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The heat diffusion related f−1/2 slow decay in the frequency domain transfer function of thermoelectric
devices introduces a bias in figure of merit measurement methods that do not take it into account.
The bias can range from less than 1% to more than 20% depending on the device. Harman type
methods are not immune. Neither is the simple single measurement procedure proposed here on
the basis of a complex thermal impedance analysis of the device, but in this case the supporting
theory allows evaluating and correcting for the bias with documented accuracy. To this aim, both a
theoretical approach based on a priori knowledge of the device and an experimental one based on
theory guided measurements are possible and are described in the paper. Typical residual Type B
uncertainties after correction can be below 10% of the bias. © 2011 American Institute of Physics.
[doi:10.1063/1.3656074]

I. INTRODUCTION

Thoroughly characterizing thermoelectric materials and
devices is no easy task as it involves measuring both thermal
and electrical quantities as well as thermoelectric parameters
connecting the two worlds. A shortcut which has been found
practical is to measure the dimensionless figure of merit zT
instead of the whole set of such quantities. In fact, it is mostly
on the basis of this parameter that a judgment can be made on
the overall quality of thermoelectric materials and devices as
employed in practical applications.

While the intrinsic thermoelectric material’s figure of
merit is defined as zT = ε 2T/(λρe), where ε is the single-
junction Seebeck coefficient, λ and ρe are the material’s ther-
mal conductivity and electrical resistivity, respectively, and T
is the average sample’s temperature, the relevant quality indi-
cator for a real practical realization is

zT = ε2 T

RK
(1)

where K and R are the total thermal conductance and the
total series electrical resistance of the device. Only for a single
leg in ideal conditions does this coincide with the material’s
intrinsic figure of merit, as in this case is R = ρe2L0/A and
K = λA/2L0, if 2L0 and A are length and cross section of the
thermoelectric element.

The practically relevant value of Eq. (1) is also what can
be evaluated in a real device by measuring electrical quantities
at the accessible external connections, because it can be ob-
tained as the ratio between the total developed Seebeck volt-
age Vε and the total ohmic voltage drop V�,

zT = Vε

V�

= ε �T

R Ai
= ε �

RK
= ε2 T

RK
, (2)

where i is the electric current density and � the Peltier coef-
ficient.

Separating the two contributions is not trivial and is tradi-
tionally performed with some version of a time-domain tran-
sient approach1, 2 denominated the “Harman method,” which
envisions measuring the sudden voltage drop experienced at
the terminals of the device when a dc current previously estab-
lished through it is switched off. The idea behind the method
is that, upon switching, the ohmic voltage disappears with
the current while the thermoelectric voltage persists as ther-
mal inertia prevents fast temperature variations. Although the
correct approach to determine the step response of a system
requires anti-transforming a transfer function in the Laplace
domain, correct answers are still obtained with that simple
method provided the system is dominated by a single pole,
which only recently3 was shown not to be the case in thermo-
electric devices.

Several improvements were added over time to this orig-
inal idea, aimed at keeping in check the effects of Joule heat-
ing. Most popular seems to have recently become what has
been referred to as “the modified4–7 Harman method,” which
has the merit of keeping Joule heating constant throughout the
measurement procedure. In order to achieve this goal, the dc
current is reversed periodically for some time at some not bet-
ter specified “high frequency” (which is however low enough
to avoid an extra voltage from the series inductance of the de-
vice) and then is finally fixed in direction until the transient
is extinguished. The ratio between the final asymptotic volt-
age and half the peak-to-peak voltage measured during the
periodic switching phase is taken to be a good evaluation of
1 + zT. This modified method suffers from the existence of
the half pole in the transfer function, demonstrated in Ref. 3,
because the device’s response does not decay with frequency
as fast as previously assumed.
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Much work has been devoted to the task of studying in
detail the corrections that must be introduced onto measured
values in order to recover the intrinsic figure of merit of em-
ployed thermoelectric materials. Errors caused by heat losses
were considered,8–15 as well as biases from parasitic electri-
cal and thermal contact resistances.10, 12, 13 With one notable
exception16, 17 no serious efforts seem instead to have been
spent in trying to define alternative methods to measure the
figure of merit of a thermoelectric device. Apparently, con-
fidence in the method has been so high as to even prompt
the realization of Z-meters based on it.18, 19 In order to pro-
vide an alternative approach, which is generally suggested by
the international metrological community to foster compar-
isons between results obtained with different accuracy budget
structures, in this paper a different method is proposed for the
measurement of the figure of merit.

