POLITECNICO DI TORINO Repository ISTITUZIONALE The three dimensional knapsack problem with balancing constraints / Baldi, MAURO MARIA; Perboli, Guido; Tadei, The three dimensional knapsack problem with balancing constraints | Roberto ELETTRONICO (2011), pp. 131-135. (Intervento presentato al convegno OR Peripatetic Post-Graduate Programme (ORP3) 2011 tenutosi a Cádiz (Spain) nel September 13-17, 2011). | |---| | Availability: This version is available at: 11583/2464177 since: | | Publisher: Servicio de publicaciones de la Universidad de Cádiz | | Published DOI: | | Terms of use: | | This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository | | | | Publisher copyright | | | | | | | (Article begins on next page) 20 May 2024 Original # The Three-Dimensional Knapsack Problem with Balancing Constraints Mauro Maria Baldi*[†], Guido Perboli^{†‡}, and Roberto Tadei[†] *Department of Control and Computer Engineering Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy) Email: mauro.baldi, guido.perboli, roberto.tadei@polito.it [‡]CIRRELT, Montreal, Canada [†]Corresponding author Abstract—In this paper we introduce a new packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints (3BKP), the extension of the standard Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the center of mass of the three-dimensional packing are given. Given a set of box items i = 1, ..., n with sizes w_i , d_i and k_i , a profit p_i , and a mass m_i and a container called knapsack of fixed dimensions W, D and H, 3BKP consists in orthogonally packing a subset of the items into the knapsack in order to maximize the sum of the profits of the loaded items. The items must be accommodated into the knapsack such that they do not overlap. Moreover, the center of mass of the overall packing must lie into a predefined boxed domain within the knapsack. We assume that items can be rotated. We give a MIP formulation of the problem, used to derive bounds, as well as an efficient heuristic method able to solve, with a limited computational effort, the test instances. Moreover, new test instances are introduced and used to derive extensive computational results. The results show how the MIP model is able to find better bounds than other relaxations, and how the heuristic method is able to efficiently solve both instances explicitly designed for 3BKP, as well as to be competitive with methods explicitly designed to solve 3KP. *Keywords*—3D Knapsack, load balancing, Heuristics, MIP Models #### I. Introduction A major challenge in the loading problem is taking into account load balancing constraints. These kind of constraints arise in many practical applications as aircraft loading (Kaluzny and Shaw [23]), space cargo loading (Colaneri et al. [9], and Perboli Perboli2002) and maritime transportation (Bischoff and Ratcliff [6]). The issue is critical in some applications, as in the space cargo loading, while it is relevant from the safety and the economic points of view in air and maritime cargo applications. For example minor displacements from an ideal center of mass can result in increased fuel consumption for aircrafts and ships (Mongeau and Bés [26]). Despite its importance, the issue of the loading balancing has not deeply studied. This is mainly due to the difficulty of extending formulations, exact and heuristic methods for multidimensional packing to the balanced case. In fact, the majority of these methods use geometric properties in order to reduce the computational effort which cannot be extended to the balancing constraints case. The aim of this paper is twofold. First, we introduce a new packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints, an extension of the standard Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the center of mass of the three-dimensional packing are given. Given a set of box items i = 1, ..., n with sizes w_i , d_i and k_i , a profit p_i , and a mass m_i and a container called knapsack of fixed dimensions W, D, and H, the Three-Dimensional Knapsack Problem with Balancing Constraints (3BKP) consists in orthogonally packing a subset of the items into the knapsack in order to maximize the sum of the profits of the loaded items. The items must be accommodated into the knapsack such that they do not overlap. Moreover, the center of mass of the overall packing must lie into a predefined boxed domain within the knapsack. We assume that items can be rotated. Second, we give a MIP formulation of the problem, used to derive bounds. Finally, we introduce 3BKP-U, a heuristic method generalizing the UniPack heuristic for multi-dimensional packing (Crainic et al. [28]) and the extreme point rule (Crainic et al. [10]) for the accommodation of the items in order to deal with the center of mass constraints. New tests instances are introduced and used to derive extensive computational results. The results show how the MIP model is able to find better bounds than other relaxations, as well as the heuristic method is able to efficiently solve both 1 instances explicitly designed for 3BKP, as well as to be competitive with methods explicitly designed for solving 3KP. In more details, the paper is organized as follows. In Section II we formally introduce the problem. After showing conventions and rules involved in 3BKP (most of them are common to other packing problems), in II-A we give a formulation for the model. In section III a state of the art is given; first for multidimensional packing problems, second for multidimensional knapsack problems and, finally, for problems dealing with balancing constraints. Section IV introduces UniPack and its history. It is based on the concept of Extreme Points, which are discussed in detail. UniPack specialization leads to 3BKP-U, the heuristic employed to solve 3BKP. In section V results of our work are shown and we conclude in section VI. #### II. PROBLEM DESCRIPTION The 3BKP is defined as follows: given a container C with dimensions W, D, and H, volume $V = W \times D \times H$, and a set of items $J = \{1,...,n\}$ with profit p_i , dimensions w_i , d_i , and h_i , and specific weight sw_i , we want to assign a subset of items $J' \subseteq J$ to the container C such that J' is a feasible loading for the container itself, and the total profit of the loaded items is maximum. Feasibility requires that loaded items do not overlap and limits the position of the overall center of mass inside a given three-dimensional domain. Figure 1 shows an example of a three-dimensional domain with its projections on the (X, Y), (X, Z), and (Y, Z) plans. Following the classification of Wäscher et al. [29], 3BKP is a Three-Dimensional Single Large Object Placement Problem (3D-SLOPP) with balancing constraints (3DB-SLOPP). Fig. 1. A three dimensional domain Furthermore the following assumptions are made: the items and the container have parallelepiped shape; - the origin of the container and the origin of each item is located at their own left-back-down corners (see Figure 2); - the container is located in the positive quadrant of the Cartesian coordinate system, with its origin placed in position (0, 0, 0) (see Figure 2); - items can rotate so that each item side is parallel to one axis; - container and items walls have negligible thickness; - container and items dimensions are assumed to be non-negative integers; - the mass of each item is uniformly distributed over its volume. Let $|J'| = k \le n$ be the number of accommodated items; then the value of the overall profit P can be calculated as: $$P = \sum_{j=1}^{k} p_j. \tag{1}$$ Note that high or low values of P do not necessarily correspond to a high or a low exploitation of the bin because, in principle, there is no correlation between volumes and profits of items. Given a parallepiped item j, its position \vec{x}_j , and its mass m_j , then the position of its center of mass is: $$\vec{x}_{CM_i} = (x_j + w_j/2, y_j + d_j/2, z_j + h_j/2).$$ (2) The position of the overall center of mass is then: $$\vec{x}_{CM} = \frac{\sum_{j=1}^{k} \vec{x}_{CM_j} m_j}{\sum_{j=1}^{k} m_j}.$$ (3) Let the solution unbalancing index U be the dispersion index of packed items center of mass \vec{x}_{CM} with respect to a desired position \vec{x}'_{CM} . The standard deviation of a set of values x_j , with $j \in [1, k]$ and arithmetic average \bar{x} , is defined as follows: $$\sigma_x = \sqrt{\frac{\sum_{j=1}^k (x_j - \bar{x})^2}{k}}.$$ (4) Formula for the solution unbalancing index U is found by plugging in (4) centers of mass coordinates. Moreover, since positions are assumed to be vectors, the square power of the difference at the numerator must be applied to the modulus of the difference: $$U = \sqrt{\frac{\sum_{j=1}^{k} \left| \vec{x}_{CM_j} - \vec{x}'_{CM} \right|^2}{k}}.$$ (5) Fig. 2. Container and items placement #### A. The model Before showing the model, constants and variables need to be introduced. As mentioned above, J is the set of items and its cardinality is n. Associated indexes may be i or j. Δ is the set of dimensions. Its cardinality is 2 for two-dimensional problems and 3 for threedimensional ones. In the latter case $\Delta = \{1, 2, 3\}$. Its associated index is δ (Greek d delta stands for dimension). R is the set of rotations. Its cardinality is 4 for two-dimensional problems and 6 for threedimensional ones. These numbers represent the ways one can rotate items in a 2D or 3D domain. Index associated to set R is r (r stands for rotation). Due to reason of space in the representation of the model, we omit (but we do mean it) $i
