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Transient simulation of complex high-speed
channels via Waveform Relaxation
Vittorio Loggia, Stefano Grivet-Talocia,Senior Member, IEEE, Haisheng Hu

Abstract—This paper presents a class of numerical schemes
for fast transient simulation of electrically long and complex
linear channels terminated by linear or nonlinear networks. The
common denominator of all schemes is Waveform Relaxation.
Domain decomposition approaches based on Longitudinal and
Transverse Partitioning are pursued, leading to various iterative
methods characterized by different properties and numerical
efficiency. For each scheme, we present a detailed convergence
analysis and a set of numerical results obtained on industrial
benchmarks. The main contribution of this work is a novel the-
oretical framework based on a combination of Longitudinal and
Transverse Relaxation, leading to particularly efficient simula-
tions when combined with compact channel representations based
on Delay-Rational Macromodels. Our prototypal implementation
outperforms SPICE solvers, with speedup of up to two orders of
magnitude.

Index Terms—Macromodeling, Rational Approximations, De-
lay Extraction, Scattering Parameters, Transmission Lines, High-
Speed Interconnects, Waveform Relaxation, Transverse Partition-
ing, Longitudinal Partitioning

I. I NTRODUCTION

The electrical verification of chip-to-chip communication
links requires extensive transient simulations [1], [2]. This
kind of analysis is quite demanding, due to several reasons.
First, the electrical length of such structures is usually very
large. The impulse responses of the channel exploit long
memory effects due to the finite propagation speed along
the channel path, associated to spurious signal reflections
from various discontinuities and terminations. Second, the
number of coupled ports that need to be considered is large
as well, since all possible signal degradation effects needto
be taken into account. Third, typical drivers and receivers
for high-speed signaling are nonlinear and dynamic in nature
and almost invariably include sophisticated pre-emphasisand
equalization features. Accurate and efficient transient analysis
of electrically large multiport channels with nonlinear termi-
nations poses significant challenges, which we want to address
in this work.

The native characterization of linear multiport channels is
usually available as a table of frequency-domain scattering
samples. Thus, some form of frequency- to time-domain
conversion is required. Leading approaches perform drastic
simplifications by assuming linear models for drivers and
receivers. This approach enables a time-domain conversion
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using standard FFT approaches and enables linear convolution-
based simulation [1], [2], [3], [4]. Although global metrics
such as eye diagram opening and Bit Error Rate (BER)
statistics can be computed very fast, the amount of inaccuracy
introduced by the linearity assumption is sometimes difficult
to assess, thus possibly compromising the reliability and the
representativeness of the results.

We concentrate here on circuit-based solution methods,
which natively allow the direct inclusion of nonlinear ter-
minations. Time-domain conversion of the channel scattering
samples is here performed using a suitable macromodeling
approach. Due to the electrical length, standard rational macro-
modeling is ruled out for obvious complexity reasons [5]–[12].
Standard macromodels based on the Mutliconductor Transmis-
sion Line (MTL) topology [13]–[19] are also not adequate,
since chip-to-chip links include several discontinuities(vias,
connectors, irregular routing) that do not fit in the MTL
structure. Therefore, we will adopt the more general Delayed
Rational Macromodel (DRM) form [20]–[25].

The port-to-port transfer functions of the channel are repre-
sented in DRM’s as linear combinations of rational functions
weighted by suitable time-delay operators. The former aim at
representing attenuation and dispersion effects, while the latter
are responsible for a physics-consistent representation of the
finite propagation speed along the path, including the effects
of multiple discontinuities causing signal reflections. DRM’s
can be efficiently identified using black-box fitting algorithms
from tabulated frequency samples, and several methods are
available for checking and enforcing their passivity [26]–[29].

Extensive application of DRM’s for channel qualification
has been documented in [30], [31], where the transient sim-
ulation was performed using standard solvers of the SPICE
class. However, there is still a significant margin for improving
numerical efficiency. In fact, it can be observed that direct
SPICE realizations of interconnect models do not scale well
with the number of coupled ports. This is true for wide MTL
structures, as documented in [32], [33], [34], but also for
more general multiport channels. They are both characterized
by a set of small and weakly coupled subsystems, consisting
of single interconnects providing direct electrical connection
between few (two) ports. This topology calls for Waveform
Relaxation (WR) approaches [1], [17], [32]–[51], which first
solve each subsystem independently and then update the
solution by iteratively correcting the estimates of the coupling
terms.

This work presents several Waveform Relaxation ap-
proaches for the transient simulation of high-speed channels
characterized as DRM’s and terminated by nonlinear circuits.
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Fig. 1. System topology.

Transverse partitioning [32], [33], [34] is applied to decouple
individual channels, and longitudinal partitioning [41],[42]
is applied to decouple the individual channels from their
terminations. These two approaches have been extensively
studied and applied in the context of MTL’s. In this work,
we propose a combination of the two partitioning schemes
into a two-level Waveform Relaxation scheme, which proves
particularly efficient when applied to channel models in DRM
form. The numerical results show that the proposed schemes
outperform SPICE by up to two orders of magnitude in
simulation speed. This work provides a complete theoretical
framework supporting the preliminary results of [51].

This work is organized as follows. Section II states the
main problem, sets the notation, and presents the benchmark
structures that will be used for the numerical tests. Section III
overviews DRM’s in their frequency and time-domain repre-
sentation and presents the main recursive convolution engine
forming the computational core of all schemes. Section IV
presents a Waveform Relaxation scheme based on Longi-
tudinal Partitioning (WR-LP), which decouples the channel
from its termination networks. Section V introduces another
Waveform Relaxation scheme based on Transverse Partitioning
(WR-TP), aimed at decoupling individual channels through
the introduction of suitable relaxation sources. Section VI
combines the WR-LP and WR-TP algorithms into a two-
level Waveform Relaxation scheme, which we denote as WR-
LPTP. Convergence of all schemes is analyzed, and several
transient results demonstrate the accuracy and efficiency of
our implementations.

II. PROBLEM STATEMENT

This section states the main simulation problem that we
address in this work and introduces all the benchmark cases
that will be analyzed, highlighting main channel features
and termination schemes. The reference structure is a fully-
coupledP -port channel terminated by single-ended drivers and
receivers. Figure 1 depicts this structure for the caseP = 4,
corresponding to two coupled channels only (all benchmarks
that will be analyzed haveP = 18 ports, see Sec. II-A). We
make the assumption that the only coupling between different
nets occurs within the channel, with no explicit coupling
between individual drivers and receivers. This case is quite
common in practical applications. The single terminationscan
be nonlinear and/or dynamic.

Throughout this work, we will denote witha(t) and b(t)
the transient scattering wave vectors that are incident to and
reflected by the channel, respectively. We have the following

TABLE I
MAIN PARAMETERS OF THE TEST CASES.

