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A Cross-Layer Approach for New Reliability-Performance Trade-Offs in MLC
NAND Flash Memories

Abstract

Multi-level cell (MLC) NAND Flash memories are very popu-
lar storage media because of their power efficiency and big stor-
age density. In spite of the mature cell structure, the memory
controller architecture is evolving fast in an attempt to improve
the uncorrected/miscorrected bit error rate (UBER) and to pro-
vide a more flexible usage model where the performance-reliability
trade-off point can be adjusted at runtime. However, optimization
techniques in the memory controller architecture cannot avoid a
strict trade-off between UBER and read throughput. In this pa-
per, we show that co-optimizing ECC architecture configuration
in the memory controller with program algorithm selection at the
technology layer, a more flexible memory sub-system arises, which
is capable of new trade-offs between performance and reliability.
In particular, the cross-layer configuration framework enables to
improve UBER without sacrificing read throughput, and viceversa
to improve read throughput without impacting UBER, but at the
cost of write throughput, a scenario which is of great interest to
read-intensive applications.

1. Introduction

Flash memory is an important building block for modern em-
bedded systems because of its high data transfer rate, low power
consumption and long mechanical durability. In addition, the ad-
vent of multi-level cell (MLC) NAND flash memories [1] has
opened unprecedented opportunities for embedded systems and
laptops to store larger amounts of data in flash, thus replacing
power-hungry, relatively unreliable hard drives.

Unfortunately, flash memory devices come with their unique
reliability concerns, making them a highly vulnerable portable
storage. MLC technology has further exacerbated the problem
with respect to traditional SLC one. The primary failure mech-
anisms for MLC flash memories include threshold voltage distri-
bution shifting [2], program/read disturb [3], data retention [4],
endurance [5] and single event upset[6]. The raw bit error rate
(RBER) of MLC flash memory is around 10−6 [7] and is at least
two orders of magnitude worse than that of the SLC device [8]. In
general, page errors are expected to be the primary failure pattern
in flash-based systems.

Design techniques at the level of the memory controller, such
as page-level error correcting codes (ECC), are systematically
used to achieve an acceptable uncorrectable bit error rate (UBER).
The choice of the most suitable error correcting scheme is tightly
application dependent. Reliability requirements of relatively small
flash memories that hold non-critical, error-tolerant data such as
photographs and digitized music are radically different from those
of multi-gigabyte file systems based on MLC flash devices [9]. For
this reason, practical ECC solutions are typically market segment-
specific and range from derivatives of the Hamming code [2] to
the BCH [10, 11, 12, 13] or the Reed-Solomon code [14].

However, statically setting memory controller features at de-
sign time is a practice that is rapidly running out of steam. On
one hand, the new mobile usage models that are coming about

require the execution of multiple use cases on the same device
while optimizing resource consumption for each of them. On the
other hand, the hardware and software design convergence in to-
day’s complex embedded systems call for an upgrade of architec-
ture building blocks in the direction of runtime re-configurability
and adaptivity.

The main idea of this paper is that a better and more flexible
performance-reliability trade-off for runtime adaptivity could be
achieved by combining ECC architecture configuration with set-
tings in the physical layer, thus giving rise to a cross-layer opti-
mization framework. In fact, the program algorithm and voltage
waveforms that are applied for memory writing are typically de-
fined at fabrication time by the memory vendor and hardwired in
memory operation. Accurate programming of NAND Flash mem-
ories is usually obtained by the incremental step pulse program-
ming (ISPP) algorithm [3]. However, a number of variants does
exist to counter the dispersion of programmed cell threshold dis-
tributions in nano-scaled flash devices, such as the double verify
algorithm in [19, 2], which can potentially improve the RBER on
the same device or sustain the RBER on scaled devices.

In this paper we propose to dynamically tune the programming
algorithm for MLC NAND flash memories so to provide differen-
tiated reliability provisions for memory storage. Above all, this pa-
per for the first time explores and quantifies the synergies between
architecture-level (configuration of the ECC decoding structure)
and physical-level (selection of the program algorithm and wave-
forms) settings, proving that a cross-layer optimization framework
can materialize new trade-offs between read, write throughput, re-
liability and power consumption.