The ratio between junction temperature response and in-
jected Peltier heat flux can be interpreted as the transfer func-
tion of a transducer, and in this light was recently presented,3

but can also be seen as a thermal impedance,20 and in this
meaning will be considered here. A one-dimensional model is
adopted, in which three-dimensional constriction and spread-
ing resistances are treated as in Ref. 3 and contact resistances
between different layers are not considered. These assump-
tions were shown in Ref. 3 to lead to analytical results consis-
tent with experimental data, which confirms their adequacy.
The heat diffusion equations are solved with the complex
phasor method21 assuming suitable boundary conditions.

Diagrams obtained for the impedance in the complex
plane turn out to be suggestive of a porcupine profile, which
prompted for them the sticky nickname of “porcupine dia-
grams.” They are helpful for the evaluation of the figure of
merit with new strategies, and indicate with graphic evidence
that in some cases the Harman method may be affected by
even quite relevant undetected biases, which can be avoided
with the new approach discussed in this paper.

The new proposed method is applied here in basically
isothermal conditions to obtain what could be called a “small
signal” figure of merit, but could also be applied to a device
exposed to environments at different temperature on the two
sides to obtain a figure of merit valid for that temperature dif-
ference, which would include the Thomson effect. This is an
important piece of information, as pointed out in Ref. 17.

In the following, analytical solutions will first be devel-
oped in Sec. II for the lumped parameters model, in order
to establish a historical reference for the new method, while
in Sec. III the complex phasor method is applied to a dis-
tributed model in order to characterize the errors ingrained in
the lumped approach. A discussion on the use of porcupine
diagrams for zT evaluation will be given in Sec. IV.

II. THE LUMPED PARAMETERS MODEL

For the mentioned continuity reasons, the complex pha-
sor symbolism is here first applied to the lumped parameters
model, which is the practical description of the single ther-
mal pole assumption that was historically considered valid for
thermoelectric devices.

FIG. 1. Electrical equivalent of the thermal circuit of the thermoelectric de-
vice. The Seebeck voltage is indicated to underline the fact that the device is
observed at the junctions.

The equivalent electrical circuit representation shown in
Fig. 1 will be used for the one-dimensional model of the ther-
moelectric device. Quantities here are all per-unit-area, and
the effects of spreading and constriction resistances at phys-
ical interfaces, discussed in Ref. 3, are assumed to be taken
into account. As such, the generated Peltier heat flux density
φ = �i is referred to the current density i, while K0 and CT

are, respectively, the frontal thermal conductance of the ther-
moelectric element and the frontal thermal capacity of the ex-
ternal layers (electrical connections and thermal insulator). It
should be helpful to underline here that K0 is the conductance
of only half of the element, because the device is considered
symmetrically conditioned for simplicity, which means that
K0 = λ0 /L0. The current density will be identified here by i
because the more commonly used symbol j is dedicated to the
imaginary unit

√−1.
By introducing the total complex thermal admittance yT,

the equivalent circuit yields

Vε(ω)

ε φ
= 1

yT
= 1

y0 + ye
= 1

K0 + jω CT
= 1

K0

1

1 + jω/ωp


= 1

K0

(
1

2
+ 1

2
e− j2ψ


)
, (3)

where ω p
 = K0/CT is the angular frequency of the thermal
pole and ψ
 = arctg (ω/ωp
). It can be easily seen that this is
a half circle in the complex plane, as shown in Fig. 2.

The measured voltage drop VP and the Seebeck voltage
Vε can then be represented in the complex voltage plane as
reported in Fig. 3, where V� is assumed independent of fre-
quency and no contribution of the series inductance is consid-
ered, as it becomes relevant at frequencies higher than those
considered in this paper.

The figure of merit Vε (0)/V� can be obtained by mea-
suring some well identifiable quantity which defines the
proportion of the circle to V�. For example one can measure

FIG. 2. Diagram as a function of frequency of the complex thermal
impedance normalized to the dc thermal resistance, in the lumped parame-
ter approximation.
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FIG. 3. Diagram of the complex voltage at the electrical terminals of the
device.

γ M, the maximum phase between VP and V�, as shown in
Fig. 4.