Case Ports Samples Bandwidth
I 18 4096 20 GHz
II 18 1024 20 GHz
III 18 2043 10 GHz
IV 18 1024 20 GHz

problem formulation
{

b(t) = h(t) ∗ a(t)
Fq

(
aq(t); bq(t); t;

d
dt

)
= 0 , q = 1, . . . , P

(1)

where the first row represents the convolution between tran-
sient scattering waves entering the channel and the channel
impulse response matrixh(t), and the second row collects all
possibly nonlinear and dynamic equations representing drivers
and receivers. Both channel and termination equations willbe
assumed to be explicit in their respective reflected scattering
waves. The proposed WR schemes will thus be presented with
the more abstract notation

{
b = Ha ,
a = F (b) ,

(2)

where the linear operatorH represents the channel, and where
the termination equations have been written in explicit form
through a suitable operatorF . The latter is diagonal (it couples
only impinging and reflected waves at a single port) but can be
nonlinear, dynamic and possibly includes time-varying source
terms as in the case of drivers.

Different vector and matrix norms will be used throughout
this paper. The notation‖ ‖ will stand for the euclidean norm
of vectors‖x‖ = (

∑
k |xk|

2)1/2 and the corresponding in-
duced (spectral) norm for matrices‖A‖ = (λmax{A

H
A})1/2,

whereλmax is the maximum eigenvalue of its matrix argu-
ment. Convergence of WR iterations will be assessed through
the norm‖δ‖∞ = maxt,k |δk(t)|, wherek denotes thek-th
component andt is the discrete time variable.

A. Benchmark channels

The numerical simulation schemes will be tested and ana-
lyzed using a number of industrial benchmark cases (courtesy
of IBM). These benchmarks are depicted in Fig. 2. Case I is
a simple structure with two coupled lossy transmission line
segments with embedded discontinuities due to a via field.
The other structures are chip-to-chip links in real products,
characterized by various topologies and electrical length. The
relevant parameters of the raw specification of each channel
(bandwidth, number of ports, and number of available fre-
quency samples for each element of the scattering matrix) are
summarized in Table I. A detailed description of the model
extraction and characterization for these channels is postponed
to Sec. III.

B. Termination schemes

We will consider various channel termination schemes,
summarized in Table II. Terminations TC-A and TC-C consist
of linear Thevenin voltage drivers with a series resistanceRS
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Fig. 2. Graphical illustration of the channel benchmarks.

TABLE II
TERMINATION SCHEMES.

RS CL Tr,f Tbit Vmax

TC-A 40Ω 1pF 66ps 500ps 1.1 V
TC-B – 1pF 200ps 400ps 1.8 V
TC-C 10Ω 10pF 66ps 500ps 1.1 V

placed at the near-end (odd-numbered) ports, and capacitive
receiversCL at the far-end (even-numbered) ports. Termina-
tion TC-B uses for all drivers suitable nonlinear behavioral
macromodels of the MπLog class [52]. The driver character-
istics can be easily cast in the compact form (1) or (2), second
row. A detailed description of these macromodels can be found
in [52] and references therein. We remark that this choice for
nonlinear terminations is not restrictive, and other behavioral
or circuit-based representations can be used.

In all transient simulations, we will excite the victim channel
(driver at port 9, receiver at port 10) with a pseudo-random bit
sequence (PRBS). Synchronous clock aggressor signals will
instead be applied to the near-end (odd-numbered ports except
port 9) in order to maximize the induced crosstalk at the victim
receiver. Table II lists the main features of the above signals

in terms of rise/fall timeTr,f , bit timeTbit, and voltage swing
Vmax.

III. D ELAYED RATIONAL MACROMODELS AND RECURSIVE

CONVOLUTIONS

A. Delayed rational macromodels

Each channel structure is known via its sampled scattering
matrix Ĥl ∈ CP×P at the discrete frequenciesωl, l =
1, . . . , L. A Delay-Rational Macromodel (DRM) [20]–[25] is
given by the closed-form scattering matrixH(s), with entries

Hi,j(s) =

Mi,j∑

m=0

Qi,j
m (s)e−sτ i,j

m +Di,j (3)

wheres is the Laplace variable,i, j denote output and input
port, respectively, corresponding to the selected scattering
response,τ i,jm are delays corresponding to the various arrival
times of the signal reflections induced by an input unit pulse,
and

Qi,j
m (s) =

Ni,j
m∑

n=1

Ri,j
mn

s− pi,jmn

(4)

are rational coefficients representing other effects such as
attenuation and dispersion. The caseM i,j = 1, τ i,j1 = 0 corre-
sponds to a standard (delayless) purely rational macromodel.

The identification of (3) from the sampleŝHl, i.e., solving

min ‖H(jωl)− Ĥl‖ , (5)

where the minimum is taken over the unknown delaysτ i,jm and
matrix rational functionsQi,j

m (s) is a very challenging task.
However, good solutions via Delayed Vector Fitting (DVF) or
Delayed Sanathanan-Koerner (DSK) iterations are available,
see [23]. These techniques are based on a two-step algorithm.
The first stage consists in the identification of the delays. This
task is accomplished by using a time-frequency decomposition
of the sampled scattering matrix, which reveals the locations
of dominant unknown delaysτ i,jm . Once they are known, a
linearized least-squares problem is used for the identification
of poles and residues of the rational transfer functionsQi,j

m (s).
This second step is a direct generalization of the standard
Vector Fitting (VF) algorithm used for lumped models.

Delay-rational curve fitting is not able to preserve the
passivity of the raw data per se. This fundamental physical
property requires that no energy can be generated by the
macromodel under any circumstance. It is well known that
non-passive macromodels may lead to unstable results when
used in transient simulations, even when their terminations are
passive [53], [54]. Therefore, the model must be checked for
passivity and, if passivity is violated within some frequency
bands, a suitable passivity enforcement process must be ap-
plied. In case all poles of all rational coefficientsQi,j

m (s) have
a strictly negative real part (this condition is easily enforced by
any standard rational identification scheme such as VF, DVF,
or DSK), and if Qi,j

m (s) is strictly proper, it can be shown [26]
that the model (3) is passive if and only if

(I−H
H(jω)H(jω)) > 0, ∀ω (6)
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Fig. 3. Maximum singular value plotted versus frequency forall channel
models.

or, equivalently, when all the singular values ofS(jω) do not
exceed one at any frequency. If this condition is violated,
passivity enforcement is mandatory. Several approaches are
available [26]–[29] for perturbing the model coefficients in
order to enforce the condition (6). All DRM’s that are used in
this work have been checked (see Fig. 3) and are guaranteed
passive.

