
19 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Synthesizing TLM-2.0 Communication Interfaces / HATAMI MAZINANI, Nadereh; Prinetto, Paolo Ernesto. - STAMPA. -
(2009), pp. 442-446. (Intervento presentato al convegno EWDTS 2009: 7th IEEE East-West Design & Test Symposium
tenutosi a Moscow (Russian Federation) nel Sept 18-21. 2009).

Original

Synthesizing TLM-2.0 Communication Interfaces

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2462978 since:

SPD FL Stepanov V.V.Ukraine, 61168, Kharkov, Ak. Pavlova st., 311

Abstract
TLM-2.0 consists of a set of core interfaces containing

blocking and non-blocking transport interfaces and the direct
memory interface. These interfaces facilitate communication
between initiators, targets and interconnect modules. Al-
though TLM models simulate faster, there is a long way from
a high abstraction TLM model to a synthesizable RTL descrip-
tion. This paper proposes algorithms to facilitate synthesizing
TLM-2.0 interfaces. We introduce an intermediate layer in
abstraction level that is lower than TLM-2.0 and higher than
RTL. To describe this intermediate layer, we take advantage
of TLM-1.0 constructs. Algorithms for mapping high level
TLM-2.0 to the intermediate level are proposed to add neces-
sary details for RTL synthesis to the synthesized designs in
this level. We have focused our attention on Direct Memory
Interface and left the rest as future work. The experimental
results show that automation caused by the proposed rules
improves simulation speed and reduces modeling effort.

1. Introduction

Transaction Level Modeling (TLM) approaches have been
proposed to describe Systems-On-Chips (SoCs) at an abstrac-
tion level higher than RTL. [2, 3, 4] describe TLM as a high
level transaction language based on SystemC. TLM simulates
faster than RTL, even for complex systems, and allows em-
bedded software validation and integration testing to be done
earlier in the design cycle, i.e., before RTL being complete.

TLM modules consist of two distinct parts: TLM core mod-
ules that provide us with the functionality of the individual
components of the SoC, and TLM interfaces that are the
means of communication between IP cores. Interfaces transfer
data in the form of transactions through module ports.

As design proceeds in the design flow, the abstract model
should be replaced by a more detailed architecture of what is
really going to be done. This detailed architecture can then be
synthesized to RTL.

Some works have been done on TLM synthesis to extract
RTL model of the design from the transaction level descrip-
tion. [4] is a high-level solution that integrates electronic sys-
tem level designs with block-level implementation. [5] also
uses a library of synthesizable TLM protocols to synthesize
transaction level descriptions into SystemC RTL code. Both
of these tools use TLM-1.0 as input code and have some limi-
tations in their synthesis approach.

In this paper, we focus on interfaces as communication tools
which transfer transactions through sockets. We start from
TLM-2.0 high level models which provide us with four types
of interfaces and concentrate on TLM Direct Memory Inter-
face (DMI). We propose a novel approach to purify this inter-
face to lower levels of abstraction using channels. We intro-
duce an intermediate level based on TLM-1.0 standards to
map high level TLM-2.0 designs to a lower level of abstrac-
tion to take advantage of available tools.

In the sequel of the paper, after an overview of TLM-2.0 as
the recent standard of TL modeling in SystemC, we describe
our methodology for TLM synthesis in Section 3. In Section
4, we explain the experimental results by considering the cod-
ing styles of high level and synthesizable designs. Section 5
draws some conclusions.

2. An overview of TLM-2.0

As the abstraction level goes higher, the current OSCI TLM-
1.0 standard becomes less applicable and not fast enough for
describing high level designs [9]. In addition, with the lack of
model interoperability in the TLM-1.0 standard, producing IP
cores to be used by a common customer becomes another bot-
tleneck.

TLM-2.0 is the new OSCI standard, enabling SystemC
model interoperability and reuse, and providing an essential
framework for architecture analysis, software development,
performance analysis, and hardware verification [8].

TLM-2.0 takes the approach of distinguishing between in-
terfaces (APIs) on the one hand, and coding styles on the oth-
er one. The TLM-2.0 standard defines a set of interfaces
which should be thought of as low-level software program-
ming mechanisms for implementing transaction level models.
This standard also describes a number of coding styles that
can be used for various cases.

TLM-2.0 consists of core interfaces from TLM-1.0 together
with the blocking and non-blocking transport interfaces, the
direct memory interface (DMI), the debug transaction inter-
face, the write interface, and the analysis interface [1]. Each
interface is suitable to work with one of the three TLM-2.0
coding styles each providing a design with different level of
details. A fast, loosely-timed model is typically expected to
use the blocking transport interface and the direct memory
interface. A more accurate, approximately-timed model is

Synthesizing TLM-2.0 Communication Interfaces

Nadereh HATAMI Paolo PRINETTO

Politecnico di Torino - Dipartimento di Automatica e Informatica,
Torino, Italy

{Nadereh.Hatami, Paolo.Prinetto}@polito.it

typically expected to use the non-blocking transport interface
and the payload event queues [1].