An extensive modeling, simulation and implementation frame-
work has been set up for both the analog and the digital parts of an
MLC NAND flash memory sub-system in an homogeneous 45nm
technology substrate, thus coming up with the accurate quantifica-
tion of these trade-offs.

2. Related Work

In traditional NAND product a single algorithm for writing data
into its addressable space is used, not allowing to devise a reliabil-
ity/performance degree of freedom which is intrinsically available
in non-volatile memory technology. There exists the possibility of
having a segmented memory with the possibility to dynamically
configure the segment sizes during the memory boot stage, but
once again only one write/erase algorithm will be used for all the
segments, thus losing the intrinsic degree of freedom of having a
reliability/speed trade-off (as envisioned but not still implemented
in [20]). The only available degree of freedom presented in nowa-
days NAND Flash resides on the choice of having a segmented
memory with mixed SLC/MLC structure [21], but this feature is
something that can be changed only at boot time and directly does
not affect the write algorithms, which are unique for every seg-
ment.

Error correction is also an integral part of using flash memories
that ensure data integrity.

The literature is rich of publications proposing ECC based so-
lutions for flash memories with fixed correction capability [35].
However, to the best of our knowledge, only Chen et al. pro-
poses a solution allowing limited adaptation [28]. It introduces an
adaptable-rate Bose-Chaudhuri-Hocquenghem (BCH) codec with
a controllable parallel Linear Feedback Shift Register (LFSR) and
a pipelined decoder. The main drawback of this solution is the ap-



plication of the code to small blocks of data (512B compared to
the typical 2/4KB page of a NAND flash memory). Small blocks
make it difficult to handle high concentrations of errors and re-
quire a high number of parity bits and higher hardware complexity.
These extra bits tend to saturate the spare area usually available on
a flash and may also consume extra pages. This represents a major
problem since the spare area is usually dedicated to system man-
agement and not only to ECC. Moreover, adaptability is limited to
a reduced set of values.

This paper advances state-of-the-art with innovations on the us-
age model both of NAND Flash devices and ECC systems by pro-
viding a cross-layer optimization framework that changes the tra-
ditional performance-reliability trade-off and enables increasingly
flexible usage models of mobile devices.

3. Advanced Controller Architecture for a
NAND Flash Memory

The NAND Flash sub-system consists not only of the Flash
memory device but also of the memory controller, a key compo-
nent for determining the quality metrics of the whole non-volatile
memory sub-system. State-of-the-art controllers for NAND Flash
memories typically consist of one or more bus interfaces toward
the rest of the MPSoC, of the Flash device interface and of sophis-
ticated error correctors. In some cases, queues are implemented
for data exchange (typically, a single page) between the ECC and
the flash device and to decouple blocks clocked by different sig-
nals.

Figure 1. Memory controller architecture for a NAND
Flash device in the short-to-medium run.

The focus of this paper is on memory controllers that can be en-
visioned for the largely integrated MPSoCs in the short-to-medium
run. In this context, system components are typically connected
via an on-chip interconnection network. At network boundary,
components can be attached to the network via standard socket
interfaces like the AXI or the OCP protocol. We projected a re-
alistic controller architecture for the near future and illustrate it in
Fig.1.

The OCP interface connects the controller to the on-chip net-
work, which routes read and write access requests or configuration
commands. The network is typically much faster than the Flash
device, therefore data transfers are processed through a dedicated
buffer (e.g., an embedded RAM block). Typically, the size of the
RAM is equal to the size of one page.

Unlike the data path, configuration commands end up updat-
ing/reading from a command/status control register, which drives
operation of the core controller. However, as the need for applica-
tion optimization grows and the number of use cases on the MP-
SoC proliferate, (re-)configuration operations will become more
frequent. We envision two relevant scenarios. On one hand, the
user might configure the controller to meet the requirements of the
data set it is going to process, demanding for high reliability ver-
sus high performance accesses or for intermediate trade-off levels.
Adaptation of system architecture to runtime application require-
ments is an unmistakable trend in current MPSoC design so to

avoid waste of resources and to succeed in meeting such require-
ments [32].