B. Time-domain DRM representation

One of the key ingredients of the proposed WR schemes is
the efficient application of the DRM operator (3) to arbitrary
time-domain signals. It turns out that this operator has a
closed-form representation in time-domain. In general, the
application of a DRM operator model to a generic inputx(t)
leads to a time-domain convolution

Y (s) = H(s) ·X(s)
L

−1

−→ y(t) = h(t) ∗ x(t) , (7)

whereL−1 is the inverse Laplace operator. If we consider a
single componentyi(t) of the corresponding output, we get
the linear superposition

yi(t) =

P∑

j=0

∫ t

0

hi,j(t− θ)xj(θ) dθ (8)

where

hi,j(t) =

Mi,j∑

m=0

Ni,j
m∑

n=1

Ri,j
mne

pi,j
mn(t−τ i,j

m )u(t−τ i,jm )+Di,jδ(t) (9)

is the inverse Laplace transform of (3). Due to the exponential
nature of the individual terms in (9), the numerical evaluation
of (8) can be formulated as a recursive expression, which can
be computed significantly faster than a direct implementation
of the integral. As we will show below, this fast evaluation
is equivalent to casting (8) as an Infinite Impulse Response
(IIR) filter, provided that a uniform sampling of the time axis
is performed [55], [56].

C. Recursive convolution

We assume a uniform time discretization stepδ, so that
all input and output signals are represented and computed
over a discrete set of time pointstk = kδ, k = 0, 1, . . . .
The inputsx(t) will be represented as piecewise linear signals
interpolating their samplesxk = x(kδ) according to

x(t) = xk
t− tk−1

δ
+ xk−1

tk − t

δ
, ∀t ∈ [tk−1, tk] , (10)

and similarly for the outputsy(t).
For simplicity, we present the main idea through a scalar

impulse response with a single-pole (ℜ{p} < 0) and a single-
delayτ

h(t) = ep(t−τ)u(t− τ) , (11)

and we will drop all superscriptsi,j and subscriptsm,n. The
convolution of this impulse response with an arbitrary input
signalx(t), evaluated att = tk reads

y(tk) ≃ yk = u(tk − τ)

∫ tk−τ

0

ep(tk−τ−θ)x(θ) dθ. (12)

Restricting our analysis to the casetk ≥ τ (if tk < τ , the
corresponding outputyk vanishes), it is straightforward to
prove that

yk = epδyk−1 +

∫ tk−τ

tk−1−τ

ep(tk−τ−θ)x(θ) dθ. (13)

The integral in (13) provides the update to the solution due to
the input contribution in the time interval[tk−1 − τ, tk − τ ].
In case the delayτ is an integer multiple of the discretization
step δ, the evaluation of (13) is trivial. If instead the delay
is arbitrary, special care is needed. To cover both cases, we
decompose the delayτ as

τ = k̄δ + τǫ, where k̄ =
⌊τ
δ

⌋
(14)

denotes the integral part of the delay and where the remainder
is such thatτǫ < δ. Depending on the presence of a remainder
τǫ > 0, the evaluation of (13) may require the values ofx(t)
also in the interval[tk−k̄−2, tk−k̄−1] in addition to the interval
[tk−k̄−1, tk−k̄]. Using the linear interpolation scheme in (10),
we obtain the following recurrence expression

yk = α0yk−1 + β0x(tk−k̄) + β1x(tk−1−k̄) + β2x(tk−2−k̄) ,
(15)

corresponding to a first-order IIR filter with three input taps
and weights

α0 = ew

β0 =
q − w + ew−q − 1

w p

β1 =
−q + wew − qew + 1− 2ew−q + ew

w p

β2 =
qew + ew−q − ew

w p

(16)

where
w = p δ and q = τǫ p (17)

If the remainderτǫ = 0, we have thatq = 0, β2 = 0, and the
other coefficients match the results of [9], see also [56]. Thus,
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we see that (16)-(17) generalize standard recurrence relations
to the case with delays that are not multiples of the time
discretization step.

IV. WR-LP: WAVEFORM RELAXATION VIA

LONGITUDINAL PARTITIONING

In this section, we present a Waveform Relaxation via
Longitudinal Partitioning (WR-LP) scheme [41], [42] for the
solution of problem (2). A direct solution in time domain
would require to solve a fully coupled and possibly non-linear
system at any time step for both unknown vectorsa, b. In
order to avoid this operation, we perform a cut at all channel
ports in order to separate the channel from its terminations,
and we connect to each pair of terminals of both channel and
terminations a suitable decoupling source. Figure 4 provides
a graphical illustration of the partitioning scheme.

The decoupling sources must be such that the resulting
system is fully equivalent to the original one. Consideringeach
port individually, the corresponding decoupling source must
“connect” the channel to the corresponding termination circuit
by making sure that both incident and reflected scattering
waves match at both terminals (Fig. 5, left panel). Using the
definition

a = v +R0i, b = v −R0i (18)

of the (voltage) wavesa, b in terms of port voltagev and
current i and interpreting these as Kirchhoff Voltage Laws,
leads to the two circuit branches depicted in the right panelof
Fig. 5. If the decoupling resistanceR0 matches the reference
port impedance used in the definition of the scattering repre-
sentation for both channel and terminations, then the solution
of all circuit partitions simply requires a forward evaluation
of channel and termination operators. Indeed, each port results
perfectly matched, implying no reflections from the decoupling
networks. We will use this strategy throughout this work.

Waveform Relaxation is now introduced by using the de-
coupling blocks as relaxation sources. Equivalently, we define
an iteration indexν and we relax the instantaneous coupling
of the two equations in (2) by delaying one of the terms by
one iteration. We obtain the following system, to be solved at

any iteration {
bν = Haν−1 ,
aν = F (bν) .

(19)

In this system, the unknownsaν andbν denote the complete
time evolution of the incident and reflected waves at iteration
ν. Thanks to the decoupling and relaxation process, each
equation can be solved independently for the entire time span
of the simulation. The iterative process starts with zero initial
conditions,a0 = 0 and stops when the approximation error
estimate

δν = aν − aν−1 (20)

is below a prescribed threshold.
The scheme is effective when the evaluation of the operators

H andF is achieved very fast, and when few iterations are
required for convergence. This latter issue is addressed in
Section IV-A, whereas the efficient application of the operators
in time-domain is guaranteed by the derivations in Sec. III,
which show that these operators can be cast as recursive
convolutions (channel) or recursive and possibly nonlinear
filters (terminations). We further remark that the computation
of aν using the second row in (19) corresponds to solving each
individual termination circuit connected to a linear resistive
Thevenin load, as depicted in Fig. 5, with an internal source
being known from previous iteration. The pseudocode of the
WR-LP scheme is outlined in algorithm 1.