The transport interfaces are the primary interfaces used to
transport transactions between initiators, targets and their in-
terconnection components [1]. They are clustered into block-
ing and non-blocking categories, respectively.

Figure 1.TLM-2.0 to RTL synthesis steps

The application of the non-blocking transport interface is in

cases when one needs modeling the detailed sequence of inte-
ractions between initiator and target during the course of each
transaction [1].

The direct memory interface is able to bypass the normal
path of multiple transport interface calls from initiator through
interconnect components to target; it thus offers a large poten-
tial increase in simulation speed for memory access between
initiator and target.

All together, TLM-2.0 provides a very high abstraction level
description of hardware components.

3. TLM-2.0 Interface Synthesis approach

TLM-2.0 describes hardware architectures in a very abstract
manner, but to be synthesized to silicon, each hardware de-
scription should be described in RTL. TLM-2.0 provides four
distinct interfaces to grant communication for any possible
architecture while preserving interoperability. Interfaces con-
tain virtual functions to support data transaction between IP
cores without concerning about how this communication is
going to be implemented in lower levels. Coming down the
abstraction levels, we have to get involved to implementations
rather than declarations. Any TLM-2.0 interface should be
mapped to a well defined channel which implements the
communication details of the transaction. In other words, as
channels include the interface’s function implementation and
provide us with more accuracy at the expense of an increase in
complexity and simulation time, we can see them as the next
step of refining TLM-2.0 designs. This approach is shown in
Figure 1.

The main idea of this paper is to provide an Intermediate
Layer which contains the necessary details needed to map a
design to RTL. [1] presents TLM-1.0 as an abstraction level
lower than TLM-2.0. It benefits from channels to transfer data
between and in main cores through ports and exports. Tools

are available to map TLM-1.0 descriptions to lower level
HDLs such as VHDL or synthesizable SystemC [4, 5]. So it
can be seen as an intermediate level between RTL and TLM-
2.0 that can be used to synthesize TLM-2.0 designs.

In this paper, we focus on DMI, and introduce algorithms to
map this interface to lower level TLM-1.0 structures.

3.1. Direct memory interface

Using Direct Memory Interface, or DMI, an initiator can get
direct access to an area of memory owned by a target. In this
case, accessing that memory can be done using a direct poin-
ter rather than through the transport interface.

DMI uses both forward and backward paths in which the
first is from initiator to target, used to request a read, write or
both accesses to a given address specified by an initiator, and
returns a reference to a DMI descriptor of type tlm_dmi,
which contains the bounds of the DMI region. The target
would use the backward path to invalidate the DMI pointer.

Getting a step down to the intermediate level, we can see
DMI as a DMA channel which requests a bus and transfers
data through the granted bus. Figure 6 shows this mapping
process. A channel with the functionality of the classic DMA
would be inserted between the initiator and interconnect or the
target module.

The custom DMA channel has the responsibility of direct
reading and writing from and to the target, while bypassing all
interconnects. It also has a port to communicate with inter-
connect to get the bus access. As other modules may read or
write to the target through transport interface, an arbiter is also
required to control which device is granted the bus and has
access to target. We prove that the designed channel is faster
in simulation in comparison with the request-response channel
and can suite in all the cases that DMI interface can be used.

3.1.1. DMA channel implementation

To implement the DMA channel, we take advantage of
TLM-1.0 hierarchical channels which are inherited from
sc_module. The described DMA custom hierarchical channel
has two exports to send and receive data from device con-
nected to it. It also has an embedded arbiter to arbitrate be-
tween the DMA channel and the module immediately con-
nected to the target component. In addition, it has another two
exports to communicate with the interconnect modules or the
processor. The exports of the DMA channel are demonstrated
in Table 1.

Table 1 DMA Channel input and output ports and exports

Type Name
sc_export input_port
sc_export output_port
sc_port arbiter_input
sc_port arbiter_output
sc_export dma_to_interconnect_fw
sc_export dma_to_interconnect_bw

The arbiter_output port connects the embedded arbiter in

DMA channel to the target component. The arbiter_input port,
connects interconnect immediately connected to the target
component to the embedded arbiter.

The DMA channel receives data from the device connected
to it. When the device requests a “read” or “write” from
memory, the DMA sends a bus request to the arbiter.