On the other hand, partial reconfiguration of the controller
could be achieved in a self-adaptive way. It is in fact possible to
envision an integrated reliability manager collecting and elaborat-
ing results of a test unit and feedback from the ECC sub-system,
in addition to user requirements, thus setting the proper correction
capability to pages. In-situ adaptation to actual operating condi-
tions is another clear trend for future MPSoC design [33].

Clearly, the key rationale behind this controller architecture is
the availability of effective tuning knobs to trade-off performance
with reliability and/or power in memory operations, thus exposing
multiple service levels to the user or a set of self-adaptive operat-
ing points to the core controller and the reliability manager. This
flexibility is out-of-reach of current memory controllers, where a
limited set of parameters can be fixed at synthesis time or, in the
best case, at boot-time [34].

This paper moves a step forward in the direction of materi-
alizing the needed flexibility and demonstrates the feasibility of
unprecedented trade-offs and operating points stemming from the
concurrent configuration of the ECC sub-system in the memory
controller and of the program algorithm in the NAND Flash de-
vice. In order to quantify these trade-offs and the synergies be-
tween the architecture and technology layers, we now present the
modeling effort of the configurable sub-systems where such trade-
offs arise: the adaptive ECC architecture and the high-voltage
memory sub-system.

4. Adaptive ECC Architecture

The adaptive ECC architecture analysed in this work imple-
ments a Bose-Chaudhuri-Hocquenghem (BCH) ECC with pro-
grammable correction capability. Bose-Chaudhuri-Hocquenghem
(BCH) codes are a family of ECCs largely applied to NAND flash
memories [28]. BCH codes are less complex than other ECCs and
provide high code efficiency. Moreover, errors in flash memories
are in general non-correlated and BCH codes are particularly effi-
cient in this situation. The construction of a BCH code is based on
Galois field GF(2m).

A binary BCH code, denoted as BCH [n, k], encodes a k-bit
message (in our case consisting of a full 4KB page of the flash) to
an n-bit codeword (n > k) by adding r parity bits to the original
message. Parity bits are stored in the spare area of the flash. The
number r of parity bits required to correct t errors in the k-bit
message is computed by finding the minimum m that solves the
inequality k + r ≤ 2m − 1 where r = m · t [29].

The correction capability t the code must provide depends on
the RBER the Flash device is able to provide and on the UBER the
target service requires, according to the following relation:

UBER =

(

n
t+1

)

RBERt+1 (1−RBER)n−(t+1)

n
(1)

The adaptable ECC block employed in this work makes it pos-
sible to dynamically change its correction capability t in a range
between 1 and a maximum value denoted here with tmax by using
a dedicated input port.

The BCH encoder computes the r parity bits for a k−bit block
of data by computing the reminder of the division between the
message and the code generator polynomial. This computation can
be efficiently implemented using a r−bit linear feedback shift reg-
ister (LFSR) with characteristic polynomial equal to the code gen-
erator polynomial. To obtain adaptability to different correction
capabilities a parallel programmable LFSR able to support differ-
ent characteristic polynomials is employed [28]. The sequences
of bits representing each polynomial are stored in a small ROM
which is used to control a set of multiplexers able to dynamically
insert XOR gates in the LFSR network according to the requested
polynomial. Given the parallelism p of the parallel LFSR (i.e.,
the block receives the message to encode in words of p bits start-
ing from the most significant word), k

p
clock cycles are required

to compute the parity bits. The encoding latency is therefore not
influenced by the selected correction capability.

The BCH decoding process aims at identifying the position
of the erroneous bits of the codeword. This operation is more



complex than the encoding and requires three main computational
steps highlighted in Fig. 2.

Figure 2. BCH decoding flow.

Given the selected correction capability t the Syndrome block
computes 2t syndromes of the codeword to decode. The syndrome
computation requires calculating the reminder of the division be-
tween the codeword and each of the 2t polynomials ψi (x) gener-
ating the generator polynomial of the code. Similarly to the encod-
ing, this step requires a set of parallel LFSR (one for each polyno-
mial ψi (x)). If all reminders are null the codeword is error-free
and the decoding process ends. If not, the syndromes are com-
puted by evaluating each reminder in the corresponding element of
GF(2m) using a set of dedicated combinational networks (see [29]
for additional details). In an adaptable decoder with maximum
correction capability tmax , 2tmax LFSR compose the syndrome
block. However, depending on the selected correction capability t
only 2t of them will be actually enabled. Moreover, depending on
t, the number r of parity bits included in the codeword changes.
If this number does not perfectly fit the parallelism of the decoder,
which in our case is the same selected for the encoder, a prelimi-
nary alignment phase is required.