Algorithm 1 Pseudocode of WR-LP algorithm
1: Set initial conditions:a0 = 0

2: for ν = 1 to νmax do
3: Apply channel operator:bν = Haν−1

4: Solve terminations:aν = F (bν)
5: if ||aν − aν−1||∞ < ǫ then
6: Break
7: end if
8: end for

A. Convergence Analysis

In this section, we analyze the convergence properties of
the WR-LP algorithm. The derivations will be performed in
the frequency domain under the assumption of linear termina-
tions. We will therefore adopt a different (boldface uppercase)
notation, since all matrices and vectors will be assumed to
be functions of the Laplace-domain variables, which will be
omitted. The WR-LP system becomes

{
Bν = HAν−1 ,
Aν = ΓBν +Υ .

(21)

whereA = A(s), B = B(s) are, respectively, incident and
reflected scattering waves into the channel,H = H(s) is the
scattering matrix of the channel,Γ = Γ(s) is the scattering
matrix of the linear terminations, andΥ = Υ(s) denotes the
source vector embedded in the terminations.

The exact solution of system (21) can be computed as its
fixed point by settingν → ∞ and reads

Aexact = (I− ΓH)
−1

Υ . (22)
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This solution will be used to verify numerical consistency and
convergence of the WR-LP scheme. AfterI iterations, we
otbain the following solution

AI = ΓHAI−1 +Υ =

I−1∑

ν=0

(ΓH)
ν
Υ . (23)

As an error estimate for detecting convergence, we use the
difference between two consecutive iterations

∆I = AI −AI−1 (24)

= (ΓH)
I−1

Υ = (ΓH)
I−1

(I− ΓH)Aexact .

We can also compute in closed-form the error at theI-th
iteration with respect to the exact solution. This error is

EI = AI −Aexact = − (ΓH)
I
Aexact . (25)

The consistency of the WR-LP algorithm is easily analyzed
by taking the limit of the solution forI → ∞

A∞ =
∞∑

i=0

(ΓH)i Υ (26)

which matches (22) when the spectral radius of the iteration
operator is less than one at any frequency

ρmax{ΓH} = max
ω,i

|λi{Γ(jω)H(jω)}| < 1 , (27)

whereλi{·} denotes thei-th eigenvalue value of its matrix
argument. Condition (27) is easy to check via a suitable
sampling process. Since any frequency sampling is not able to
check all possible frequencies, a robust implementation should
be based on some accuracy-controlled adaptive sampling
scheme similar to [57]. The same condition (27) guarantees
convergence of the WR-LP scheme, since it implies that both
error EI and error estimate∆I tend to zero forI → ∞.
Furthermore, the error estimate∆I has the same asymptotic
behavior as the exact errorEI and it is thus proven as a reliable
indicator for convergence to be used to stop WR-LP iterations
(line 5 in Algorithm 1). Since

ρmax{ΓH} ≤ ||ΓH|| ≤ ||Γ|| · ||H|| , (28)

a sufficient condition for convergence of WR-LP is that both
channel and terminations are strictly passive, i.e.,

||Γ|| < 1 and ||H|| < 1 . (29)

These conditions are verified if both channel and terminations
are characterized by some amount of dissipativity at any
frequency. However, this is not strictly neecessary for WR-
LP convergence, since the scheme may converge even if the
terminations are not passive, provided that condition (27)
holds. More details on convergence of WR-LP schemes as
applied to transmission lines can be found in [42].

B. Numerical results

We first investigate the spectral radius of the iteration
operators for each channel with different termination schemes,
in order to assess the convergence of the WR-LP scheme.
Figures 6-7 report the frequency-dependent spectral radius
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Fig. 6. Spectral radius of operatorΓH plotted versus frequency for all cases
with TC-A terminations.
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Fig. 7. Spectral radius of operatorΓH plotted versus frequency for all cases
with TC-C terminations.

ρ{ΓH} for the linear termination cases TC-A and TC-C,
respectively. The various panels show that this norm is less
than one for all cases, thus implying convergence of WR-LP.

We now illustrate the good convergence properties of the
proposed WR-LP scheme. We simulated the Case II channel
with terminations TC-A for a 25-bit long excitation. Figure8
shows the individual waveforms obtained at each WR iteration,
so that the fast convergence can be appreciated. Figure 9
reports a validation of this solution with a reference SPICE
simulation, no visible difference can be noted.

The same simulation was repeated for all channels, with
different linear and nonlinear terminations. The results are
summarized in Table III, where simulation times and number
of corresponding WR-LP iterations are reported. Analyzingthe
results, we can see that all cases converge in few iterationsto
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Fig. 8. Case II (TC-A terminations) solution at the first three WR-LP
iterations (black dotted line) compared to the exact solution (red line).
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Fig. 9. Case II with TC-A terminations. Comparison between SPICE and
WR-LP results for the voltage at the input of victim channel.The maximum
deviation among all computed time samples and port voltagesis 2.6×10−3 .

TABLE III
T IME AND NUMBER ITERATIONS REACHED FOR EACH SIMULATION.

Channel Terminations Time, s Iterations Error
Case I TC-A 14.5 7 < 10−6

Case II TC-A 21.4 11 < 10−6

Case III TC-A 7.2 6 < 10−6

Case IV TC-A 13.1 11 < 10−6

Case I TC-B 33.0 8 < 10−6

Case II TC-B 41.1 11 < 10−6

Case III TC-B 23.7 8 < 10−6

Case IV TC-B 27.3 12 < 10−6
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Fig. 10. WR-LP error estimateδν plotted vs iteration count for each case
and for different termination schemes.

a maximum error less than the prescribed threshold10−6.
The recursive convolution predicts that the overall simu-

lation time should scale linearly with the number of time
steps being computed. In order to validate this conjecture,we
performed various simulations of Case II with TC-A termina-
tions using different time step sizes and different numbersof
simulated bits. In order to stress the algorithm, the threshold
ǫ = 10−9 was used to stop WR-LP iterations. The results,
collected in Table IV, confirm this linear dependence.

V. WR-TP: WAVEFORM RELAXATION VIA TRANSVERSE

PARTITIONING

In current technologies, high-speed channels for chip-to-
chip communication are almost invariably point-to-point con-
nections. A single driver is electrically connected to a single
receiver. In case of several interconnects running parallel or in

TABLE IV
SIMULATION TIME AND NUMBER OF WR-LP ITERATIONS REQUIRED FOR

DIFFERENT TIME-STEPS AND NUMBER OF SIMULATED BITS.