In fact, Vε (0) and V� can be easily related to γ M,
obtaining

Vε(0) = 2VP tan γM, (4)

V� = VP

cos γM
− Vε(0)

2
, (5)

and the figure of merit zT* in the lumped parameter assump-
tion is then obtained as

zT ∗ = 2 sin γM

1 − sin γM
. (6)

This shows that, given the improved insight offered by
the powerful phasor symbolism, a single measurement can be
recognized to be sufficient to evaluate the figure of merit in
the lumped parameters approximation. Since all what counts
is the aspect ratio in Figs. 3 and 4, it is not necessary to com-
bine information obtained from measurements in two differ-
ent conditions.

The uncertainty of zT* determination by Eq. (6) relies
solely on the accuracy of the maximum phase measurement,
for the Type B contribution, and on phase resolution δγ for
the Type A.

The former can be guaranteed to an unnecessary degree
by referring to a quartz oscillator, the employed low frequency
sine wave synthesizer, and measuring time delays both at ris-
ing and falling edges. In fact, the phase difference calculated
from the average of these two time intervals discriminates
against distortions (typically of the second harmonic type)
which may be produced in the device, for example, by Joule
heating.

The latter can be easily reduced below 1 mrad, at the
very low frequencies at which γ M occurs (typically below
0.1 Hz), as far as the contribution of the time interval counter
resolution is concerned. In fact, counting at 1 kHz is suffi-

FIG. 4. Complex voltage diagram with indication of quantities γ M, ψM, and
fM used in the determination of the figure of merit zT*.

cient to guarantee δγ < 1 mrad at the foreseeable maximum
frequency of 0.1 Hz. Little more care must be put in mak-
ing sure that also the single-shot noise contribution to δγ be
adequately small, because averaging many measurements for
noise reduction is out of the question for time reasons at these
low frequencies.

Since such noise generated contribution δγ is the recip-
rocal of the amplitude signal-to-noise ratio, the latter must be
greater than 60 dB for a Type A phase uncertainty smaller
than 1 mrad. This imposes a minimum of 10 bit for the digital
sine wave synthesizer, and suitably low-noise electronics in
the driving circuits.

Given all the above, the limiting Type A uncertainty in
the zT* determination can be derived from Eq. (6) with the
usual propagation rules, and is

δzT

zT ∗
∗

= δγ

(1 − sin γM) tan γM
. (7)

This is a monotonically decreasing function of zT* which
is definitely smaller than 4δγ for zT* > 1.

As a result, the conclusion can be made that 0.5% uncer-
tainty can be achieved with this approach in the measurement
of zT*.

Alternatively, one can choose to measure other quantities
in easily identifiable points of the circle, for example, VP and
its quadrature component at ω = ωp, where the latter is max-
imized, or VP at ω = 0 and at ω → ∞, which in some sense
was Harman’s choice, as made explicit in Ref. 6.

The advantage of choosing γ M, besides the single mea-
surement issue, lays both in the precision available for phase
measurements and in the fact that the corresponding fre-
quency is relatively high (for a thermal system), which allows
to carry out the zT* evaluation in a relatively short time.

III. THE DISTRIBUTED PARAMETERS MODEL

In the more realistic case of the distributed parameters
model, the equivalent circuit of Fig. 1 can be still used, but
thermal impedances of thermoelectric elements (1/y0) and ex-
ternal layers (1/ye) must be calculated by solving the heat
diffusion equation, which will be done here with the com-
plex phasor method with reference to the geometric scheme of
Fig. 5.

With this approach, the heat diffusion equation for the
thermoelectric layer can be written as

d2ϑ (x)

dx2
− 1

L2
0

jω

ω0
ϑ (x) = 0, (8)

where ϑ is the temperature excess from the symmetry plane
and

ω0 = α0

L2
0

= K0

C0
(9)

is the characteristic frequency of the half elements. Equation
(8) admits solutions of the form

ϑ (x) = a exp

(
x

L0

√
jω/ω0

)
+ b exp

(
− x

L0

√
jω/ω0

)
,

(10)
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FIG. 5. One-dimensional physical model of the device used for the calcula-
tion of thermal impedances in the distributed parameters case.

where the a and b coefficients must be determined with the
boundary conditions

−dϑ

dx

∣∣∣∣
x=0

= φ

λ0
, ϑ (L0) = 0. (11)

The solution for ϑ (0)/φ = 1/y0 is

K0

y0
= tanh

√
jω/ω0√

jω/ω0
. (12)

For the external impedance, the same procedure must be
applied with boundary conditions

− dϑ

dx

∣∣∣∣
x=0

= φ

λ1
,

dϑ

dx

∣∣∣∣
x=L1+L2

= 0, (13)

where L1 and L2 are the thicknesses of conducting and in-
sulating layers, and the imposition of temperature and flux
continuity at the interface (x = L1).