\in J$, $j \in J$ and $\delta \in \Delta$ when subscripts appear within the constraints. $p_j,\ v_j$ and m_j are, respectively, the profit, the volume and the mass of item j. s_{ir}^{δ} is the dimension (s stands for size) of item i along direction δ when rotated with respect to index r (see Figure 3). S^{δ} is the bin size along direction δ ; in particular $(S^1, S^2, S^3) = (W, D, H)$. V is the bin volume (note that $V = \prod_{\delta \in \Delta} S^{\delta}$). L^{δ} and U^{δ} are the bounds along direction δ which limit the domain where the overall center of mass must lie within. γ_{ir}^{δ} is the position of item i center of mass along direction δ when it is rotated according to rotation r and when it is placed with its bottom-left point in the axis origin. For instance, according to Figure 3 if item i undergo a rotation with r = 3, then we have $(\gamma_{i3}^1, \gamma_{i3}^2, \gamma_{i3}^3) = (d_i/2, w_i/2, h_i/2)$. Greek g gamma stands for gravity because the center of mass is the point where gravity force acts on a body like if it were concentrated just on that point. UB is an upper bound on the overall profit. Its value may come from a pre-processing step or may be known a priori. Talking about variables, t_i is a binary variable which value is 1 if item j is loaded in the container, 0 otherwise (t stands for *taken*). χ_i^{δ} is the coordinate of the bottomleft point of item i along direction δ . For instance, if such a point is placed in position (x_i, y_i, z_i) , then we have $(\chi_i^1, \chi_i^2, \chi_i^3) = (x_i, y_i, z_i)$. b_{ij}^{δ} is a binary variable which value is 1 if item i comes before item j along direction δ , 0 otherwise. Finally ρ_{ir} is a binary variable which is 1 if item i is rotated according to rotation r, 0 otherwise. The model for the Three-Dimensional Knapsack Problem with Balancing Constraints can then be formulated as follows: $$\max \sum_{j \in J} p_j t_j \tag{6}$$ $$s.t. \quad \sum_{j \in J} v_j t_j \le V \tag{7}$$ $$\sum_{\delta \in \Delta} (b_{ij}^{\delta} + b_{ji}^{\delta}) \ge t_i + t_j - 1, \quad i < j$$ (8) $$\chi_i^{\delta} + \sum_{r \in R} s_i^{\delta} \rho_{ir} \le S^{\delta} \tag{9}$$ $$\chi_i^{\delta} + \sum_{r \in R} s_{ir}^{\delta} \rho_{ir} \le 1$$ $$\chi_{i}^{\delta} + M(1 - b_{ij}^{\delta}), \ i < j$$ (10) $$\chi_j^\delta + \sum_{r \,\in\, R} s_{jr}^\delta \rho_{ir} \leq$$ $$\chi_i^{\delta} + M(1 - b_{ii}^{\delta}), \ i < j \tag{11}$$ $$\chi_i^{\delta} \le Mt_i \tag{12}$$ $$b_{ij}^{\delta} \le t_i \tag{13}$$ $$b_{ij}^{\delta} \le t_j \tag{14}$$ $$\sum_{i \, \in \, J} m_i \chi_i^\delta + \sum_{i \, \in \, J} \sum_{r \, \in \, R} m_i \gamma_{ir}^\delta \rho_{ir} \geq$$ $$L^{\delta} \sum_{i \in I} m_i t_i \tag{15}$$ $$\sum_{i \in J} m_i \chi_i^{\delta} + \sum_{i \in J} \sum_{r \in R} m_i \gamma_{ir}^{\delta} \rho_{ir} \le$$ $$U^{\delta} \sum_{i \in J} m_i t_i \tag{16}$$ $$\sum_{j \in J} p_j t_j \le UB \tag{17}$$ $$t_i \in \{0, 1\} \tag{18}$$ $$b_{ij}^{\delta} \in \{0, 1\}$$ (19) $$\chi_i^{\delta} \ge 0 \tag{20}$$ $$\rho_{ir} \in \{0, 1\}.$$ (21) The objective function (6) is expressed as the sum of the profit of the items (including the selection variables t_j). Constraint (7) expresses capacity constraints, i.e. the sum of the volumes of the selected items must not exceed the volume of the container. Constraints (8) ensures that two packed items do not overlap. Constraints (9) state that items must lie within the container, i.e., for each direction δ , the sum of the coordinate of the bottom-left $$\begin{aligned} \left(s_{i1}^{1}, s_{i1}^{2}, s_{i1}^{3}\right) &= \left(w_{i}, d_{i}, h_{i}\right) \\ \left(s_{i2}^{1}, s_{i2}^{2}, s_{i2}^{3}\right) &= \left(w_{i}, h_{i}, d_{i}\right) \\ \left(s_{i3}^{1}, s_{i3}^{2}, s_{i3}^{3}\right) &= \left(d_{i}, w_{i}, h_{i}\right) \\ \left(s_{i4}^{1}, s_{i4}^{2}, s_{i4}^{3}\right) &= \left(d_{i}, h_{i}, w_{i}\right) \\ \left(s_{i5}^{1}, s_{i5}^{2}, s_{i5}^{3}\right) &= \left(h_{i}, w_{i}, d_{i}\right) \\ \left(s_{i6}^{1}, s_{i6}^{2}, s_{i6}^{3}\right) &= \left(h_{i}, d_{i}, w_{i}\right). \end{aligned}$$ Fig. 3. List of all the possible rotations of an item in 3D point with the dimension of the item must give a value less or equal than the size of the bin along dimension δ . Constraints (10) state that, if item i comes before item i, then the sum of the position of item i plus its size must be less or equal than the position value of item j along direction k. Constraints (11) have the same meaning, this time with item j coming before item i. Constraints (12) express that, if item i is not selected, then its placement coordinates must be zero. A similar meaning have constraints (13) and (14) that state that, if an item is not selected, then it cannot be placed before another one. Constraints (15) and (16) ensures balancing conditions and they can be derived from the center of mass definition (3). Constraint (17) is used if an upper bound UB on the overall profit is known. Finally follow the involved variables domains. #### III. STATE OF THE ART 3BKP can be classified as a problem beloning to the Cutting and Packing (C&P) family. Wäscher et al. [29] have recently published a classification for C&P problems which extendes an older one due to Dyckhoff [12]. The authors characterize a C&P problem with two sets of elements: a set of large objects (bins, containers, input, supply) and a set of small items (output, demand). Multidimensional packing literature is really widespread. As stated by Wäscher et al. [29], at the time of their publication, the number of publications in the area of C&P has increased considerably over the last two decades. This issue was also one of the motivations to create a new typology for C&P problems. A first attempt to model multidimensional packing was due to Gilmore and Gomory [19]. Their column generation approach has been reviseted by Baldacci and Boschetti [1]. Other contributions come from Beasley [3], Hadjiconstantinou and Christofides [21], Chung et al. [8], Berkey and Wang [5], George and Robinson [18], Fekete and Schepers [15], [17], and Perboli [27]. Martello et al. [24] introduced the concept of corner points. Extentions of their work can be found in den Boef et al. [11], and Martello et al. [25]. Crainic et al. [10] introduced the concept of extreme points, an extension of the corner points previously introduced by Martello et al. [24]. Extreme Points are the basis for UniPack, the heuristic introduced in this paper, able to efficiently solve several packing problems. In multidimensional knapsack problems the available bins reduce to one. Papers which tackle this problem are Beasley [2], Hadjiconstantinou and Christofides [21], Boschetti et al. [7], and Fekete and Schepers [15], [16], [17]. To the best of our knowledge the latest contribution comes from Egeblad and Pisinger [13], where the authors also propose an exact model. An exact MIP model for the 3BKP can be found in Fasano [14], where additional equations to meet the balancing conditions (i.e. the overall center of mass must lie within a given convex domain) are taken from Williams [30]. As stated in Fasano [14], the MIP model [...] is hard to solve using standard techniques and that justifies a heuristic way in the solution of 3BKP. Note that balancing conditions must not be meant as of stability ones. In Junqueira et al. [22] stability is defined as the capacity of the loaded boxes to withstand the gravity force acceleration (vertical stability) or the inertia of its own bodies (horizontal stability), whilst in 3BKP balancing conditions are requirements on the overall center of mass of the loaded items. The latter, in fact, must lie within a given convex domain or, when possible, at a certain position inside the container. #### IV. AN EFFICIENT HEURISTIC UniPack is based on the fundamental idea to separate the feasibility of a solution, i.e. the accommodation of the items, from its optimality, which is related to the specific packing problem. UniPack is a heuristic able to solve many packing problems having different objective functions and constraints. It has been created following the ideas of Crainic et al. [10] where Extreme Points (*EPs*) have been introduced. These are a further extension of the Corner Points introduced by Martello et al. [24]. Corner points are the nondominated locations where an item can be placed into an existing packing. In two dimensions, corner points are defined where the envelope of the items in the bin changes from vertical to horizontal (the large dots in Figure 4). Heuristics using Corner Points can be inefficient in terms of container utilization. Consider, for example, the packing depicted in Figure 4 and item 11. According to the definition of the Corner Points, one can add the item on any of the large black dots. It is clear, however, that item 11 could also be placed into one of the shaded regions, which the corner points do not allow us to exploit. Fig. 4. Corner points in 3D and 2D packings Extreme Points (*EP*s) introduced in Crainic et al. [10] provide the means to exploit the free space defined inside a packing by the shapes of the items already in the container. Figure 5 illustrates *EP*s in 3D and 2D packings. Fig. 5. Extreme Points in 3D and 2D packings The basic idea of the EPs is that when an item j with sizes (w_j, d_j, h_j) is added to a given packing and it is placed with its left-back-down corner in position (x_j, y_j, z_j) , it generates a series of new potential points, the EPs, where additional items can be accommodated. The new EPs are generated by projecting the points with coordinates (x_j+w_j, y_j, z_j) , (x_j, y_j+d_j, z_j) , and (x_j, y_j, z_j+h_j) on the orthogonal axes of the container. Figure 6 illustrates the concept. Fig. 6. Extreme Points defined by an items (the triangles Beside the saving of space in applying extreme