Figure 2. Direct Memory Interface mapping approach

3.1.2. DMI mapping algorithm
The DMI mapping algorithm should be able to recognize

three different components: initiator, target, and the compo-
nent immediately connected to the target. The initial step of
the mapping algorithm that implements the interconnections
of Figure 2 is shown in Figure 3.

1 int k = 0; int l = 0;
2 for (int i = 0; i < LUT.number_of_rows; i++)
3 if (LUT[i].DMI) {
4 RLUT[K].port = Concat(LUT[i].Socket, "_fw");
5 RLUT[k+1].port = Concat(LUT[i].Socket, "_bw");
6 if (!LUT[I].type) { //initiator socket
7 RLUT[k].interface = "tlm_blocking_put_if";
8 RLUT[k+1].interface = "tlm_blocking_get_if";
9 if (component is an initiator component) { Step 1 }
10 else if (component is connected to the target) { Step 2 }
11 else { Step 3 }
12 }
13 else { //target port
14 if (component is a target component) { Step 4 }
15 else { Step 5 }
16 k += 2;
17 }
18 }

Figure 3. Initial Step in mapping DMI interface to DMA channel

An initiator with an initiator socket (Step 1): As shown in

Figure 4, the initiator should be bound to the DMA channel to
request a direct memory access.

1 if (component is an initiator component) {
2 define a DMA channel (dma_ch);
3 for (int j=0; j<binding.length(); j++)
4 if (binding[j].initiator == LUT[i].socket) {
5 Rbinding[l].port0 = dma_ch.input;
6 Rbinding[l].port1 = RLUT[k].port;
7 Rbinding[l+1].port0 = dma_ch. dma_to_interconnect_fw;
8 Rbinding[l+1].port1 = Concat(binding[j].target, "_fw");
9 Rbinding[l+2].port0 = dma_ch. dma_to_interconnect_bw;

10 Rbinding[l+2].port1 = Concat(binding[j].target, "_bw");
11 Rbinding[l+3].port0 = dma_ch.output_port;
12 Rbinding[l+3].port1 = RLUT[k+1].port;
13 l+= 4;
14 }
15 }

Figure 4. Step 1

The component is directly connected to target component
and the socket is an initiator socket (Step 2): This component
is usually a processor which has direct access to the memory.
In this case, in lower levels of abstraction, the component
should be connected to the arbiter rather than the target to be
able to grant the bus to the DMA when needed. The imple-
mentation of this process is shown in Figure 5.

1 if (component is connected to the target component) {
2 define a tlm_req_rsp_channels (req_rsp_ch);
3 for (int j=0; j<binding.length(); j++)
4 if (binding[j].initiator == LUT[i].socket) {
5 Rbinding[l].port0 = dma_ch.arbiter_input_port;
6 Rbinding[l].port1 = RLUT[k].port;
7 Rbinding[l+1].port0 = tlm_req_rsp_cha.put_rsp_export;
8 Rbinding[l+1].port1 = Concat(binding[j].target, "_bw");
9 Rbinding[l+2].port0 = tlm_req_rsp_ch.get_rsp_export;
10 Rbinding[l+2].port1 = RLUT[k+1].port;
11 l += 3;
12 }
13 }

Figure 5. Step 2

Any other component with an initiator socket (Step 3): In
this case, the path is the normal transport path which uses re-
quest-response channels to communicate. The algorithm is
shown in Figure 6.

1 else { // components rather than the initiator and those
 //directly connected to the target
2 define a tlm_req_rsp_channels (req_rsp_ch);
3 for (int j=0; j<binding.length(); j++)
4 if (binding[j].initiator == LUT[i].socket) {
5 Rbinding[l].port0 = tlm_req_rsp_ch.put_req_export;
6 Rbinding[l].port1 = RLUT[k].port;
7 Rbinding[l+1].port0 = tlm_req_rsp_ch.get_req_export;
8 Rbinding[l+1].port1 = Concat(binding[j].target, "_fw");
9 Rbinding[l+2].port0 = tlm_req_rsp_ch.put_rsp_export;
10 Rbinding[l+2].port1 = Concat(binding[j].target, "_bw");
11 Rbinding[l+3].port0 = tlm_req_rsp_ch.get_rsp_export;
12 Rbinding[l+3].port1 = RLUT[k+1].port;
13 l+= 4;
14 }
15 }

Figure 6. Step 3

The component is a target component and the socket is a
target socket (Step 4): In this case, the component is the end
target responsible for the reads or writes. So, it should be
bound to the arbiter output to get the required information for
the requested action from the processor or the DMA. This is
implemented in Figure 7.

1 if (component is a target component)
2 {
3 Rbinding[l].port0 = dma_channel.arbiter_output;
4 Rbinding[l].port1 = concat (LUT[i].Socket, "_fw");
5 l++;

6 }
Figure 7. Step 4

Any other component with target socket (Step 5): In this

case, the components are interconnects which communicate
with their adjacent components via transport channels. This is
shown in Figure 8.