The solution for ϑ(0)/φ = 1/ye is

K0

ye
= 1 + K2

K1

√
ω1/ω2 tanh

√
jω/ω1 tanh

√
jω/ω2

K1
K0

√
jω/ω1 tanh

√
jω/ω1 + K2

K0

√
jω/ω2 tanh

√
jω/ω2

,

(14)

where the characteristic frequencies ω1 and ω2 are defined
similarly to ω0 in Eq. (9).

The equivalent circuit is solved like in the lumped pa-
rameters case, with the total complex thermal admittance yT

= y0 + ye given in this case by a suitable combination of
Eqs. (12) and (14).

The difference between the two approaches, in the low
frequency range, can be quantified if the hyperbolic tangents
appearing in yT are approximated with their third-order ex-
pansion. An expression is obtained which can again be shown
to be a circle in the complex impedance plane, like it was
in the lumped parameters case, with the noticeable difference
that the radius is smaller and the centre is shifted.

FIG. 6. Example of porcupine diagram of the normalized complex thermal
impedance of a thermoelectric device (thick solid line), with indication of
the lumped approximation (thin solid line) and the body approximating half
circle (dashed line). The curve δ (dotted line) represents the relative radial
distance of the porcupine body from the latter circle.

In fact, the following form can be given to the expression
of the impedance:

K0

yT
= K0

y0 + ye
= 1 + S( jω/ωp)

1 + jω/ωp

= 1 + S

2
+ 1 − S

2

1 − jω/ωp

1 + jω/ωp

= 1 + S

2
+ 1 − S

2
e− j2ψ, (15)

where S is given by

S

ωp
= 1

ω1

C2

C1
+ 1

3

1

C1 + C2

(
C1

ω1
+ C2

ω2

)

= C2

K1
+ 1

3

C1

K1

C1

C1 + C2

+ 1

3

C2

K2

C2

C1 + C2
, (16)

and the angle

ψ = arctg

(
ω

ωp

)
(17)

is still formally related to frequency in the same way as in
the lumped model. However, the value of the thermal pole
angular frequency ωp is lower than the ωp
 = K0/(C1+C2)
value that it had in that case. In fact, the pole frequency is
reduced according to

1

ωp
= 1

ωp


+ 1

3ω0
+ S

ωp
≈ 1

ωp


+ S

ωp
, (18)

where the approximation is particularly good for shorter ther-
moelectric elements, for which ω0 � ωp.

How close the half circle of Eq. (15) is to the impedance
diagram obtained from Eqs. (12) and (14) is shown in
Fig. 6 for an actual device (as described in its commercial
datasheet), in which the departure from the lumped parame-
ters model is quite evident. Alumina, Copper, and Bi2Te3 are
assumed to be the materials of the device, whose geometry is
defined by L0 = 0.1 mm, L1 = 0.01 mm, and L2 = 0.5 mm,
and an area filling factor of 0.5.
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The curve of the total impedance in the complex plane
changes from the half circle of the lumped parameters model
(shown for comparison) into a shape that looks like the profile
of a porcupine (also shown for comparison). In the following
we will refer to this representation as the porcupine diagram.
The body of the porcupine corresponds to the frequency range
dominated by the thermal pole, while the snout corresponds
to the high frequency half pole section.3 The parameter S is
the ratio between the length of the snout and the length of the
whole porcupine.

The relative departure of the actual calculated body pro-
file from the approximating half circle is also characterized
in Fig. 6 by the parameter δ, which is the local radial dis-
tance of the body from the circle, referred to its radius. The
reported dotted curve represents δ as a function of the value
of Re[K0/yT] in the considered point on the circle. It can
be seen that δ is always smaller than 0.6% in the considered
case for γ values smaller than 45◦. With the help of Eq. (6) it
can be figured out that this phase angle range corresponds to
the figure of merit range zT* < 5 if γ is interpreted as γ M, the
maximum phase used to evaluate zT*. This information will
be used in Sec. IV to discuss the uncertainty that it introduces,
which will be shown to be acceptable.

