," Journal of the Operational Research Society, vol. 38, pp. 423-429, 1987.
[6] E. E. Bischoff and M. S. W. Ratcliff, "Issues in the development of approaches to container loading," Omega, vol. 23, pp. 377390, 1995.
[7] M. A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi, "New upper bounds for the two-dimensional orthogonal cutting stock problem," IMA Journal of Management Mathematics, vol. 13, p. 95119, 2002.
[8] F. K. R. Chung, M. R. Garey, and D. S. Johnson, "On packing two-dimensional bins," SIAM - Journal of Algebraic and Discrete Methods, vol. 3, pp. 66-76, 1982.
[9] L. Colaneri, F. D. Croce, G. Perboli, and R. Tadei, A Heuristic Procedure for the Automated Cargo Vehicle Loading Problem: A Case Study. Kluwer, 2003, pp. 27-42.
[10] T. G. Crainic, G. Perboli, and R. Tadei, "Extreme pointbased heuristics for three-dimensional bin packing," INFORMS Journal on Computing, vol. 20, pp. 368-384, 2008.
[11] E. den Boef, J. Korst, S. Martello, D. Pisinger, and D. Vigo, "Erratum to "the three-dimensional bin packing problem": Robot-packable and orthogonal variants of packing problems," Operations Research, vol. 53, no. 4, pp. 735-736, 2005.
[12] H. Dyckhoff, "A typology of cutting and packing problems," European Journal of Operational Research, vol. 44, pp. 145159, 1990.
[13] J. Egeblad and D. Pisinger, "Heuristic approaches for the twoand three-dimensional knapsack packing problem," Computers \& Operations Research, vol. 36, pp. 1026-1049, 2009.
[14] G. Fasano, "A mip approach for some practical packing problems: Balancing constraints and tetris-like items," $4 O R$: A Quarterly Journal of Operations Research, vol. 2, no. 2, pp. 161-174, 2004.
[15] S. P. Fekete and J. Schepers, "A new exact algorithm for general orthogonal d-dimensional knapsack problems," ESA '97, Springer Lecture Notes in Computer Science, vol. 1284, pp. 144-156, 1997.
[16] -_, "On more-dimensional packing iii: exact algorithms," Discrete Applied Mathematics, 1997, submitted for publication.
[17] -_, "New classes of lower bounds for bin packing problems," Math. Programming, vol. 91, no. 1, pp. 11-31, 2001.
[18] J. A. George and D. F. Robinson, "A heuristic for packing boxes into a container," Computers \& Operations Research, vol. 7, pp. 147-156, 1980.
[19] P. C. Gilmore and R. E. Gomory, "European journal of operational research," Operations Research, vol. 13, pp. 94-119, 1965.
[20] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual Version 4.0. Houston: Gurobi Optimization, 2011.
[21] E. Hadjiconstantinou and N. Christofides, "An exact algorithm for general and orthogonal and two-dimensional knapsack problems," European Journal of Operational Research, vol. 83, pp. 39-56, 1995.
[22] L. Junqueira, R. Morabito, and D. S. Yamashita, "Threedimensional container loading models with cargo stability and load bearing constraints," Computers \& Operations Research, 2010.
[23] B. L. Kaluzny and R. H. A. D. Shaw, "Optimal aircraft load balancing," International Transactions in Operational Research, vol. 16, pp. 767-787, 2009.
[24] S. Martello, D. Pisinger, and D. Vigo, "The three-dimensional bin packing problem," Operations Research, vol. 48, no. 2, pp. 256-267, 2000.
[25] S. Martello, D. Pisinger, D. Vigo, E. den Boef, and J. Korst, "Algorithms for general and robot-packable variants of the three-dimensional bin packing problem," ACM Transactions on Mathematical Software, vol. 33, pp. 7-19, 2007.
[26] M. Mongeau and C. Bés, "Optimization of aircraft container loading," IEEE Transactions on Aerospace and Electronic Systems, vol. 39, pp. 140-150, 2003.
[27] G. Perboli, "Bounds and heuristics for the packing problems," Ph.D. dissertation, Politecnico di Torino, Torino, Italy, available at http://www.orgroup.polito.it/People/perboli/phdthesys.pdf, 2002.
[28] R. T. T. G. Crainic, G. Perboli, "Unipack: a new heuristic framework for multi-dimensional packing problems," in Proceedings of MIC 2007 The Seventh Metaheuristics International Conference, MIC 2007, 2007.
[29] G. Wäscher, H. Hau β ner, and H. Schumann, "An improved typology of cutting and packing problems," European Journal of Operational Research, vol. 183, pp. 1109-1130, 2007.
[30] H. P. Williams, Model Building in Mathematical Programming. John Wiley \& Sons, London, 1993.