1 else { //Components except the target component
2 RLUT[k].interface = "tlm_get_if";
3 RLUT[k+1].interface = "tlm_put_if";
4 find the socket’s functionality in nb_transport_fw function
5 define a function with the name conat("run_",LUT[i].Socket,
 "_fw") and put the gained functionality there
6 find the socket’s functionality in nb_transport_bw function
7 define a function with the name conat("run_",LUT[i].Socket,
 "_bw") and put the gained functionality there
8 }

Figure 8. Step 5

4. Case Study
To examining our translations of DMI, test case shown in

Figure 9 is used which uses a DMI between an I/O device and
a memory connected to a processor. The DMI shown is trans-
lated to TLM-2.0 channels using our proposed procedures.

Figure 9. Using DMI interface to model hardware designs

5. Experimental Results

We evaluated our proposed approach for two criteria: mod-
eling effort and simulation speed. To do the evaluation, we
first implemented the architecture described in Section 4 in
TLM-2.0 loosely timed coding style and then synthesized the
design’s interfaces using the algorithm proposed in Section 3.
The modeling effort evaluated by the number of lines of code
is shown in Table 2.

Table 2. Measuring modeling effort with lines of code

 Original Mod-
el(lines)

Synthesized
Model (lines)

Modeling Effort
(%)

 .h .cpp .h .cpp .h .cpp

Dma 49 94 53 131 8 28
Read processor 29 91 36 95 19 4
Write Processor 32 48 34 55 6 13
Memory 41 55 46 118 11 53
CPU 42 101 45 119 7 15

As shown in Table 2, with the increase in the number of in-

itiator and target sockets and also in the complexity of func-
tionality, the proposed method reasonably reduces the model-
ing effort. As it can easily be calculated, the overall modeling
effort reduction is 21% for the header files and 38% for source

files, which will decrease the time to market of the product for
large designs. Therefore, automating the mapping process
using the proposed algorithm will provide us with gain of
30%.

Using the DMI will speed up the design simulation. Figure
10 shows that with the increase in the number of routed pack-
ets, the DMI is much faster than the DMA channel. This im-
plies that we can use our DMA channel synthesis rules to save
simulation time without having to manually perform the trans-
lation process.

Figure 10. Simulation time comparison of DMI versus DMA channel

6. Conclusion and Future Works
In this paper, we have presented a method to synthesize the

loosely-timed interfaces of the TLM-2.0 standard by defining
an intermediate layer which contains necessary details for
RTL synthesis. TLM-1.0 components were chosen to describe
the intermediate layer. We proposed algorithms to map the
interfaces in TLM-2.0 standard to TLM-1.0 channels and ex-
perimentally verify the correctness of the algorithms. In par-
ticular, the mapped TLM-2.0 interfaces on TLM-1.0 channels
were functionally equivalent.

The proposed method simplifies the transition from transac-
tion level to lower level implementations and speeds up the
whole process. Further research activities are aimed at intro-
ducing methods to synthesize the intermediate level to RTL.
Applying the proposed approach to other parts of the TLM-
2.0 components rather than interfaces is an additional goal of
our future works.

7. References

[1] M. Montoreano. “Transaction Level Modeling using OSCI TLM 2.0”,
Technical report, Open SystemC Initiative, 31 May 2007.

[2] F. Ghenassia, Transaction Level Modeling with SystemC. Springer,
Dordrecht, Netherlands, 2005.

[3] J. Cornet, F. Maraninchi, L. M. Contoz, “A Method for the Efficient
Development of Timed and Untimed Transaction-Level Models of Sys-
tems-on-Chip”, IEEE Design & Test in Europe 2008 (DATE 2008), pp.
9-14.

[4] http://www.forteds.com/products/tlmsynthesis.asp, October 26, 2008.
[5] http://utcadlab.net/Projects.aspx, October 26, 2008.
[6] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, Second

Edition, McGraw-Hill, 1998.
[7] SystemC 2.0.1 Language Reference Manual Revision 1.0, Open SystemC

Initiative, San Jose, California, 2003.
[8] Open SystemC Initiative, http://www.systemC.org, November 16, 2008.
[9] M. Montoreano, “Transaction Level Modeling using OSCI TLM 2.0”,

Synopsys, Inc. May 31, 2007.
[10] A. Rose, S. Swan, J. Pierce, and J. Fernandez, “Transaction Level Model-

ing in SystemC”, OSCI TLM Working Group, 2004.
[11] D. C. Black, J. Donovan, B. Bunton, SystemC from the Ground Up,

Kluwer Academic Publishers, 2004.