points rather than corner points, another advantage is the time complexity to find an extreme points set. As proved in Crainic et al. [10], the overall computational effort is $\mathcal{O}(n)$ - where n is the number of items- whilst corner points require a $\mathcal{O}(n^2)$ complexity. As stated before, UniPack exploits the concept of Extreme Points. Its general scheme is depicted in Figure 7. Fig. 7. General scheme of UniPack The core of UniPack is an accommodation procedure, the *EP*-based constructive heuristic, EP-BPH. When applied to the initial solution, the name of the heuristic becomes PCH because items undergo several sortings which lead to different initial solutions and only the best one is selected. We assign a score to each item, thus specifying the order in which items are to be considered by the accommodation heuristics. The score definition is problem specific. Scores are thus first initialized through the *Score Initialization* procedure, and then are dynamically modified by means of the *Score Update* and *Long-term Score Reinitialization* procedures. *Score Update* proceeds through small changes, aiming to adjust the scores used to sort the items at iteration k of UniPack according to the quality of the solution built at iteration k-1. *Long-term Score Reinitialization* incorporates long-term decisions, as long-term memory structures, and proceeds through larger score modifications in the scores in order to avoid cycling on the same solutions and explore new regions of the solution space. Score computation and updates depend upon a number of parameters. We aim to keep this number as low as possible to simplify their adjustment during computation. Indeed, no such adjustment is required for 2D Knapsack and Strip-Packing problems. For the other ones, Uni-Pack provides a problem-specific, dynamically-adjusting parameter procedure denoted *Parameter Update* (see IV-C). The main steps on UniPack are the following (refer to Figure 7 for a schema of the method): Build an initial solution of the packing problem and set the best-solution BS equal to the initial solution; We use the PCH heuristic; - · Scoring Phase - Initialize the score of the items: the Score Initialization procedure; - While Stopping Conditions not encountered, repeat the following steps: - * Sort the items according to their scores and apply a constructive heuristic to the sorted list, obtaining a new solution *CS*; We use the EP-BPH procedure; - * If a given number of successive nonimproving iterations is reached, reinitialize the scoring using the *Long-term Score Reinitialization* procedure; otherwise, update the scores using the *Score Update* procedure according to the *CS* solution; - * If CS is better than BS, then set BS to CS; - * The *Parameter Update* procedure then internally adjusts the parameters. ## A. EP-based Constructive Heuristics for Non-Guillotine Orthogonal Higher-Dimensional Packing Problems We now present the constructive heuristic PCH and the initial solution procedure EP-BPH we propose for Non-Guillotine Orthogonal Higher-Dimensional Packing problems. The procedures are based on the *Best Fit Decreasing* (BFD) idea and generalize the heuristic presented in Crainic et al. [10]. Following an initial sorting of the items by nonincreasing order of their volumes, the BFD constructive heuristic for 1D Bin Packing problem tries to load each item into the best bin. The latter is defined as the bin which, after loading the item, has the maximum free volume, defined as the container volume minus the sum of the volumes of the items it contains. A new container is created whether the item cannot be accommodated into the existing bins. Despite its simplicity, the BFD heuristic offers good performances for 1D Bin Packing problems. Similar heuristics exist for other packing problems, e.g., Knapsack and Strip Packing. Unfortunately, extending these heuristics to a general constructive heuristics for Non-Guillotine Orthogonal Higher-Dimensional Packing problems is a non-trivial task. On the one hand, while in 1D cases the ordering is done considering a unique attribute characterizing both items and bins, i.e., their volume or profit, more choices exist in the multi-dimensional context. One may thus consider sorting items according to their width, height, or depth, as well as, derived from these attributes, according to their volume or the areas of their different faces. Consequently, the definition of the best bin in the BFD heuristic is not unique. On the other hand, while the item accommodation does not need to be considered in 1D problems, a 2D or 3D packing may vary significantly according to how items are placed inside the bin, even when the ordering of the items and the rule selecting the best bin are not changed. Moreover, according to the packing problem, the number of available bins may be unlimited or fixed and all the items or just a subset must be loaded. We propose a new constructive heuristics based on BFD ideas, denoted *Extreme-Point Best Positioning Heuristic* (EP-BPH), which places the items into containers by using the Extreme Points concept of Crainic et al. [10]. As indicated earlier, the Extreme Points define the points where one may place an item that one wants to add to an existing packing. The main steps of the algorithm are as follows: - Order the items according to a sorting criterion; - For each item in the resulting sequence, find the best EP of the best available bin where to load the item; - If such a bin exists, load the item into it on the given EP; - If the item cannot be loaded in any existing bin, a new bin is created if the total number of bins does not exceed the given maximum, otherwise the item is discarded. Changing the maximum number of available bins adapts EP-BPH to different packing problems. For example, the number of bins is infinite for the Bin Packing problem, but it is equal to 1 for the 3BKP problem. The behavior of EP-BPH depends on how the best *EP* is selected and how the items are sorted. Computational experiments have shown that, from the *EP* selection point of view, the best trade off between solution quality and computational results is given by the *Residual Space* rule (see Crainic et al. [10]). The *Residual Space* (*RS*) measures the free space available around an *EP*. Roughly speaking, the *RS* of an *EP* is the distance, along each axis, from the bin edge or the nearest item. The nearest item can be different on each axis. More precisely, when an *EP* is created, its *Residual Space* on each axis is set equal to the distance from its position to the side of the bin along that axis (Figure 8a). The algorithm puts an item on the *EP* that minimizes the difference between its *RS* and the item size: $$f = [(RS_e^x - w_j) + (RS_e^y - d_j) + (RS_e^z - h_j)], (22)$$ where RS_e^x , RS_e^y , and RS_e^z are the RSs of EP e on X, Y, and Z axes, respectively. Every time an item is added to the packing, the RSs of all the EPs are updated. Figure 8b illustrates the concept. For "complex" packings, the RS gives only an estimate of the effective volume available around the EPs and, thus, potential overlaps with other items have to be verified when accommodating a new item on the chosen EP. See Crainic et al. [10] for further details. Fig. 8. Example of Residual Space To build an initial solution, we apply EP-BPH using a number of sorting criteria. The resulting PCH heuristic builds an initial solution by iteratively applying the sorting criteria and selecting the best. Items may have several attributes, but from the sorting algorithm perspective, the most important ones are: - 1) profit: the worth or priority of an item; - 2) specific weight; - 3) area: for three-dimensional problems it must be meant as the item projection on the (X, Y) plane (see Figure 9). Fig. 9. Definition of the area of an item Since items show more than one attribute, many ways to sort them are possible. Giving more importance to an attribute means to favor those items showing the highest values of that attribute or score. Often sorting procedure