In Fig. 7(a) the Bode diagram of the calculated absolute
value of the thermal impedance 1/yT is reported in arbitrary
units for different values of L0 and constant typical values for
all the others quantities defining the thermoelectric device;
similarly, the effect of varying L2 with everything else con-
stant is shown in Fig. 7(b). Incremental steps are here a factor
of

√
10 in both cases.
It can be seen that the half pole section of the di-

agram, which generates the porcupine’s snout, is com-
mon to all curves, irrespective of L0 and L2. This derives
from the fact that both insulating and thermoelectric lay-
ers are thermally thick in that region, which makes their

FIG. 7. (a) Effect of L0, (b) effect of L2 on the transfer function Bode dia-
gram of a thermoelectric device. Thickness values are varied in steps of 10
dB (∼200%).

thermal impedance close to their respective characteristic
impedance20 (

√
jω e)−1, where e is the thermal effusivity of

the material. As a result, as long as the copper layer is ther-
mally thin, in that frequency range it is

1

yT
≈ 1√

jω (e0 + e2)
. (19)

This approximation can also be easily derived analyti-
cally from Eqs. (12) and (14), as already pointed out in Ref.
3.

Incidentally, it is interesting to point out that the angular
frequency at which the Bode diagram changes slopes is ap-
proximately ω2, as indicated in Fig. 7(a). This can be derived
by comparing Eq. (19) with Eq. (3) and assuming e2 � e0 and
ω � ωp
.

In the thermal pole dominated region, instead, all curves
in Fig. 7(a) eventually flatten out to a level proportional to L0,
at angular frequencies lower than ωp. As it turns out, both ωp

and S are proportional to 1/L0, while S ∝ L2 and ωp ∝ 1/L2.
In Fig. 8, two complex thermal impedance diagrams are

shown, which qualitatively characterize how the Bode dia-
gram variations of Fig. 7 translate in the porcupine represen-
tation. Incremental steps given to L0 in Fig. 8(a) and L2 in
Fig. 8(b) are only 12.2% for obvious graphical reasons. Such
steps are ten times smaller, in a logarithmic scale, than those
used in Fig. 7. In both cases, it is evident from the figures that
the relative snout length S changes in the same 12.2% propor-
tion at each step. Also shown in the diagrams is the different
way in which the frequency parameter slides along the porcu-
pine for changing L0 and L2 values.

Since the tip of the snout corresponds to ω → ∞, it is evi-
dent from Figs. 6–8 that measuring what is commonly denom-
inated “the ac resistance” in the modified Harman method4–7

runs the risk to include in the value taken to be the ohmic

FIG. 8. (a) Effect of L0, (b) effect of L2 on the porcupine diagram of a ther-
moelectric device. Thickness values are varied in steps of 1 dB (∼12.2%).
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voltage a contribution from the snout of the porcupine. The
corresponding error will depend on the frequency at which
such measurement is actually performed. However, since the
half pole decay in the frequency domain is slow, unreasonably
high frequencies may be necessary to reduce it significantly.
On the other hand, thinking of the original transient Harman
method, one should consider that the half pole in the high fre-
quency region dominates the first part of the step response
of the system. Since the latter introduces a transient signal
which starts with a theoretically infinite slope,22 it is impos-
sible to spot its contribution and separate it from the ohmic
voltage.

As a matter of fact, any measurement method which does
not properly account for the snout would yield biased val-
ues for the dimensionless figure of merit, with greater biases
for devices with shorter thermoelectric elements and thicker
insulators.

In all cases the figure of merit comes out underestimated
in the process, which makes the possibility to correct for this
bias very appealing.

IV. FIGURE OF MERIT EVALUATION WITH
PORCUPINE DIAGRAMS

Once realized with the distributed parameters analysis
that the impedance diagram of a thermoelectric device in the
complex plane is not a half circle, but rather a porcupine-like
profile, it becomes obvious that the simple approach of mea-
suring γ M and inserting it in Eq. (6) yields a value for the
figure of merit which is potentially biased and may have to be
corrected in order to meet the desired accuracy. The advan-
tage of the method here proposed lays also in the fact that the
“snout error” is well defined and the correction can then be
made with documented accuracy.

Two biases must be considered. The lesser one stems out
of the relative distance δ of the porcupine body from cir-
cularity (shown in Fig. 6) which biases γ M and as a con-
sequence also zT*. This error is always positive and can be
estimated by applying Eq. (7), which is written for the prop-
agation of the uncertainty δγ , to the propagation of the bias
�γ . The latter can be calculated by considering that δ = �γ

/tan(γ M). Further attention will be given to it later, when dis-
cussing the overall uncertainty of the proposed measurement
method.