When all syndromes have been computed, the Berlekamp
Massey block computes the error locator polynomial λ whose
roots represent the inverse of the error positions in the codeword.
To implement an adaptable Berlekamp Massey Machine we con-
sidered the hardware implementation of the Berlekamp-Massey
(iBM) algorithm proposed in [29]. It iteratively computes the coef-
ficients of the error locator polynomial without requiring complex
matrix inversions. The number of iterations required to compute
the coefficients is equal to the selected correction capability t thus
easily allowing adaptability.

Finally, the Chien Search block searches for the roots of the er-
ror locator polynomial computed by the Berlekamp Massey block.
This is the most complex and time intensive process of the decoder
since it basically requires evaluating the error locator polynomial
λ into each element of GF(2m). In fact, according to the BCH
theory, given the chosen correction capability t not all elements
of GF(2m) must be considered. The adaptable decoder stores in
a small ROM, for each possible correction capability, a set of co-
efficients indicating the first element of GF(2m) from which the
Chien search must initiate.

The performance of the Chien search strongly depends on its
parallelism denoted here with h, i.e., on the number of parallel
evaluations the block is able to perform. A high parallelism al-
lows for fast search but requires a considerable set of hardware
resources (t × h constant Galois multipliers), while a low paral-
lelism reduces the amount of requested resources but, at the same
time, penalizes the decoding latency.

5. Runtime-Selection of Program Algorithm

The other sub-system affected by the new trade-offs targeted
by this work is the high-voltage sub-system of the Flash memory
device, which is in charge of generating the voltage waveforms

for flash cell read, program and erase operations and for address
decoding. Its operation is regulated by the commands from a con-
trol FSM or from an embedded microcontroller in the flash device
itself.

The physical layer considered in this work refers to state of the
art 2-MLC memories [3], which store two bits per cell by accu-
rately placing four different VTH levels, identified by the statistical
distributions L0-L3 shown in Fig. 3. An Erase operation places all
the cells within a block on the L0 level (the threshold voltage dis-
tribution typically below zero), representing the starting point for
each subsequent Program operation which will end up on placing
threshold voltages of the selected cells on L1-L3 levels. In order
to accurately fulfill the aforementioned operation, a standard algo-
rithm is exploited in NAND Flash memories: the Incremental Step
Pulse Programming (ISPP) [22]. A voltage step (whose amplitude
and duration are predefined) is applied to the gate of the cells.
Afterwards, a Verify operation (i.e. threshold voltage Read) takes
place in order to check if the cells VTH have exceeded a predefined
voltage value VV FY (in MLC architectures more than one Verify
level is present). If the Verify is successful, the cells have reached
the desired distribution level and they are excluded from the fol-
lowing pulses through the so-called Program-inhibition technique
[2]. Otherwise, another cycle of ISPP is applied to the cells, where
the programming voltage is incremented by ∆ISPP.

L3

VFY1 OPVFY3R3VFY2R2R1

L0 L1 L2

Figure 3. Threshold voltage distributions in a MLC
NAND Flash. Read levels (R1, R2, and R3), Verify lev-
els (VFY1, VFY2, VFY3), and over-programming level
(OP) are pointed out.

Because of the technological variations, VTH is not perfectly
related to the amplitude of the ISPP pulse: there are ”fast” cells
which reach the Verify level with few Program pulses, while other
”slow” cells require more pulses. Both kinds of behaviors repre-
sent a threat for the reliability of the Program operation, since the
threshold voltage distributions of the L1-L3 levels significantly de-
viate from the ideal gaussian-like shape, thus crossing the distri-
bution read levels (R1-R3) and causing bit errors.

Different technological approaches for achieving distribution
compactness are commonly pursued, although they share the same
underlying principle: acting directly on the ISPP pulse character-
istics by decreasing the ∆ISPP per step or by increasing the total
number of pulses per Program operation. However, although these
methodologies could effectively increase the accuracy of the ISPP
algorithm in terms of threshold voltage placement, a substantial
penalty both in power consumption and write throughput is paid.