involves more than an attribute or more than a score. Sometimes items are sorted after they have been grouped into *clusters*. A cluster is a set of items showing "close" values of a particular attribute or score. By "close" we mean that the values are inside a given set. Suppose, for instance, to sort the items by clustered area (see Figure 9), let A_{\min} , A_{\max} be the extreme values of the area interval that we want to cluster. Each cluster will have a length which is the length of the global interval $A_{\max} - A_{\min}$ times a given percentage $\theta/100$, with $\theta \in [1, 100]$. The number of clusters n_c is the ration of the overall interval length over the length of a single cluster. This ratio is $n_c = \lceil 100/\theta \rceil$. Each cluster $A_i(\theta)$ can then be expressed as: $$A_i(\theta) = [A_{\min} + (i-1)(A_{\max} - A_{\min})\theta/100,$$ $$A_{\min} + i(A_{\max} - A_{\min})\theta/100],$$ (23) with $i=1,\ldots,n_c$. Note that, if we want to cluster the overall container (basis) area, then $A_{\min}=0$ and $A_{\max}=W\times D$ and (23) becomes: $$A_i(\theta) = [(i-1)WD\theta/100, iWD\theta/100],$$ (24) with $i = 1, ..., n_c$. By combining the three items attributes, six different sortings can be performed: - 1) a-sw: clustered area, sorted specific weight; - 2) a-p: clustered area, sorted profit; - 3) sw-a: clustered specific weight, sorted area; - 4) sw-p: clustered specific weight, sorted profit; - 5) p-sw: clustered profit, sorted specific weight; - 6) *p-a*: clustered profit, sorted area. When a solution has been calculated, its corresponding objective function value is given by the following merit function: $$F = P - \alpha U. \tag{25}$$ Note that (25) is a Lagrangean relaxation of the sum of the selected items profits. This means that, according to α , attention is also devoted to the balancing
constraints, even before the center of mass optimization procedure. For values of α see Section IV-C. #### B. Center of mass optimization Given a three-dimensional convex domain inside the container, the balancing procedure tries to adjust packed items positions so that the global center of mass lies inside the domain. The heuristic just moves already packed items, therefore no items are added or removed by the container, nor the overall profit is modified by the procedure. The center of mass optimization heuristic works as follows: it first calculates the position \vec{x}_{CM} of packed items center of mass as reported in equations (2) and (3), then it moves one item after another so that \vec{x}_{CM} moves towards the desired position. Two issues arise: where to move an item and how to avoid it overlapping other items and the edges of the bin. The first problem may be tackled starting from equations (2) and (3). Assuming k is the number of accommodated items, $M = \sum_{j=1}^k m_j$ is the overall mass of the items, and we want to move item i from its actual position $\vec{x}_i = (x_i, y_i, z_i)$ to an unknown new position $\vec{x}_i' = (x_i', y_i', z_i')$ so that the overall center of mass moves from the actual position \vec{x}_{CM} to the new desired position \vec{x}_{CM}' in order to meet balancing conditions. By (3) the actual center of mass can be written as: $$\vec{x}_{CM} = \sum_{j \neq i} m_j \vec{x}_{CM_i} / M + m_i \vec{x}_{CM_i} / M$$ (26) When item i moves from \vec{x}_i to \vec{x}_i' then its new center of mass becomes \vec{x}_{CM_i}' , while the overall center of mass is: $$\vec{x}'_{CM} = \sum_{j \neq i} m_j \vec{x}_{CM_i} / M + m_i \vec{x}'_{CM_i} / M.$$ (27) Subtracting (26) from (27) we have: $$\vec{x}'_{CM} - \vec{x}_{CM} = m_i (\vec{x}'_{CM} / M - m_i \vec{x}_{CM_i}) / M,$$ (28) which lead to the new coordinates of item i center of mass: $$\vec{x}'_{CM_i} = \vec{x}_{CM_i} + (\vec{x}'_{CM} - \vec{x}_{CM})M/m_i.$$ (29) Finally, the new coordinates of item i can be found by inverting equation (2); in particular: $$\vec{x}'_i = (x'_{CM_i} - w_i/2, y'_{CM_i} - d_i/2, z'_{CM_i} - h_i/2)$$ (30) Fig. 10. Example of Permitted Movements of an Item in 2D Unfortunately, due to overlapping issues, it is not always possible to move item i to \vec{x}'_i . Here comes the second problem: the definition of a *three-dimensional* convex connected domain where item i can freely move without having to overlap other items nor the bin. Actually, we define such a domain D_i as the set of allowed positions for the the origin of item i. To do so, an algorithm similar to the one used to calculate the RS of an EP is used. Once D_i has been defined, three possible scenarios may take place: - $D_i = \{\emptyset\}$: item *i* cannot move; - $\vec{x}'_i \in D_i$: item *i* moves to \vec{x}'_i thus letting the balancing to be achieved (see Figure 10a for a two-dimensional example); - $\vec{x}_i' \notin D_i$ and $D_i \neq \{\varnothing\}$: item i moves to an intermediate position \vec{x}_i'' defined as the point which better approximates \vec{x}_i' on each axis (see Figure 10b for a two-dimensional example). Items movements may lead to a state that does not take gravity effects into account. That would result in faulty solutions for many real-life applications, so the algorithm simulates the force of gravity by compacting all items along the Z axis towards the (X, Y) plan. The heuristic stops when the packing is balanced, when no items can move, or after a given number of iterations. #### C. Unipack specialization In this Subsection we show how to adapt UniPack parameters and scores in order to deal with the 3BKP. - 1) Score Initialization: The idea is to use the score as a measure of the willingness to accommodate an item in the knapsack. Consequently, we start from the initial solution decisions, and prioritize the items selected by the accommodation procedure by assigning them a higher score than to the non loaded ones. Two criteria are used to define such initial scores. First, the score should reflect the profit associated to each item. Second, the gap between a loaded and a non loaded item should be small enough to guarantee the possibility of changes in the ordered list. The initial score of an item is then set to $s_i = kp_i$ if the item has been loaded in the initial solution, and to $s_i = p_i$ otherwise. The value of k has been experimentally set to 3. - 2) Score Update: Previous experience has shown that the various sorting criteria used by the procedure building the initial solution load into the knapsack a significant subset of the items making up the optimal solution. "Mistakes" usually are caused when selecting among items with similar profits, but with peculiar sizes, resulting in an underutilization of the knapsack. The knowledge given by the sorting criteria and the profits being already taken into account by the Score Initialization procedure, the update of the scores thus focuses on a special subset of items: the less profitable items already loaded and the most profitable non loaded ones. The goal is to force at each iteration swaps between less profitable loaded and profitable non loaded items by changing the scores as follows: - Find the item k loaded during the last iteration, minimizing $\mu_i = (1 + f_i^l)p_i/(w_id_i)$, where f_i^l represents the number of iterations item i has been loaded into the container; - Update the score of item k to $s_k = (1 \alpha)s_k$; - Find the item l non loaded during the last iteration, maximizing $\mu_i = p_i/(w_i d_i (1 + f_i^u))$, where f_i^u represents the number of iterations item i has not been loaded into the container; - Update the score of item l to $s_l = (1 + \beta)s_l$; - Swap the scores of items k and l; - Keep the score unchanged for all items $i, i \neq k$ and $i \neq l$; where, μ_i measures the willingness to accommodate an item into the knapsack, f_i^l and f_i^u maintain a long-term memory of the selected items to avoid always selecting from the same subset of items, and α and β represent the percentage score decrease and increase, respectively, and are experimentally set to 0.1. This procedure ensures that at least two items are swapped at each iteration. - 3) Long-term Score Reinitialization: Given the sorted list of items which built the best solution found so far, we first give a score to each item according to the same rule used in Score Initialization. A fixed number of item pairs are then randomly selected and their scores are swapped. - 4) Initialization of Parameters and Stopping Criteria: - $\alpha = \beta = 0.1$; - Long-term Score Reinitialization every 1000 iterations: - number of item-pairs: 5% of the items. - α . If the best solution is unfeasible, $\alpha=2\times\alpha$. If the best solution is feasible, $\alpha=\alpha/2$ remains unchanged if the center of mass lies in the central half of its feasibility domain, while is unchanged otherwise. The overall process stops after 5 seconds. #### V. COMPUTATIONAL RESULTS In this section, we analyze the behaviour of the model and the heuristics in term of solution quality and computational efficiency. While the standard 3KP is known in the literature, the 3BKP is introduced in this paper for the first time. Thus, in Subsection V-A we define some benchmark instances. The