Bits δ, ps Time, s Iterations

10
25 13.1 10
12 19.4 12
6 25.4 12

50
25 66.1 22
12 116.6 25
6 218.9 26

100
25 99.7 22
12 211.7 25
6 486.9 26
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D3−4
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Fig. 11. Graphical illustration of WR-TP partitioning scheme. Black boxes
denote relaxation/decoupling sources.

close proximity, there is usually no direct electrical connection
between adjacent channels, and inter-channel coupling is only
due to near-field electromagnetic interaction. These properties
imply a particular block-structure in the scattering matrix of
the fully-coupled channel. Direct transmission and reflection
coefficients are usually much larger than crosstalk coefficients.

The above considerations lead to the conclusion that the
electrical solution of the fully-coupled channel can be in-
terpreted as a perturbation of the solution computed on the
set of individual channels with all couplings removed. The
amount of perturbation that is required to correct the decoupled
solution in order to retrieve the exact solution is expected
to be small. These are the main motivations for applying
a Transverse Partitioning in the framework of a Waveform
Relaxation scheme, which will be denoted as WR-TP.

We proceed as in Sec. IV. We first devise a transverse
partitioning scheme [32], [33], [34] in order to transform the
original problem as a set of separate subsystems, by recast-
ing the interactions between these subsystems as dedicated
coupling sources. Figure 11 provides a graphical illustration
of this partitioning. Equivalently, the channel operatorH is
decomposed as

H = D + C (30)

whereD collects all transfer matrix entries representing direct
transmission and reflection coefficients, and operatorC collects
all crosstalks. Clearly, operatorD is block-diagonal with2×2
blocks after a suitable permutation depending on the port
numbering is applied. Our simulation problem (2) is thus
restated as 




θ = C a
b = D a+ θ

a = F (b) ,
(31)

where arrayθ collects the crosstalk contributions. If we set
θ = 0, all couplings are removed. Note that the termination
operatorF in the last row is diagonal.

We are now ready to introduce an iterative scheme based
on Waveform Relaxation, using the coupling sourcesθ as
relaxation terms. Denoting asµ the iteration index, the WR-
TP scheme is constructed by delaying the computation of the
relaxation sources by one iteration,





bµ = D aµ + θµ−1

aµ = F (bµ)
θµ = C aµ .

(32)

The system is solved with a suitable initial condition, e.g.,
θ0 = 0. The evaluation of both decoupled channel operator
D and relaxation sourcesθ is performed via fast recursive
convolutions.

System (32) can be formally expressed at theµ-th iteration
as

bqµ −DqFq

(
bqµ
)
= θ

q
µ−1 , q = 1, . . . , P/2 (33)

where q denotes each pair of ports corresponding to the
interface of each decoupled channel with its terminations,and
where the relaxation sourceθq

µ−1 is known from previous
iteration. The inversion of this operator may be difficult incase
of nonlinear terminations. However, we will assume through-
out this chapter that this inversion, which corresponds to the
solution of terminated decoupled channels, can be performed
exactly, in order to assess the convergence properties of WR-
TP. Section VI will describe our proposed strategy for the
numerical computation of this solution. Algorithm 2 highlights
the main steps of the WR-TP scheme.

Algorithm 2 Pseudocode of WR-TP algorithm
1: Set initial conditionsθ0 = 0

2: for µ = 1 to µmax do
3: for q = 1, . . . , P/2 do
4: Solveq-th channel:bqµ −DqFq

(
bqµ
)
= θ

q
µ−1

5: end for
6: Update relaxation sources:θµ = C aµ

7: if ||aµ − aµ−1||∞ < ǫ then
8: Break
9: end if

10: end for

A. Convergence Analysis

In this section, we analyze the convergence properties of the
WR-TP scheme. As in Section IV-A, we will assume linear
terminations in order to perform this analysis in frequency
domain. Therefore, we will denote all unknowns and operators
through their frequency-domain representation using upper-
case and boldface fonts. The WR-TP system (32) becomes





Bµ = DAµ +Θµ−1

Aµ = ΓBµ +Υ

Θµ = CAµ

(34)

The exact solution of system (34) can be computed as its fixed
point by settingµ → ∞ and reads

Aexact = (I− Γ(D+C))
−1

Υ = (I− ΓH)
−1

Υ , (35)

which of course matches (22). AfterK iterations, the solution
reads

AK = (I− ΓD)
−1

(ΓCAK−1 +Υ) (36)

=
K−1∑

µ=0

P
µ (I− ΓD)−1

Υ

where operatorP is defined as

P = (I− ΓD)−1
ΓC . (37)

We can compute an estimate of the approximation error
by taking the difference of the solution at two consecutive
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iterations

∆K = AK −AK−1 (38)

= P
K−1 (I− ΓD)

−1
Υ

= P
K−1 (I−P)Aexact

where (35) has been used. The error between the iterative
solution and the exact solution can also be computed and
results

EK = AK −Aexact = −P
KAexact . (39)

As for the WR-LP scheme of Chapter IV, both error and error
estimate have the same asymptotic behavior as a function of
the iteration countK, so that the error estimate∆K is a good
indicator of convergence. The above derivations show that both
consistency and convergence of WR-TP are guaranteed if the
spectral radius of the iteration operator is less than one,

ρmax{P} = max
ω,i

λi{P(jω)} < 1 . (40)

This condition is easily checked by a suitable frequency
sampling process. It should be noted that the passivity of
both channel and terminations are necessary but not sufficient
conditions for convergence, since condition (40) is more
restrictive.

Figures 12-13 depicts the spectral radius of the iteration
operator versus frequency for all cases and for two different
termination schemes. These results show that convergence
is expected for both termination schemes on all cases. Al-
though (40) does not necessarily hold in general, this condition
was verified on all our benchmarks. These good convergence
properties are due to the fact that the cumulative coupling
of electromagnetic energy between adjacent channels remains
weak when compared to the energy that is traveling on each
channel, so that the coupling operatorC is much smaller than
the diagonal operatorD.

No numerical results are presented in this section, since
the WR-TP scheme assumes that the exact solution of (33)
is available. The WR-TP scheme is only instrumental for
the derivation of the two-level WR-LPTP algorithm, to be
presented next.

VI. WR-LPTP: TWO-LEVEL WAVEFORM RELAXATION

The WR-LP and WR-TP algorithms presented in Sec. IV
and V present both advantages and disadvantages. The WR-
LP scheme decouples the channel from its terminations, thus
avoiding the requirement of a simultaneous solution of the
linear interconnect with its possibly nonlinear loads. However,
this scheme does not exploit the particular structure of the
channel and is not aware of the presence of small couplings.
Therefore, the WR-LP is not expected to scale favorably
when increasing the number of coupled channels. The WR-
TP scheme is instead well-suited for the analysis of many
coupled channels, since the transverse partitioning effectively
separates the dominant responses from the small couplings.
Thus, this scheme has the potential for very good scalability.
Furthermore, its basic steps are independent one of each other,
showing good promise for parallelization on a suitable multi-
core hardware. Unfortunately, the WR-TP as presented in
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Fig. 12. Spectral radius of WR-TP iteration operatorP plotted versus
frequency for all cases with TC-A terminations.
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Fig. 13. Spectral radius of WR-TP iteration operatorP plotted versus
frequency for all cases with TC-C terminations.