An alternative solution for increasing ISPP Programming accu-
racy with minimal burden on the programming time and complex-
ity has been recently presented in [2, 19]. This algorithm exploits a
Double Verify (DV) approach, where the bitline voltage of the se-
lected cells is modulated in order to partially decrease the ∆ISPP
step using a prior Verify level with slightly lower voltage than the
original Verify level, hence compacting the final desired threshold
voltage distribution.

In current flash device controllers, the program algorithm is
set at fabrication time and hardwired in memory operation, thus
preventing runtime trade-offs. We find that making the algorithm
selectable at runtime is a feasible option that comes with minor
implementation cost (see section 6.4) and opens up interesting im-
plications in memory usage. Next section illustrates the modeling
effort of the high-voltage memory sub-system with the capability
to execute both the ISPP-SV (Standard ISPP Single Verify) and
ISPP-DV (Double Verify ISPP) algorithms. The objective is to
capture how different program algorithms impact the raw bit error



rate RBER and the energy consumption of the memory. 1

5.1 Compact NAND Flash Model

We targeted as a case study a 2-bit per cell (4LC) NAND Flash
Memory featuring a 45 nm manufacturing process designed for
low-power applications. The entire framework has been imple-
mented on a SPICE-like environment using the STM-45nm tech-
nology library [23]. The simulation environment is constituted
by two distinct modules: the high-voltage (HV) subsystem of the
memory, including the charge pumps and the voltage regulators
exploited for the generation of the voltages required for the pro-
gramming algorithm (including the verify stage), and a compact
model for NAND Flash memories with array simulation capabil-
ity.

The HV module represents the analog core of a NAND Flash
memory. Modifying or reading the number of electrons stored into
the floating gate requires a set of bias voltages with a desired pre-
cision, timing and granularity. Moreover, many voltages have a
value larger than the NAND power supply, requiring the use of
several charge pumps. In order to achieve a highly accurate esti-
mation of the energy consumption of each ISPP algorithm consid-
ered in this work we have simulated the following blocks of the
NAND HV subsystem:

• Program Charge pump: this is a conventional 12-stages
Dickson modified charge pump [24]. It supplies the high
voltage necessary for the ISPP pulse ranging from 14V to
19V.

• Inhibit Charge pump: during the Program operation a single
page can be addressed in a memory block whereas the other
ones need to be inhibited through channel self-boosting
techniques [2]. This pump shares the same architecture of
the Program Charge pump except for the number of pump-
ing stages which has been reduced to 8 in order to obtain
8V.

• Verify Charge pump: the Verify operation consists of a read
of the actually programmed page within a block. As for the
Program operation, only the selected cells within a block
should be read while bypassing the unselected ones with an
intermediate voltage of 4.5V. This pump is a 4-stage high-
speed Dickson modified pump.

• Regulators and limiting systems: each pump generates a
growing voltage ramp till the regulation system shuts it
down. This is done by connecting a voltage divider in feed-
back between the output of a charge pump and one input of
a differential amplifier, biased with a reference voltage on
the other input. The charge pump is then shut down when
a target voltage is reached and possibly restarted when the
target voltage drops below a reference level. This is the only
viable solution for an accurate control of the threshold volt-
ages in a MLC NAND Flash device.

The power consumption of each pump during the various
stages of the ISPP algorithms, as measured from the SPICE simu-
lation, is then fed into a NAND Flash power modeling framework
based on the equation set provided in [25]. As input parameters of
the model, we assumed a low-power NAND Flash supplied with
VDD = 1.8V using an ISPP algorithm starting from 14V to 19V,
using ∆ISPP steps of 250mV.

The same settings hold both for the ISPP-SV and the ISPP-DV.
Similarly, the HV sub-system functionality simulated in this work
is designed to work with both algorithms. In fact, in a NAND Flash
device the timing and sequence of analog circuitry operations are
driven by the embedded microcontroller/FSM by means of a set
of interface registers, generating the enable signals for the charge
pumps. Switching from ISPP-SV to ISPP-DV does not require a
modification of the HV subsystem but rather implies a different
sequence of enable signals notified through the same register in-
terface. Implications on the embedded microcontroller/FSM will
be discussed in section 6.4.