first two sets, namely Set1 and Set2, are obtained by extending the instances for 3KP literature, while the third one, Set3, extends the rules used in the previous sets in order to diversify the instances. All the tests have been performed on a Intel I7 2.8 GhZ Workstation with 4 Gb of Ram. The model has been solved by means of Gurobi 4.0 solver limited to 1 core [20]. Subsection V-B is devoted to compare the computational results of the MIP model and the heuristic, while subsection V-C shows the behaviour of the developed model and heuristic compared with state-of-the-art algorithms. Being 3BKP firstly introduced in this paper, we compare the model and the heuristic with the results of heuristics developed specifically for the problem which is more similar to 3BKP, the Three-Dimensional Knapsack Problem. #### A. Test Instances In this section we introduce different instance sets for 3BKP. Following the test for the 3KP, the instances cover up to items and different types of item, knapsack and weight distributions. The sets, namely Set1 and Set2, are obtained by extending the instances by Egeblad and Pisinger [13]. All instance sets can be downloaded from the web site of OR-Library [4]. In the following we give a detailed description of the different set parameters. In these two sets of instances, the size of the knapsack, as well as the sizes of the items are the same that the ones in [13], while weights are added as additional items' attribute. Thus, the two sets differ for the weight generation, i.e., the weights in Set1 are generated in a smaller interval than in Set2. In order to give a better of the instances, in the following we report the full list of the parameters used to generate the instances. - number of items: $n \in \{20, 40, 60\}$; - items' generation strategy: $t \in \{C, R\}$, where: - C alias clustered, because instance consists of only 20 items which are duplicated appropriately; - R alias random, because instance consists of independently generated items; - bin size: p ∈ {50, 90}, expressed in percentage of the total volume of the items. - the items' attributes; assuming i = 1, ..., n is the ith item, then i is identified by: - size: $s_i = (w_i, d_i, h_i)$, which must belong to one among the following geometric classes: - * Cubes (C). The items are cubic and their sizes are defined as $w_i \in [1, 100], d_i = w_i, h_i = w_i$; - * Diverse (D). The sizes of the items are randomly chosen in the following ranges $w_i \in [1, 50], d_i \in [1, 50], h_i \in [1, 50];$ - * Long (L). The sizes of the items are randomly chosen in the
following ranges $w_i \in [1, 200/3], d_i \in [50, 100], h_i \in [1, 200/3];$ - * Uniform (U). The sizes of the items are randomly chosen in the following ranges $w_i \in [50, 100], d_i \in [50, 100], h_i \in [50, 100].$ - profit: $p_i = 200 + w_i d_i h_i$; - Center of mass position: the center of mass of each item is placed int he geometrical center of the item itself, i.e. $CM_i = \{w_i/2, d_i/2, h_i/2\}$ - specific weight: sw_i , uniformly distributed on the interval I_{sw} , where the limits of the interval depend on the set: - * Set1: $I_{sw} = [70, 100];$ * Set2: $I_{sw} = [10, 1000];$ - CoM domain: the domain constraints are fixed as $L^{\delta} = \{W/4, D/4, 0\}$ and $U^{\delta} = \{3W/4, 3D/4, H/2\}$. These limits are given by practical issues in maritime and air cargo applications. In particular, for the limits on Z, for stability reasons the requirement is usually to be as near a spossible to 0, i.e., the bottom of the container [23]. The combination of all the values give 120 instances, 60 for each set. ### B. Model and Heuristic results #### C. State-of-the-Art results As stated in Section III, 3BKP is introduced in this paper for the first time. Thus, no other method than our model and heuristic is present in the literature. Moreover, computing specific upper bounds for 3BKP is quite difficult. In fact, upper bounds obtained by model 3BKP-M are quite poor and have mainly the same quality a trivial bound obtained by computing the optimal solution of the mono-dimensional Knapsack Problem where the size of the knapsack is the volume of the 3D one and the size of the items is the volume of the 3D items, in the following referred as 1DB, [14], [13]. Moreover, additional upper bounds that can be obtained by means of conservative scales in the 3D packing without rotation are not valid for the problems where the rotations are allowed [13]. On the other hand, 3BKP is an extension of the standard 3KP and thus the solutions obtained by 3BKP-M and 3BKP-U as valid for 3KP. Thus, in Table I we compare 3BKP-M and 3BKP-U with the results obtained by H_{EP} , heuristic by Egeblad and Pisinger on their instances for 3KP. The computational times have been fixed to 120 seconds for H_{EP} , 200 seconds for 3BKP-M and 5 seconds for 3BKP-U. 3BKP-M is solved by means of Gurobi 4.0 [20], while 3BKP-U is implemented in C++. For H_{EP} the results have been given by Egeblad and Pisinger. The meaning of the columns is the following: - Columns 1-4. The columns give the instance name defined in [13], the number of items, the item size geometry and the item generation type. - Column 5. The objective function of the upper bound 1D. - Columns 6-9. The objective function of the best solution found by H_{EP} , the Model 3BKP-M, our heuristic 3BKP-U with and without the balancing constraints activated. - Columns 10-14. The percentage gap between the upper bound upper bound 1D and objective function of the best solution found by H_{EP}, the Model 3BKP-M, our heuristic 3BKP-U with and without the balancing constraints activated. In the case of 3BKP-U with balancing constraints, we consider the weights of Set1. The computational times are not reported, being fixed for each method to 120 seconds for H_{EP} , 200 seconds for 3BKP-M and 5 seconds for 3BKP-U. From the results we can notice how the model is not competitive, with a gap almost doubled than H_{EP} . However, the model is much more flexible than the heuristics, making possible to easily introduce additional constraints like fixed positions for the items, forbidden rotations and precedence constraints in items loading. Moreover, giving to the model a time limit equal to 1000 seconds, the gap can be reduced, even if it is still about 10% more than H_{EP} . If we compare H_{EP} with 3BKP-U with the balancing constraints activated, we can notice how the results of 3BKP-U are about 3% worst than H_{EP} . However, this gap is given by the balancing constraints. In fact, if we remove the balancing constraints we obtain a mean gap of 16%, which is about 2% less than Egeblad and Pisinger results. These results are more impressive if we consider that 3BKP-U require a computational time which is about 2 order of magnitude less than H_{EP} . We also tried to increase the computational time of 3BKP-U in order to obtain better results, but the computational experience show that the increase of efficacy is negligible. #### VI. CONCLUSIONS In this paper, we introduced the Three-Dimensional Knapsack Problem with Balancing Constraints Problem, the extension of the standard Three-Dimensional Knapsack Problem Problem (3KP) where additional constraints related to the Center of Mass of the three-dimensional packing are given. A MIP formulation of | Georgia Geor | Instance | n | IT Geom | IT Gen | 1D | $ m H_{EP}$ | Model | 3BKP-U | 3BKP-U
UNB | \mathbf{H}_{EP} | Model | 3BKP-U
UNB | 3BKP-U | |---|----------------|-----|---------|--------|----------|-------------|---------|----------|---------------|-------------------|-------|---------------|--------| | cybad_DCC_CS_00 C C Issay_1449 9 6241 9 6241 9 6241 0 | ep3d-20-C-C-50 | 20 | С | С | 1026348 | 633672 | 633672 | 633672 | | 7.0 | 7.0 | | 7.0 | | cp3d2-CC-R-50 20 C R 2188245 1492413 14924143 1492413 14924143 14924143 14924143 14924143 14924143 14924143 14924143 1492413 14924143 1492413 149241444 149241444444 149241444444 149241444444 < | 1 | l . | | | | 1 | 1 | l | | 1 | | | | | срай-д-CR-SP-90 20 C R 3925057 297909 2497090 2497090 2497090 2497090 0.00 0.0 2.0 0.0 | * | | | | | 1 | 1 | | | ! | | 1 | | | cph3d2-DD-C50 20 D C 395916 239323 315942 315964 315964 24,3 20,0 0.2 2,0 cph3d2-DD-C50 20 D R 246621 159937 260626 214227 214227 11.6 11.0 1 | * | | | | | 1 | 1 | | | | | | | | срада-QD-D-C90 D C 718692 468112 559756 526480 526480 34.9 221.2 26.7 20.7< | * | l . | | | | | 1 | | | 1 | | 1 | | | σβλ2-GD-R-SO 20 D R 24/0621 195937 26002-D 214227 214227 214227 1142 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 20.2 20.7