Section V requires the exact solution of individual channels,
which is obviously impossible in general.

In order to combine the advantages of both WR-LP and
WR-TP schemes, we propose in this section a two-level
Waveform Relaxation algorithm, denoted as WR-LPTP. The
starting point is the WR-TP scheme arising from a transverse
partitioning. This scheme will form an outer relaxation loop,
which is basically identical to (32). A further longitudi-
nal relaxation loop is introduced, according to the WR-LP
scheme, in order to solve individual (decoupled) channels.
This relaxation will be denoted as inner loop, since it will
be performed at each step of the transverse relaxation (outer)
loop. A graphical interpretation of the proposed decoupling
and relaxation process is provided by Fig. 14, where both
inner and outer relaxation sources are highlighted in different
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Fig. 14. Graphical illustration of WR-LPTP partitioning scheme. Dark (light)
gray boxes denote outer (inner) relaxation sources, respectively.

shades of gray.
For consistency, we will use the same notation that was

introduced for the WR-LP and WR-TP schemes. In particular,
the outer relaxation index will be denoted asµ, whereas the
inner relaxation index will be denoted asν. At any step of the
outer loop, i.e., for fixedµ, the inner loop can be formulated
as {

bµ,ν = D aµ,ν−1 + θµ−1 ,
aµ,ν = F (bµ,ν) ,

(41)

where the outer relaxation sourcesθµ−1 are known from pre-
vious outer iteration and are set toθ0 = 0 at the initialization
stageµ = 0. Since operatorD is 2 × 2 block-diagonal and
operatorF is diagonal, system (41) can be further split into
individual channel contributions as

{
bqµ,ν = Dq a

q
µ,ν−1 + θ

q
µ−1 ,

aq
µ,ν = Fq

(
bqµ,ν

)
,

(42)

for q = 1, . . . , P/2, whereq denotes the port pair pertaining
to theq-th channel, as in Section V. System (42) is solved∀q
and forν = 1, . . . , Iµ with a suitable initial condition. A good
choice for this initial condition is the estimate of the solution
that is available at the end of previous outer iteration

aµ,0 = aµ−1,Iµ−1
(43)

Once the inner loop has terminated, the outer relaxation
sources are updated according to

θµ = C aµ,Iµ
(44)

and the process is repeated until convergence is achieved.
Some considerations on how to choose the appropriate number
of inner iterationsIµ are postponed to Section VI-A.

Convergence of inner and outer loops is detected by mon-
itoring the respective residual norms with respect to a pre-
scribed thresholdǫ

ξµ,ν = ||aµ,ν − aµ,ν−1||∞ (45)

δµ = ||aµ,Iµ
− aµ−1,Iµ−1

||∞ . (46)

The norm ξµ,ν measures the amount of correction that is
applied to the solution by theν-th inner iteration, whereas the
normδµ measures the difference between two outer iterations,
computed at the end of the inner loop. The actual value ofǫ for
the outer iterations should be chosen according to the levelof
accuracy that is required for the specific application. Different
strategies for stopping the inner iterations are presentedin
Section VI-A. A pseudocode of the proposed scheme is
detailed in Algorithm 3.

Algorithm 3 Pseudocode of WR-LPTP algorithm.
1: Set initial conditionsθ0 = a1,0 = 0

2: for µ = 1 to µmax do
3: for ν = 1 to νmax do
4: for q = 1, . . . , P/2 do
5: Apply channel operator:bqµ,ν = Dq a

q
µ,ν−1+θ

q
µ−1

6: Solve terminations:aq
µ,ν = Fq

(
bqµ,ν

)

7: end for
8: if ||aµ,ν − aµ,ν−1||∞ < ǫ then
9: Iµ = ν, Break

10: end if
11: end for
12: Update outer relaxation sources:θµ = C aµ

13: if ||aµ,Iµ
− aµ−1,Iµ−1

||∞ < ǫ then
14: Break
15: end if
16: Update initial conditions:aµ+1,0 = aµ,Iµ

17: end for

A. Convergence Analysis

We now address the convergence of the WR-LPTP scheme.
As for WR-LP and WR-TP, we will work in the frequency do-
main by assuming linear terminations. The frequency-domain
formulation of the main WR-LPTP system (41) reads

{
Bµ,ν = DAµ,ν−1 +Θµ−1 ,
Aµ,ν = ΓBµ,ν +Υ .

(47)

Let us consider theK-th iteration of the outer loop, and let
us assume that we perform a total ofIK iterations in the inner
loop. We have

AK,IK
= ΓDAK,IK−1 + (ΓΘK−1 +Υ) . (48)

Following the same derivation that led to (23), we obtain

AK,IK
= (ΓD)

IK AK,0 +

IK−1∑

ν=0

(ΓD)
ν
(ΓΘK−1 +Υ) .

(49)
Using now the initial conditions (43) and the definition of the
outer relaxation sources (44), we obtain the expression

AK,IK
= PIK

AK−1,IK−1
+EIK

, (50)

where

PIK
= (ΓD)IK +

IK−1∑

ν=0

(ΓD)ν ΓC (51)

EIK
=

IK−1∑

ν=0

(ΓD)
ν
Υ . (52)

This expression provides an explicit update of the solution
between two consecutive outer iterations, taking into account
that a finite (and varying) number of inner iterations are
performed. Applying recursively this expression until we reach
the first outer iteration, for which we have

A1,I1
=

I1−1∑

ν=0

(ΓD)
ν
Υ = EI1

, (53)
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we obtain

AK,IK
=

K−1∑

µ=0

(
µ−1∏

α=0

PIK−α

)
EIK−µ

, (54)

where we define the product as 1 if the upper limit is less than
the lower limit. This expression is awkward and difficult to
interpret, mainly due to the variable number of inner iterations,
which makes the operatorPIK

iteration-dependent. In order to
simplify the discussion, we carry out the convergence analysis
for the two modes in which the WR-LPTP scheme will be
implemented and tested. These two modes are described and
discussed in the following subsections.

1) WR-LPTP–mode 1:First operation mode of WR-LPTP
scheme runs the inner iterations until the inner error estimate
reaches the convergence threshold, as described in Algo-
rithm 3, line 8. Let us consider the inner error estimate at
iterationν = Iµ

Ξµ = Aµ,Iµ
−Aµ,Iµ−1 (55)

= (ΓD− I)Aµ,Iµ−1 + ΓΘµ−1 +Υ .