1
The programming of MLC NAND Flash also depends on the strategy adopted for loading the data to write into the

memory. Without loss of generality, we chose to investigate and explore the ISPP full sequence strategy [2] instead of
the two-rounds one since it allows reduced simulation time and faster post-processing of the experimental results

An additional modeling effort was devoted to NAND Flash
cells. We developed a compact model partially based on [26],
which includes variability effects typical of nanoscaled memories.
This allowed to simulate array functionalities during a page-wide
programming operation. Variability effects included the follow-
ing: width and length geometrical variations of FG-MOS transis-
tors; non-homogeneity of tunnel oxide and substrate doping; tun-
neling caused by the electron injection granularity process into the
cells floating gate; Cell-to-Cell interference caused by cross-talk
between adjacent floating gates; aging effects due to repeated Pro-
gram/Erase cycling which typically degrades the RBER.

All these effects contribute to significantly broaden the gaus-
sian distributions related to the programmed threshold voltage lev-
els within the array, negatively impacting the RBER. For the sake
of model validation, we were able to fit experimental data collected
from [26] as showed in Fig. 4, where cell voltage threshold is plot-
ted during an ISPP operation for a 41nm NAND Flash technology.
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Figure 4. Fitting results of the NAND Flash compact
model with experimental data during an ISPP operation
featuring (7µs pulses, 1V ∆ISPP.

6. Experimental results

The different sections of the memory sub-system are at first
characterized in isolation, and then combined in section 6.3 to
quantify the trade-offs of the cross-layer approach to memory con-
figuration.

6.1 Characterization of programming algorithms

Power consumption of the NAND Flash device and its RBER
when using the ISPP-SV and the ISPP-DV algorithms have been
characterized by means of the developed simulation framework.
Such parameters are derived as a function of the Program/Erase
cycles of the memory, thus enabling lifetime-wide assessment of
memory features.

Fig. 5 shows RBER results for a simulated 4KB page Program
of a NAND Flash. Acting only upon Program algorithm selec-
tion to improve memory reliability allows to significantly improve
RBER figures up to one order of magnitude.

However, this reliability improvement comes with two major
penalties: an increase of the power consumption due to the addi-
tional verify operations required by the ISPP-DV algorithm, and
a reduction of the write throughput due to the increased algorithm
run time.

The increased power consumption of the memory device dur-
ing a program operation with ISPP-DV instead of ISPP-SV has
been measured and reported in Fig. 6. Power numbers do not
include I/O pins and the digital part, which are irrelevant in the
comparative analysis. A shift of just 7.5mW between the two al-
gorithms is measured, which is a marginal 4 to 5% increment with
respect to the baseline power with ISPP-SV. Such a consumption
mismatch is ascribed mainly to the increased usage of the read
charge pump circuitry in the memory HV-subsystem, which any-
way does not represent a major source of power drain in the overall



consumption context. The power consumption is clearly pattern-
dependent. Indeed, programming a page with a target L1 distribu-
tion requires less power than a L3 distribution target, as the HV-
subsystem of the memory is enabled for a longer time frame.

The appealing RBER improvement properties and the minor
power cost for that depend on the specific choice of programming
algorithms considered in this paper, indicating that ISPP-SV and
ISPP-DV are a good choice for future reconfigurable memory sub-
systems.
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6.2 ECC characterization

Choosing the proper correction capability t of a BCH code is
crucial for determining the reliability and the performance of the
flash memory. Flash memory based storage systems implementing
ECCs are characterized by two values of BER. The RBER is the
bit error rate before applying the error correction. The bit error
rate after the application of an ECC is usually identified as the
UBER. When designing a flash-based system, UBER must fit the
acceptable failure rate of the application. It therefore fixes the
correction capability the selected ECC must provide.

Considering the design of the BCH code, the current trend is to
enlarge the block size k over which ECC operations are performed.
In fact, longer blocks better handle higher concentrations of errors,
providing more protection while using fewer parity bits [30, 31].
For this reason we decided to adopt a block size of k = 4KB equal
to the page size of the selected memory, thus overcoming some of
the drawbacks of the approach proposed in [28].