20.7 20.7 20.2 20.2 20.2 L C 10.0 80.0 80.3 31.8132 30.5 24.6 21.2 21.2 22.2 22.2 21.2 22.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 | * | | | | | 1 | | | | ! | | ! | | | срада-QD-R-PO 20 D R 414188 318848 368476 335123 335123 23.0 11.0 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.2 20.7 | * | | | | | l | 1 | | | | | 1 | | | срад-до-PC-50 20 F C 2395087 1900250 1900250 1900250 1900250 20,7 20,2 | | | | | | | 1 | | | 1 | | 1 | | | ерай-до-P-R-90 | | | | | | 1 | 1 | | | ! | | 1 | | | ср342-DR-RS-0 20 F R 2252037 1563997 1980399 1800399 30.5 24.6 20.1 20.1 ср342-DR-RS-0 20 L R 4099982 2318002 2352072 2323580 23232580 28.8 42.6 21.2 | _ * | | | | | 1 | 1 | | | 1 | | 1 | | | ерад-20-LC-90 20 L C 164487 843455 941009 891283 8232580 28.8 42.6 21.2 21.2 ерад-20-LC-90 20 L C 164487 843455 941009 891283 891283 31.2 61.1 16.6 3. 16.3 ерад-20-LC-90 20 L R 718561 556900 633463 626381 20.7 11.8 4. 14.5 14.5 ерад-20-LR-90 20 L R 718561 556900 633463 626381 626381 20.7 11.8 12.8 12.8 ерад-20-LR-90 20 L R 1894489 1589930 1546821 1619190 1619190 161.1 18.4 14.5 14.5 ерад-20-LR-90 20 L R 1894489 1589930 1546821 1619190 1619190 161.1 18.4 14.5 14.5 14.5 ерад-20-LR-90 20 L R 18.2 12.8 12.8 ерад-20-LR-90 20 L C 88067424 5360280 11.1 1602 10.56699 10.56699 17.9 12.9 17.5 17.5 ерад-20-LR-90 20 U C 88067424 5360280 11.1 1602 10.56699 10.56699 10.56699 17.9 12.9 17.5 17.5 ерад-20-LR-90 20 U R 8401077 3590748 27.7 16.0 20.7 16. | | | | | | | | I | | 1 | | 1 | | | ep342-D-LC-50 20 L C 1064487 84335 941069 891283 891283 21.6 11.6 16.3 16.3 ep342-D-LC-50 20 L C 1894489 1589303 1548521 1619190 1619190 1619190 14.5 14.5 14.5 ep342-D-LR-90 20 L R 718561 569900 633460 633643 626381 20.7 11.8 12.8 ep342-D-LC-50 20 U C 4495440 3088676 2796072 3127252 3127322 31.3 37.8 30.4 30.4 ep342-D-LR-90 20 U C 4495440 3088676 2796072 3127252 3127322 31.3 37.8 30.4 30.4 ep342-D-LR-80 20 U R 8411077 3590748 2677316 3087569 3590748 20.5 30.3 30.0 20.5 ep342-D-LR-80 20 U R 8411077 3590748 2677316 3087569 3590748 20.5 30.3 30.0 20.5 ep342-D-LR-80 20 U R 8411077 3590748 2677316 3087569 3590748 20.5 30.3 30.0 20.5 ep342-D-LR-80 20 U R 8411077 3590748 2677316 3087569 3590748 20.5 30.3 30.0 20.5 ep342-D-LR-80 20 U R 8411077 3590748 2677316 3087569 3590748 20.5 30.3 30.0 20.5 ep342-D-LR-80 20 U R 8411072 39072159 4156121 6638762 6921250 31.3 38.7 38.7 38.7 38.7 ep342-D-C-80 40 C C 2665540 1265664 1265 | * | | | | | 1 | 1 | l . | | ! | | | | | ерад-20-Le-80 20 L R 1894489 1589303 1540821 1619190 1619190 161,1 18.4 14.5 14.5 14.5 ерад-20-Le-80 20 L R 1282710 1051084 1114602 1056699 1056699 17.9 12.9 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 | 1 | l . | | | | | 1 | | | 1 | | | | | срад-20-L. R-S0 20 L R 711561 569900 633463 626381 626381 20.7 11.8 12.8 12.8 срад-20-L. C-S0 20 U C 4495440 3088076 2796072 3127252 31.3 30.4 30.4 срад-20-LIC-S0 20 U C 4495440 3088076 2796072 3127252 31.3 30.4 30.4 срад-20-LIC-S0 20 U R 4413077 3509748 2677316 3087569 3509748 20.5 39.3 30.0 20.5 срад-40-C-S0 40 C C C 2065540 1265664 1256664 <th< td=""><td> 1</td><td></td><td></td><td></td><td></td><td> </td><td>1</td><td></td><td></td><td>!</td><td></td><td>!</td><td></td></th<> | 1 | | | | | | 1 | | | ! | | ! | | | срад-20-UR-80 20 L R 1282710 1051084 1114602 1056699 1056699 17.9 12.9 17.5 17.5 срад-20-UR-90 20 U C 4495440 3088676 239672 321225 3127252 31.3 37.8 30.4 30.4 24.6 22.6 20.2 30.3 30.0 20.5 33.3 30.0 20.5 33.3 30.0 20.5 26.2 42.6 24.6 | | | | | | 1 | | | | | | | | | ерай-20-U-C-50 20 U C 8067424 3088676 2796072 3127252 3127252 31.3 37.8 30.4 30.4 ерай-20-U-C-50 20 U C 8067424 389990 6014000 607400 607400 607400 6074000 607400 | _ <u>*</u> | l . | | | | | 1 | | | 1 | | | | | срад-20-U-C-90 20 U C 8067424 5360280 4289980 6074000 6074000 33.5 46.7 2.46 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.48 2.28 2.48 2.18 2.38 2.48 2.48 2.18 2.38 2.48 2.18 2.38
2.48 2.18 2.18 2.1 | _ <u>_</u> | | | | | 1 | 1 | 1 | | 1 | | 1 | | | срай-2D-UR-SIO 2D U R 4413077 3509748 2673316 3087569 3509748 2D.5 39,3 30,0 20,5 срай-4D-C-C-50 40 C C 2065540 1265664 <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> | * | | | | | l | | | | 1 | | | | | срад-до-UR-809 20 U R 8041072 6921250 4156121 6638762 6921250 13.9 48.3 17.4 13.9 срад-до-СС-50 40 C C 2065540 1265664 1265664 1265664 1265664 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 28.7 20.7 20.2 203936 3008658 32086 20.8 39.0 26.7 26.7 20.7 20.0 60.0 3008658 3008658 30.0 26.8 39.0 26.7 26.7 20.0 20.9 21.2 44.1 43.8 21.3 4.1 43.8 21.3 4.1 43.8 21.3 4.1 43.8 21.2 4.1 4.1 43.8 21.3 4.1 2.9 21.5 21.0 20.9 21.5 21.0 20.9 21.5 21.0 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> | | | _ | | | | | | | 1 | | 1 | | | p3d-40-CC-50 40 C C 2055540 1265664 1265664 1265664 1265664 1265664 38.7 38.7 38.7 ep3d-40-CR-50 40 C R 4102972 3002269 2503936 3008658 3008658 36.8 39.0 26.7 26.7 ep3d-40-CR-50 40 C R 4102972 3002269 2503936 3008658 3008658 26.8 39.0 26.7 26.7 ep3d-40-DR-50 40 D C 783124 539040 500996 31.6 26.3 19.9 19.9 19.9 ep3d-40-DR-50 40 D C 1423896 1126300 1032016 1124788 1126300 20.9 27.5 21.0 20.9 ep3d-40-DR-80 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1 ep3d-40-FC-50 40 F C 8664122 6435962 | 1 | | _ | | | | | l . | | ! | | l . | | | p3a4-0-C-C-90 40 C C 3652448 2828160 2335561 2717385 2828160 218.8 35.4 24.8 21.8 ep3a4-0-C-R-90 40 C R 4102972 3002269 2503936 3008658 26.8 39.0 26.7 26.7 ep3d-40-D-C-50 40 D C 788124 539040 580512 630996 630996 31.6 26.3 19.9 19.9 ep3d-40-D-C-50 40 D C 1423896 1126300 10.9 27.5 21.0 20.9 ep3d-40-B-R-50 40 D R 399894 349470 248518 349152 349470 12.6 37.9 12.7 12.6 ep3d-40-F-R-90 40 F C 4816926 3590244 2596674 339919 12.1 29.8 15.9 12.1 26.2 25.7 53.4 33.5 25.7 6934-01-R-9.0 40 F R 4816926 3590044 < | | | | | | | | | | | | | | | врад-40-C-R-50 40 C R 4102972 3003269 2503936 3008658 3008658 26.8 39.0 26.7 26.7 ерзд-40-C-R-90 40 D C R 7335602 5972946 3498247 4900577 5972946 4.1 43.8 21.3 4.1 ерзд-40-D-R-90 40 D C 1423896 11126300 1032016 1124788 1126300 20.9 27.5 21.0 20.9 ерзд-40-D-R-90 40 D R 399894 349470 248518 349470 12.6 37.9 12.7 12.6 ерзд-40-D-R-90 40 D R 728248 639819 510962 612487 639819 11.1 29.8 15.9 12.1 ерзд-40-F-C-90 40 F C 8664122 6433962 4039655 5760960 6435962 25.7 53.4 33.5 25.7 ерзд-40-F-R-90 40 F R 8198224 | * | | | | | 1 | 1 | 1 | | 1 | | 1 | | | врай-д-О-С-R-90 40 C R 7335602 5972946 3498247 4900577 5972946 4.1 43.8 21.3 4.1 ерай-д-О-С-50 40 D C 788124 539040 580512 630996 31.6 26.3 19.9 19.9 ерай-д-О-С-80 40 D R 398984 31260 1124788 1126300 20.9 27.5 21.0 20.9 ерай-д-О-К-80 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1 29.8 15.9 12.1 29.8 15.9 12.1 29.8 15.9 12.1 29.8 15.9 12.1 29.8 14.1 43.8 23.7 73.4 33.5 25.5 66.1 32.0 25.5 63.4 43.1 33.3 25.5 63.4 43.1 43.8 43.1 43.2 26.2 63.4 26.2 26.2 63.4 26.2 26.2< | * | | | | | 1 | | | | ! | | ! | | | ерад-40-D-C-50 40 D C 788124 539040 580512 630996 630996 31.6 26.3 19.9 19.9 19.9 ерад-40-D-C-90 40 D R 399894 349470 248518 1126300 20.9 27.5 21.0 20.9 ерад-40-D-R-50 40 D R 379894 349470 248518 349470 12.6 37.9 12.7 12.6 ерад-40-D-R-90 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1 ерад-40-P-C-90 40 F C 48604122 6435962 255060 6435962 25.5 46.1 32.0 41.9 19.3 19.3 ерад-40-P-C-90 40 F R 8189224 7350067 3560051 6386094 7336067 10.5 56.6 22.1 10.5 ерад-40-L-C-50 40 L C 3817422 2 | * | l . | | | | | 1 | | | 1 | | | | | ерза-40-D-C-90 40 D C 1423896 1126300 1032016 1124788 1126300 20.9 27.5 21.0 20.9 ерза-40-D-R-90 40 D R 399894 349470 248518 349152 349470 12.6 37.9 12.7 12.6 ерза-40-P-C-50 40 F C 4816926 3590244 2596874 3274502 3590244 25.5 46.1 32.0 25.5 ерза-40-P-C-90 40 F R 4816926 3590244 25.5 546.1 32.0 25.5 ерза-40-P-R-90 40 F R 4518343 3477469 2623783 3644680 3644680 23.0 41.9 19.3 19.3 ерза-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 12.3 33.7 17.2 17.2 ерза-40-L-C-90 40 L R 1786866 1606648 1067546 9.8 40.2 <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> | * | | | | | 1 | 1 | 1 | | | | 1 | | | ерзд-40-D-R-50 40 D R 399894 349470 248518 349470 12.6 37.9 12.7 12.6 ерзд-40-D-R-90 40 F C 4816926 3590244 2596874 3274502 3590244 25.5 46.1 32.0 25.5 ерзд-40-F-C-50 40 F C 4864122 6435962 4039655 5760960 6435962 25.7 53.4 33.5 25.7 ерзд-40-F-R-50 40 F R 4518343 3477469 2623783 3644680 23.0 41.9 19.3 19.3 ерзд-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 ерзд-40-L-C-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 20.6 20.6 ерзд-40-L-C-50 40 L R 1784686 1609648 10675 | * | | | | | | 1 | 1 | | ! | | l . | | | ерЗа-40-D-R-90 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1 срЗа-40-F-C-50 40 F C 4816926 3590244 23575 35.4 33.5 25.5 ерЗа-40-F-C-90 40 F R 4518343 3477469 2623783 3644680 3404680 23.0 41.9 19.3 19.3 ерЗа-40-F-C-50 40 F R 8199224 7336067 3560615 638609 3644680 23.0 41.9 19.3 19.3 ерЗа-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 ерЗа-40-L-C-50 40 L R 1784868 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 ерЗа-40-L-C-50 40 U C 16243380 14065676 5580692 17538 | 1 | | | | | | 1 | I | | 1 | | | | | срэд-40-F-C-50 40 F C 4816926 3590244 2596874 3274502 3590244 25.5 46.1 32.0 25.5 срэд-40-F-R-50 40 F C 8664122 6435962 25.7 53.4 33.5 25.7 срэд-40-F-R-50 40 F R 4518343 3477469 2623783 364680 23.0 41.9 19.3 19.3 срэд-40-F-R-50 40 F R 8199224 7336067 356051 6386094 7336067 10.5 56.6 22.1 10.5 срэд-40-L-C-90 40 L C 2127316 1675122 1410197 1760700 21.3 33.7 17.2 17.2 срэд-40-L-C-90 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 срэд-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 | _ · | | | | | | 1 | l . | | ! | | 1 | | | ср3d-40-F-C-90 40 F C 8664122 6435962 403655 5760960 6435962 25.7 53.4 33.5 25.7 ср3d-40-F-R-50 40 F R 4518343 3477469 2623783 3644680 23.0 41.9 19.3 19.3 ер3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 ер3d-40-L-C-90 40 L C 3819412 2943657 2054950 3032364 3032364 22.9 46.2 20.6 20.6 ер3d-40-L-R-90 40 L R 1784686 1609648 1607546 1567893 160948 9.8 40.2 21.1 9.8 ер3d-40-U-C-90 40 U C 8988536 7008136 4317064 7355808 22.0 52.0 18.2 18.2 ер3d-40-U-R-50 40 U R 8666294 7766238 4118 | 1 | | | | | | | | | | | | | | cp3d-40-FR-50 40 F R 4518343 3477469 2623783 3644680 3644680 23.0 41.9 19.3 19.3 cp3d-40-FR-50 40 F R 8199224 7336067 3560051 6386094 7336067 10.5 56.6 22.1 10.5 cp3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 cp3d-40-L-C-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 cp3d-40-U-C-50 40 U C 898536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2 cp3d-40-U-C-50 40 U R 8666294 7766238 4418573 7358405 7366238 10.4 49.0 13.0 10.4 cp3d-60-C-C-50 60 C C 303219 | 1 | | | | | | | | | 1 | | 1 | | | cp3d-40-F-R-90 40 F R 8199224 7336067 3560051 6386094 7336067 10.5 56.6 22.1 10.5 cp3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 cp3d-40-L-R-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 cp3d-40-L-R-90 40 L R 3224295 2699629 1722617 2689260 2699629 16.3 46.6 16.6 16.3 cp3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4 cp3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4 cp3d-60-C-C-50 60 C C <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>l .