Iteration Iµ will break the inner loop if this estimate is
sufficiently small

||Ξµ|| < ǫ . (56)

If we explicit Aµ,Iµ−1 from (55) and we apply the inner
iteration once more, we obtain the solution estimate that is
available when the inner loop stops

Aµ,Iµ
= PAµ−1,Iµ−1

+ (I− ΓD)−1 (Υ− ΓDΞµ) . (57)

Setting nowµ = K and subtracting the exact solutionAexact,
we obtain the expression of the corresponding approximation
error, which after some straightforward algebraic manipulation
reads

EK = AK,IK
−Aexact (58)

= −
∞∑

µ=K

P
µ (I− ΓD)−1

Υ

−

K−1∑

µ=0

P
µ (I− ΓD)

−1
ΓDΞK−µ .

This error has two contributions, one deterministic, propor-
tional to the forcing termΥ, and one stochastic, which
involves all inner iteration residualsΞµ. If the following
conditions hold,

ρmax{ΓD} < 1 and ρmax{P} < 1 , (59)

the deterministic part can be made arbitrarily small, and there
exists someK∗ such that forK ≥ K∗ we have

EK ≃

K−1∑

µ=0

P
µ (I− ΓD)

−1
ΓD Ξ̂µ , (60)

whereΞ̂µ = −ΞK−µ. An upper bound for the norm of this
error is readily obtained under the slightly more restrictive

condition ||P|| < 1, as

||EK|| ≤ ||E∞|| ≤

∞∑

µ=0

||P||µ|| (I− ΓD)
−1

ΓD|| ǫ

=
|| (I− ΓD)−1

ΓD|| ǫ

1− ||P||
.

(61)

This expression shows that an arbitrarily small error can be
achieved by choosing a suitable inner stopping thresholdǫ.

A similar derivation can be applied to the outer error
estimate, obtaining

∆K = EK − EK−1 (62)

= P
K−1 (I− ΓD)−1

Υ

−

K−1∑

µ=1

P
µ−1 (P− I)ΞK−µ +ΞK ,

TakingK ≥ K∗ so that the deterministic part can be consid-
ered negligible, we obtain the following estimate

||∆K|| ≤

(
1 +

||I−P||

1− ||P||

)
|| (I− ΓD)

−1
ΓD|| ǫ , (63)

valid if ||P|| < 1. Under this condition, both errorEK and
error estimate∆K are at most proportional toǫ with suitable
positive and bounded constants.

2) WR-LPTP–mode 2:Second operation mode of WR-
LPTP scheme performs a fixed numberI of inner iterations,
regardless of the results of the inner convergence test. This
assumption leads to a significant simplification with respect
to the general derivation of (54), since

Iµ = I, ∀µ ⇒ PIK
= PI , EIK

= EI , ∀K (64)

Equation (54) thus becomes

AK,I =

K−1∑

µ=0

P
µ
I
EI . (65)

Substituting (64) into (51) we obtain an explicit expression of
the iteration operator

PI = (ΓD)I +
I−1∑

ν=0

(ΓD)I ΓC

= P+ (ΓD)
I
(I−P) (66)

It is interesting to note that taking the limit forI → ∞ leads
to

lim
I→∞

PI = (I− ΓD)
−1

(ΓC) = P , (67)

lim
I→∞

EI = (I− ΓD)
−1

Υ , (68)

which match the iteration operator and the forcing term of the
WR-TP scheme, see Section V-A. These results hold when

ρmax{ΓD} < 1 (69)

and confirm the consistency of the WR-LPTP scheme in case
the inner loop runs until convergence to its exact solution.

We can now provide explicit expressions for the error of
the iterative solution with respect to the exact solution

EK,I = AK,I −Aexact = −P
K

IAexact (70)
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Fig. 15. Evolution of the inner (continuous line) and outer (dots) loop errors
through iterations for all cases with TC-A terminations. Left panel refers to
WR-LPTP mode 1 (inner loop continues until its convergence). Right panel
refers to WR-LPTP mode 2 (inner loops runs for a fixed numberI = 4 of
iterations).

and for the error estimate at each outer iteration

∆K,I = AK,I −AK−1,I = P
K−1
I

(I−PI)Aexact . (71)

These expressions show that the condition for convergence of
the WR-LPTP–mode 2 scheme is

ρmax{PI} < 1 , (72)

which can be checked with a suitable frequency sampling.

B. Numerical results

In this Section, we report some numerical results supporting
the hypothesis that the fixed-iteration mode (Mode 2) performs
better. An intuitive justification of this conclusion is the
following: during outer iterations, the estimates of the inter-
channel couplings are affected by some approximation error.
Therefore, the exact solution of the inner iteration will not
coincide with the exact solution of the original problem, due
to the imperfect estimate of these couplings. Therefore, itis
not necessary to wait until the inner loop converges to an
aggressive threshold, since its target solution is not correct
anyway. It is sufficient to perform a few inner iterations so
that any correction to the outer relaxation sources performed
by previous outer iteration is inherited by the solution of the
inner loop. When this condition is fulfilled, it is preferrable
to update the outer sources rather than refining an imperfect
solution.

A comparison of the two WR-LPTP modes is provided by
Fig. 15 for all cases with TC-A terminations (500 bits, time
stepδ = 25 ps). Each panel reports the evolution of inner loop
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Fig. 16. Spectral radius of operatorPI for I = 2, 4,∞ plotted versus
frequency for all cases with terminations TC-A (left) and TC-C (right).

error estimate (continuous line) and outer loop error estimate
(dots). A global iteration count is used in order to simplify
visualization and interpretation. In the left panels, the WR-
LPTP scheme is run in mode 1, i.e., waiting that the inner
loop reaches the convergence threshold before switching to
the outer loop. For this analysis, the convergence threshold
was set toǫ = 10−6. In the right panels, the WR-LPTP
scheme is run in mode 2 by performing a fixed number of
inner iterations, in this caseI = 4. It can be seen that for
all cases this second mode requires less iterations to reach
global convergence. Figure 16 reports the frequency-dependent
spectral radius of operatorPI for all cases and for termination
schemes TC-A (left panels) and TC-C (right panels). These
figures confirm that all cases are expected to converge.

Table V shows the simulation time and the number of
iterations required for each case in the two WR-LPTP modes.
This table confirms the better performance of mode 2 with
respect to mode 1. A more detailed analysis for Case I
is presented in Table VI, where WR-LPTP mode 1 and
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TABLE V
SIMULATION TIME AND NUMBER OF GLOBAL ITERATIONS (INNER AND

OUTER) REQUIRED BY WR-LPTPMODES 1 AND 2 FOR ALL CASES WITH
TC-A TERMINATIONS.