Manufacturers usually quote UBER values on their data sheets
typically around 10−11 [3]. Given this target, Fig. ?? and Fig.
7 show the relation between RBER and UBER achieved by our
ECC when using ISPP-DV as opposed to ISPP-SV as program
algorithms in the flash device. The specific algorithm determines
different RBERs, which even degrade over time, as illustrated in

section 6.1. Those RBER ranges then become the x-axis values in
Fig. ?? and Fig. 7.
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Figure 7. UBER and RBER relation for ISPP-SV al-
gorithm.

Both Figures show that in the best case (left-hand side),
tMIN = 3 is sufficient to meet the required reliability constraints.
Fig. ?? shows that, in the worst case, the correction capability
required by the code is tMAX = 14 errors for the ISPP-DV algo-
rithm. Fig. 7 shows that this value grows to tMAX = 65 errors
for ISPP-SV.

We therefore instantiated a BCH codec architecture for the
worst case with correction capability in the range t = 3 ÷ 65,
which is able to accommodate also the relaxed requirements of
ISPP-DV and of both program algorithms over time.

We then characterized the encoding and decoding latency of
this ECC architecture when required to guarantee a constant
UBER of 10−11 over time and in the presence of the ISPP-SV and
ISPP-DV in the flash device. Results are reported in Fig.8. We
can see that with ISPP-SV the adaptive ECC is reconfigured over
time in an attempt to meet the reliability requirement, thus clearly
resulting in longer (de-)coding latencies. Since ISPP-DV can con-
tain the RBER with memory aging, ECC requirements can be re-
laxed accordingly hence almost keeping a constant latency. As
will be pointed out in next section, this latency deviations trans-
late into different write and read throughput figures for the two
program algorithms.
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Figure 8. ECC encoding/decoding performance with
respect to the chosen ISPP algorithm and memory life-
time. Assumed operating speed is 80 MHz.

6.3 The new performance-reliability trade-offs

The cross-domain approach proposed in this work for
performance-reliability trade-off leverages the possibility to act
both upon physical and architectural parameters, thus combining
their settings into unprecedented combinations.



We assume that ISPP-SV and the ECC settings meeting the
10−11 requirement with that algorithm over time are the baseline
configurations of the memory sub-system. With respect to that
average case, we then ask for improved read throughput or for
improved UBER through our cross-layer memory configuration.
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Figure 9. Write throughput penalty.
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Figure 10. UBER improvement obtained with our ap-
proach with respect to nominal NAND Flash operating
mode.
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Figure 11. Read throughput gain as an effect of the
cross-layer optimization.

6.3.1 Minimizing UBER
Some mission-critical applications may require an UBER value

lower than the typical 10−11 one, which was originally projected
for the SSD and HDD markets [3]. The improvement of the UBER
can be obtained by keeping constant the ECC correction capabil-
ity, while tuning only on the physical layer. Indeed, by switching

from the ISPP-SV algorithm to the more reliable ISPP-DV one it
is possible to reduce the overall RBER by an order of magnitude,
which directly maps into a reduction of the UBER value.

Fig. 5 shows that by exploiting this methodology during the
whole memory lifetime, it is possible to achieve an UBER boost
which on average amounts to two orders of magnitude but peaks
at four orders of magnitude at the end of memory lifetime with
respect to the nominal setting. The key benefit of this approach is
that the UBER boost does not come at the cost of read through-
put penalty, since the decoding time is unaffected. There is a
power penalty for this strategy, approximately consisting of the
7mW documented in Fig.6.

This cross-layer configuration provides a new operating point
for the memory sub-system which better meets the requirements of
a range of applications in the embedded computing domain. For
instance, secure transactions for web-based payments, critical data
transfers such as operating system (OS) upgrades or internal data
backup would all benefit from UBER minimization with respect
to the average case.

6.3.2 Maximizing Read throughput
Read intensive scenarios require the maximum read throughput

achievable by the memory, eventually penalizing write throughput
performance. By acting only upon the memory controller param-
eters, the ECC strength would have to be reduced, thus degrading
the UBER. In constrast, with a cross-layer approach, it is possi-
ble to select the ISPP-DV algorithm, so to provide the best RBER
feature during the whole memory lifetime (see Fig. 5), and to con-
currently relax the ECC configuration to provide a constant UBER
of 10−11.