</td><td></td><td>1</td><td></td><td>1</td><td></td></th<> | | | | | | 1 | | l . | | 1 | | 1 | | | cp3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2 cp3d-40-L-C-90 40 L C 3819412 2943657 2054950 3032364 3032364 22.9 46.2 20.6 20.6 cp3d-40-L-R-90 40 L R 1784686 1609648 1607546 1609648 9.8 40.2 12.1 9.8 cp3d-40-L-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2 cp3d-40-U-R-50 40 U R 8666294 7766238 4418573 735865 7766238 10.4 49.0 13.0 10.4 cp3d-60-C-C-50 60 C C C 3063219 1504980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C | | | | | | l | 1 | | | | | | | | cp3d-40-L-C-90 40 L C 3819412 2943657 2054950 3032364 3032364 22.9 46.2 20.6 20.6 cp3d-40-L-R-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 cp3d-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2 cp3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4 cp3d-40-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9 cp3d-60-C-R-50 60 C R | | | | | | 1 | | | | 1 | | 1 | | | cp3d-40-L-R-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8 cp3d-40-L-R-90 40 L R 3224295 2699629 1722617 2689260 2699629 16.3 46.6 16.6 16.3 cp3d-40-U-C-50 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4 cp3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4 cp3d-40-U-R-50 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-C-50 60 C R | 1 *
 | | | | 1 | | l . | | ! | 1 | 1 | | | cp3d-40-L-R-90 40 L R 3224295 2699629 1722617 2689260 2699629 16.3 46.6 16.6 16.3 cp3d-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2 cp3d-40-U-C-90 40 U R 8666294 7766238 4418573 7558465 7766238 10.4 49.0 13.0 10.4 cp3d-40-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-C-50 60 C R 6493464 5695120 2916398 435949 5695120 18.9 53.0 29.5 18.9 cp3d-60-D-C-50 60 D C <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td></t<> | | | | | | | 1 | | | 1 | | 1 | | | cp3d-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2 cp3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4 cp3d-40-U-R-90 40 U R 8666294 7766238 4418573 71120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-C-50 60 C C S1551980 13077284 415.8 440504 18.9 53.0 29.5 18.9 cp3d-60-C-R-50 60 C R 6493464 5695120 2915384 435949 5695120 12.3 55.1 31.7 12.3 cp3d-60-D-C-50 60 D C 1200408 < | | | | | | | 1 | 1 | | | | 1 | | | cp3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4 cp3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-C-50 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9 cp3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 cp3d-60-C-R-50 60 D C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 13.7 cp3d-60-P-C-50 60 | | | | | | | | 1 | | | | | | | cp3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4 cp3d-60-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-R-90 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 cp3d-60-C-R-90 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 cp3d-60-D-C-50 60 D C 120408 1057032 80120 954856 1057032 11.9 33.3 20.5 11.9 cp3d-60-D-R-50 60 D R 538113 48 | | | _ | | | l | 1 | | | 1 | | | | | cp3d-40-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8 cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 50.9 55.2 50.9 50.9 cp3d-60-C-C-90 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9 cp3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 cp3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 cp3d-60-D-C-50 60 D C 1204048 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 cp3d-60-P-C-90 60 D R 538113 < | _ · | | | | | 1 | 1 | | | 1 | | 1 | | | cp3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9 ep3d-60-C-C-90 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9 ep3d-60-C-R-90 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 ep3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 ep3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 ep3d-60-D-C-90 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7 ep3d-60-F-C-50 60 F C 7193700 | _ · | | | | | 1 | 1 | | | | | | | | cp3d-60-C-C-90 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9 ep3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 ep3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 ep3d-60-D-C-90 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 ep3d-60-D-R-90 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 < | 1 | | | | | | | | | | | | | | cp3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3 ep3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 ep3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 ep3d-60-D-C-90 60 D R 538113 484363 232947 502275 502275 10.0 39.8 6.7 6.7 ep3d-60-P-R-90 60 D R 966582 861655 433736 848299 861655 10.9 35.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 556875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F R 6780100 | 1 | | | | | | 1 | | | 1 | | 1 | | | cp3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5 ep3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 ep3d-60-D-C-90 60 D C 2143544 1843584 1440492 1488020 1843584 14.0 32.8 30.6 14.0 ep3d-60-D-R-90 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7 ep3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F R 6780100 | * | l | | | | | | | | 1 | | | | | cp3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9 ep3d-60-D-C-90 60 D C 2143544 1843584 1440492 1488020 1843584 14.0 32.8 30.6 14.0 ep3d-60-D-R-50 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7 ep3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-90 60 F R 6780100 | _ · | | | | | | | | | 1 | | 1 | | | cp3d-60-D-C-90 60 D C 2143544 1843584 1440492 1488020 1843584 14.0 32.8 30.6 14.0 ep3d-60-D-R-50 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7 ep3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-90 60 L C 5736894 | * | | | | | | l . | l . | | ! | 1 | l . | | | cp3d-60-D-R-50 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7 cp3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3 ep3d-60-F-R-50 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-50 60 L C 5736894 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> | | | | | | | | | | 1 | | 1 | | | cp3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9 ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3 ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-90 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 ep3d-60-L-R-50 60 L R 23 | 1 | | | | | l . | | | | | | | | | cp3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0 ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3 ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-90 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 ep3d-60-L-C-90 60 L R 2391507 2042317 1157278 2158105 14.6 51.6 9.8 9.8 ep3d-60-L-R-90 60 L R 4304649 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>!</td><td></td><td>!</td><td>1</td><td></td><td></td></td<> | | | | | | | | ! | | ! | 1 | | | | cp3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4 ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3 ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-50 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 ep3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8 ep3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 14.6 51.6 9.8 9.8 ep3d-60-L-R-90 60 L R 4304649 <td< td=""><td></td><td>l .</td><td></td><td></td><td></td><td>l</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<> | | l . | | | | l | 1 | | | 1 | | | | | ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3 ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-50 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 ep3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8 ep3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 14.6 51.6 9.8 9.8 ep3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 ep3d-60-U-C-50 60 U C 24342664 1 | * | | | | | 1 | | 1 | | 1 | | ! | | | ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7 ep3d-60-L-C-50 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 ep3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8 ep3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 14.6 51.6 9.8 9.8 ep3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 ep3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 ep3d-60-U-C-90 60 U C 24342664 | | | | | | 1 | 1 | 1 | | | | ! | | | cp3d-60-L-C-50 60 L C