Mode 1 Mode 2
Time, s Iterations Time, s Iterations

Case I 55.8 26 31.4 17
Case II 76.5 40 44.6 26
Case III 55.4 36 34.9 25
Case IV 46.2 45 25.9 29

TABLE VI
CASE I WITH TC-A TERMINATIONS. SIMULATION TIME AND NUMBER OF

ITERATIONS REQUIRED FOR DIFFERENT VALUES OF INNER ITERATIONSI

(MODE 2 ONLY) AND STOPPING THRESHOLDǫ. THE GLOBAL NUMBER OF

ITERATIONS IS PROVIDED TOGETHER WITH THE NUMBER OF OUTER
ITERATIONS (WITHIN BRACKETS).

ǫ Mode I Time, s Iterations
10−4 1 – 28.7 14(3)
10−4 2 2 25.2 15(5)
10−4 2 4 20.3 12(3)
10−8 1 – 95.5 45(6)
10−8 2 2 41.4 26(9)
10−8 2 4 48.4 24(6)

mode 2 are compared with different values of the convergence
thresholdǫ and number of inner iterationsI (for mode 2 only).
The table shows that mode 2 withI = 4 iterations provides
the best results. Using less inner iterations in mode 2 is not
effective and leads to a larger number of global iterations.
Figure 17 reports for all cases the dependence of total runtime
on the number of inner iterationsI in the WR-LPTP mode 2
scheme. The minimum runtime is achieved in all cases for
I = 4, which can thus be considered as optimal.

The detailed behavior of the solution at different inner/outer
iterations is depicted in Figure 18 for Case II with terminations
TC-B, i.e. with nonlinear driver models. These plots demon-
strate that the final solution is indeed achieved by applying
small iterative perturbations. This provides a posteriorijustifi-
cation for the Waveform Relaxation approach that we pursue
in this work.

We conclude with a SPICE validation. Figure 19 compares
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Fig. 17. Total runtime (seconds) required by WR-LPTP (mode 2) scheme
to simulate a 500-bit sequence, using different values of inner iterationsI.

TABLE VII
COMPARISON OF SIMULATION TIMES(IN SECONDS) REQUIRED BY SPICE,

WR-LP,AND WR-LPTP (MODE 1) WITH ǫ = 10−4 .

Case SPICE WR-LP WR-LPTP
Case I 807 162.9 28.7
Case II 743 142.1 38.0
Case III 822 116.8 25.4
Case IV 456 96.7 19.6
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Fig. 18. Case II with TC-B terminations. Solution at variousWR-TPLP
iterations (blue dashed line) compared to the exact solution (red line).

the transient voltage at the victim channel terminations (Case
II with TC-A terminations) computed by SPICE and by our
WR-LPTP scheme. The waveforms are not distinguishable on
this scale. Table VII reports a comparison of the simulation
times reqired by SPICE and by WR-LPTP scheme for all
cases. A major speedup is observed, although a prototypal
implementation of WR-LPTP in Matlab has been used. This
speedup is justified by the special treatment of the weak inter-
channel couplings by WR-LPTP, while SPICE does not exploit
the particular structure of the channel model in its global MNA
formulation. Table VII also reports the runtime for the WR-
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Fig. 19. Case II with TC-A terminations. Comparison betweenSPICE and
WR-LPTP results for input port of victim channel. The maximum error among
all computed time samples and all responses is2.11× 10−3.

LP scheme, which results competitive with respect to SPICE
but much less efficient than the proposed WR-LPTP two-level
relaxation.

VII. C ONCLUSIONS

This paper introduced three Waveform Relaxation (WR)
schemes for transient simulation of complex multiport chan-
nels with possibly nonlinear terminations. These schemes are
based on a longitudinal and/or transverse partitioning of the
structure through suitable decoupling sources, which are re-
laxed through an iterative process. All schemes are consistent.
A detailed linear convergence analysis has been performed,
showing that the necessary and sufficient condition for con-
vergence is the strict unitary boundedness of the spectral radius
of the WR iteration operator.

Convergence is monitored through an error indicator based
on a comparison between the solution at two successive
WR iterations. We proved that this indicator has the same
asymptotic decay rate as the error with respect to the exact
solution. This in turns prevents the WR scheme from stopping
the iterations as a result of false convergence detection, as for
the case of local minima.

The numerical results show that the so-called WR-LPTP
scheme, which combines both longitudinal and transverse
partitioning in a two-level relaxation loop, is able to compute
the transient solution significantly faster than SPICE-based
solvers, due to its ability to exploit the particular structure
of the channel coupling terms. Thus, there is a very good
promise for routine application of the proposed schemes for
the electrical verification of channel transmission in present
and future industrial design flows. Even if the bandwidth was
limited to 20 GHz for most benchmarks that were analyzed
in this work, there is no obvious limitation that would prevent
application of our proposed schemes with higher-frequency
channel models. We also remark that the WR-LPTP scheme
can be easily extended to the case of differential or even fully-
coupled driver/receiver networks (e.g., through their power de-
livery networks), known either via circuit-based or behavioral
representations. In these cases, the operatorF in (2) would
become block-diagonal or even full. However, thanks to the

longitudinal partitioning, such terminations would be solved
independently from the channel at each WR iteration, thus
allowing direct application of transverse channel partitioning
and relaxation, and therefore inheriting the main advantages
of the proposed two-level scheme.

Applicability of proposed WR schemes is subject to a
convergence condition, which is easy to check via frequency
sampling. We have verified that this condition is indeed
fulfilled for all benchmark cases we considered. This is due
to two fundamental facts. First, inter-channel couplings are
usually much smaller than direct transmission and reflection
coefficients. This leads to practically a diagonal dominance of
the channel scattering matrices, which is functional to thecon-
dition for convergence. Second, the terminations typically used
in high-speed signaling are always matched or nearly matched
to the channel, at least on one end of each interconnect. This
leads to small signal reflections from the terminations intothe
channel and contributes positively to the global convergence
of the relaxation loops.

Despite the above considerations, it is conceivable that
highly reactive ad hoc terminations can be found such that the
proposed WR schemes do not converge. These terminations
will likely be far from application interest. However, the
development of suitable countermeasures for ensuring conver-
gence in the general case, represents an interesting theoretical
challenge. In addition, our present convergence analysis is only
valid for linear terminations. Extension of these results to the
more general nonlinear case is under way. Our future work will
then be devoted to broaden the scope and the applicability of
the presented WR schemes in the direction pointed by [50],
as well as further improving their efficiency through dedicated
parallel implementations for multicore hardware.
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