This solution bears two benefits: the encoding/decoding la-
tency can be reduced since a less aggressive correction capability
is required; the power consumption of the ECC can be reduced for
the same reason (from 7mW to 1mW in this work). The decoding
latency savings enable to improve the memory read throughput of
up to 30% at the end of memory lifetime, as shown in Fig. 11.
This depends on two factors. On one hand, read throughput is
dominated by decoding latency and not by page read time (which
takes up to 75µs against the 150µs of the decoding operation [27]).
On the other hand, as previously shown in Fig. 8, the improvement
is a strict function of memory aging.

The key novelty of this approach lies in the fact that read
throughput can be maximized with respect to the average case
without impacting UBER. Moreover, the relaxation of ECC per-
formance allows to keep the memory power budget constant since
the increased power needs of the physical layer are compensated
by the lower power of the ECC sub-system. Of course, this result
is strictly ECC architecture dependent. This way, a new operat-
ing point is made available to embedded systems where applica-
tions such as music playback, video streaming and digitized pic-
tures would greatly benefit from it. All those multimedia-oriented
applications dictate as a main requirement a high quality of ser-
vice (QoS) in terms of decoding/encoding capabilities, occasion-
ally tolerating glitches in video/audio playback or image viewing.
Finally, such enhanced application perceived performance comes
at no increased power cost.

6.3.3 Trading Write Throughput for Adaptivity
In both adaptivity cases discussed above, when switching away

from the baseline memory setting, a loss in write throughput has
to be expected for improved read throughput or UBER.

In fact, in both cases the program algorithm is switched to
ISPP-DV, which takes a longer time to run than the ISPP-SV. Since
this time dominates with respect to the encoding latency (1.5ms
against the ECC encoder latency which is about two orders of mag-
nitude lower), then the longer program time of the memory can be
directly referred to the longer ISPP-DV algorithm. As shown in
Fig. 9, the write throughput loss with respect to the baseline set-
ting on average amounts to 40%.

Although the overhead is relevant, it can be mitigated by using
a two-round data load strategy on the page buffer of the NAND
flash, and is however acceptable for read-intensive applications,
where it is the price to pay for improved UBER (without sacri-
ficing read throughput) or for improved read throughput (without
sacrificing UBER). In the extreme case, an ideal target for our
methodology is the NAND flash sector typically reserved as One-
Time-Programmable (for instance for execute-in-place).



6.4 Implementation Complexity

What is worth to be pointed out is that the programming al-
gorithms for NAND Flash memories are generally hardwired in
a code-ROM memory integrated in the same memory die and ac-
cessed by an embedded microcontroller, which executes all the
necessary control operations for the algorithm to take place.

Our physical layer optimization approach moves from the as-
sumption that more than one algorithm can be stored on the code-
ROM, being also runtime user-selectable. This feature anyway
does not lead to a complexity overhead of the microcontroller
structure as the only change to be devised resides in the small in-
crease of the code-ROM capacity.

Another possible solution, which would increase the reconfig-
urability of the entire NAND memory, may include the possibility
of substituting the code-ROM with a SRAM memory to be writ-
ten by the memory controller with the most suitable algorithm for
the memory transaction at hand. The approach of integrating more
than one RAM devices on the memory controller is not unusual
[2], especially for debug and test purposes.

7. Conclusions

In this paper, we demonstrate that combining settings at the
physical and architectural level in a memory sub-system holds
promise of exposing unprecedented trade-off points between per-
formance and reliability. In particular, read throughput can be
improved upon demand at runtime without sacrificing UBER and
viceversa. This comes with at a loss in write throughput and with
a marginal power penalty in specific use cases. When combin-
ing these trade-offs with those traditionally provided by design
techniques for the memory controller architecture, we broaden the
available trade-off points for memory operation, thus paving the
way for a more fine-grained optimization of applications and for a
higher degree of memory self-adaptivity. In future work we intend
to implement the memory controller taking advantage of the new
trade-offs, thus exposing differentiated storage services to appli-
cations.
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