3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3 cp3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8 cp3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 14.6 51.6 9.8 9.8 cp3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 cp3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 cp3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 cp3d-60-U-R-50 60 U R 12097660 | _ * | l . | | | | 1 | 1 | l | | 1 | | | | | cp3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8 cp3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 2158105 14.6 51.6 9.8 9.8 cp3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 cp3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 cp3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 cp3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | * | | | | | 1 | 1 | | | 1 | | 1 | | | cp3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 2158105 14.6 51.6 9.8 9.8 cp3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 cp3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 cp3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 cp3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | | | | | | | | I | | | | | | | cp3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0 cp3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 cp3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 cp3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | | l . | | | | | | | | 1 | | 1 | | | cp3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9 ep3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 ep3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | 1 1 | 1 | | | | | 1 | | | ! | | ! | | | cp3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7 ep3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | _ <u>_</u> | | | | | 1 | | | | 1 | | 1 | | | ep3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2 | | | | | | | 1 | | | 1 | | 1 | | | | _ · | l | | | | ! | | | | ! | | ! | | | epad-ou-u-k-90 00 U K 21893096 19304385 43/4061 14216597 19304585 11.8 80.0 35.1 11.8 | 1 | | | | | l | 1 | I | | 1 | | | | | | ep3a-60-U-R-90 | 60 | U | K | 21893096 | 19304585 | 43/4061 | 14216597 | 19304585 | 11.8 | 80.0 | 55.1 | 11.8 | TABLE I 18.2 40.0 21.0 16.0 Mean the problem as well as an efficient and accurate heuristic method are presented. Extensive computational results showed how the MIP model is able to find better bounds than other relaxations and the heuristic method is able to efficiently solve both instances explicitly designed for 3BKP, as well as to be competitive with methods explicitly designed for solving 3KP. Presently, we are extending the test instances in order to give a better insight of the relationship between solution quality and balancing constraints tightness. #### **ACKNOWLEDGMENTS** We express our gratitude to Prof. David Pisinger, who graciously provided us with sets of test instances, as well as their detailed results. Moreover, the authors are grateful to Roberto Marcellino for his contribution to a previous version of the paper. This project has been partially supported by the Ministero dell'Istruzione, Università e Ricerca (MIUR) (Italian Ministry of University and Research), under the Progetto di Ricerca di Interesse Nazionale (PRIN) 2007 "Optimization of Distribution Logistics", and the Natural Sciences and Engineering Council of Canada (NSERC), through its Industrial Research Chair and Discovery Grants programs, and by the partners of the Chair, CN, Rona, Alimentation Couche-Tard and the Ministry of Transportation of Québec. #### REFERENCES - R. Baldacci and M. A. Boschetti, "A cutting plane approach for the two-dimensional orthogonal non-guillotine cutting problem," *European Journal of Operational Research*, vol. doi: 10.1016/j.ejor.2005.11.060, 2007. - [2] J. E. Beasley, "Algorithms for two-dimensional unconstrained guillotine cutting," *Journal of the Operational Research Society*, vol. 36, p. 297306, 1985. - [3] ——, "An exact two-dimensional non-guillotine cutting stock tree search procedure," *Operations Research*, vol. 33, pp. 49– 64, 1985. - [4] ——, "Or-library: distributing test problems by electronic mail," *Journal of the Operational Research Society*, vol. 41, pp. 1069–1072, 1990. [Online]. Available: http://people.brunel.ac.uk/ mastjjb/jeb/info.html - [5] J. O. Berkey and P. Y. Wang, "Two dimensional finite bin packing algorithms," *Journal of the Operational Research Society*, vol. 38, pp. 423–429, 1987. - [6] E. E. Bischoff and M. S. W. Ratcliff, "Issues in the development of approaches to container loading," *Omega*, vol. 23, pp. 377– 390, 1995. - [7] M. A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi, "New upper bounds for the two-dimensional orthogonal cutting stock problem," *IMA Journal of Management Mathematics*, vol. 13, p. 95119, 2002. - [8] F. K. R. Chung, M. R. Garey, and D. S. Johnson, "On packing two-dimensional bins," SIAM Journal of Algebraic and Discrete Methods, vol. 3, pp. 66–76, 1982. - [9] L. Colaneri, F. D. Croce, G. Perboli, and R. Tadei, A Heuristic Procedure for the Automated Cargo Vehicle Loading Problem: A Case Study. Kluwer, 2003, pp. 27–42. - [10] T. G. Crainic, G. Perboli, and R. Tadei, "Extreme point-based heuristics for three-dimensional bin packing," *INFORMS Journal on Computing*, vol. 20, pp. 368–384, 2008. - [11] E. den Boef, J. Korst, S. Martello, D. Pisinger, and D. Vigo, "Erratum to "the three-dimensional bin packing problem": Robot-packable and orthogonal variants of packing problems," *Operations Research*, vol. 53, no. 4, pp. 735–736, 2005. - [12] H. Dyckhoff, "A typology of cutting and packing problems," European Journal of Operational Research, vol. 44, pp. 145– 159, 1990. - [13] J. Egeblad and D. Pisinger, "Heuristic approaches for the twoand three-dimensional knapsack packing problem," *Computers* & *Operations Research*, vol. 36, pp. 1026–1049, 2009. - [14] G. Fasano, "A mip approach for some practical packing problems: Balancing constraints and tetris-like items," 4OR: A Quarterly Journal of Operations Research, vol. 2, no. 2, pp. 161–174, 2004. - [15] S. P. Fekete and J. Schepers, "A new exact algorithm for general orthogonal d-dimensional knapsack problems," ESA '97, Springer Lecture Notes in Computer Science, vol. 1284, pp. 144–156, 1997. - [16] —, "On more-dimensional packing iii: exact algorithms," Discrete Applied Mathematics, 1997, submitted for publication. - [17] —, "New classes of lower bounds for bin packing problems," *Math. Programming*, vol. 91, no. 1, pp. 11–31, 2001. - [18] J. A. George and D. F. Robinson, "A heuristic for packing boxes into a container," *Computers & Operations Research*, vol. 7, pp. 147–156, 1980. - [19] P. C. Gilmore and R. E. Gomory, "European journal of operational research," *Operations Research*, vol. 13, pp. 94–119, 1965. - [20] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual Version 4.0. Houston: Gurobi Optimization, 2011. - [21] E. Hadjiconstantinou and N. Christofides, "An exact algorithm for general and orthogonal and two-dimensional knapsack problems," *European Journal of Operational Research*, vol. 83, pp. 39–56, 1995. - [22] L. Junqueira, R. Morabito, and D. S. Yamashita, "Three-dimensional container loading models with cargo stability and load bearing constraints," *Computers & Operations Research*, 2010. - [23] B. L. Kaluzny and R. H. A. D. Shaw, "Optimal aircraft load balancing," *International Transactions in Operational Research*, vol. 16, pp. 767–787, 2009. - [24] S. Martello, D. Pisinger, and D. Vigo, "The three-dimensional bin packing problem," *Operations Research*, vol. 48, no. 2, pp. 256–267, 2000. - [25] S. Martello, D. Pisinger, D. Vigo, E. den Boef, and J. Korst, "Algorithms for general and robot-packable variants of the three-dimensional bin packing problem," ACM Transactions on Mathematical Software, vol. 33, pp. 7–19, 2007. - [26] M. Mongeau and C. Bés, "Optimization of aircraft container loading," *IEEE Transactions on Aerospace and Electronic Sys*tems, vol. 39, pp. 140–150, 2003. - [27] G. Perboli, "Bounds and heuristics for the packing problems," Ph.D. dissertation, Politecnico di Torino, Torino, Italy, available at http://www.orgroup.polito.it/People/perboli/phdthesys.pdf, 2002. - [28] R. T. T. G. Crainic, G. Perboli, "Unipack: a new heuristic framework for multi-dimensional packing problems," in *Pro*ceedings of MIC 2007 The Seventh Metaheuristics International Conference, MIC 2007, 2007. - [29] G. Wäscher, H. Hauβner, and H. Schumann, "An improved typology of cutting and packing problems," *European Journal* of Operational Research, vol. 183, pp. 1109–1130, 2007. [30] H. P. Williams, *Model Building in Mathematical Programming*. John Wiley & Sons, London, 1993.