The main bias is generated by the relative length S of the
porcupine’s snout. In fact, if the latter is taken into account,
the figure of merit zT = Vε (0)/V� of the device can be written
as

zT = zT ∗ 1 + S∗

1 − S∗zT ∗ = zT ∗ 1

1 − S (1 + zT ∗)
, (20)

where S* = S/(1–S) is the length of the snout referred to the di-
ameter of the circle which approximates the porcupine’s body.
The parameter S* is introduced because, contrary to S, it is
normalized with respect to a quantity which can be evaluated
with Eq. (4). It must however be underlined that the zT* defi-
nition used do derive Eq. (20) is not the one given in Eq. (6),
but rather one similar to the definition of zT given in Eq. (2),
with Vε (0) and VR, respectively, reduced and increased of the

snout. The two definitions of zT* differ because of the above
mentioned body circularity error. If Eq. (20) is used to de-
rive zT from a zT* value based on measured γ M and Eq. (6),
which is its only available estimate, the obtained result must
be corrected for both biases.

The relative “snout correction” can be derived from
Eq. (20) itself, and is given by

zT − zT ∗

zT ∗ = S∗ (1 + zT ∗)

1 − S∗zT ∗ = S (1 + zT ∗)

1 − S (1 + zT ∗)
, (21)

which shows that the true value of zT is always greater than
zT*. While Eq. (21) is the actual correction needed in the pro-
posed method, how much of this error is actually included in
a measurement of the Harman type depends on the fraction of
the snout signal contribution that is mistakenly attributed to
the ohmic drop in the specific case.

If the snout is small, like it can be in many devices with
few mm long thermoelectric elements, the error is not too
great, although it can easily be of a few percent. In devices
built with short thermoelectric elements, instead, Eq. (21)
shows the risk of an important underevaluation of zT. In fact,
the snout can easily be of the order of 10% of the body in thin
devices, and if zT* is of the order of 1 this can amount to an
underevaluation of the true value by more than 20%.

It is therefore very important to find a way to estimate
either theoretically or experimentally the length of the porcu-
pine’s snout.

An a priori evaluation of the snout’s length can be ob-
tained from Eqs. (16) and (18) if geometry and materials are
well known, as could be the case of a manufacturer. With
this approach, a reasonably good estimate of S can also be
obtained, if resistance spreading is taken into account,3 by
approximating ωp with ωp
 ≈ K0/(C1+C2), and keeping for
S only the third term in Eq. (16). The latter in fact prevails
on the first two terms when L2 > L1, which is the case for
modules with typical insulating plates. This fact is shown in
Fig. 9, where the respective ratios r′ and r′′ of the first two
terms to the third in Eq. (16) are plotted versus L2/L1 for a typ-
ical device. With this approximation, the relative snout length
S can be expressed as

S ≈ ωp

3ω2

(
1 + C1

C2

)−1

= 1

3

K0

K2

(
1 + C1

C2

)−2

FIG. 9. Weights r′ and r′′ of the first two terms in Eq. (16) relative to the
third, as a function of L2/L1, for the device of Fig. 6.
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= 1

3

λ0

λ2

L2

L0

(
1 + ρc1

ρc2

L1

L2

)−2

, (22)

which may not always offer adequate accuracy by itself, but
in any case is at least useful for a decision on the need to adopt
an experimental approach to determine the snout correction.

On the other hand, if an experimental evaluation of S is
judged necessary, a strategy must be devised to optimize the
process from the points of view of uncertainty and type and
number of needed measurements.

To this aim, the critical point is the fact that the tip of the
snout, which is the very point of the diagram whose position
is sought, cannot be reached in practice because even getting
close to it involves very high frequencies, a region where it is
very difficult to properly compensate for the parasitic induc-
tance. The needed strategy must therefore allow one to infer
the position of the snout tip from measurements taken at more
viable frequencies.

The only possible basis for such a strategy can be the
shape of the snout itself. The best bet seems to be to exploit
the observation that its profile is generally aligned around
thermal impedances with a 45◦ phase angle, which is where
it would be if the module had a single external layer, accord-
ing to Eq. (19). Actual devices are more complex than that,
which leads to geometry dependant snout profiles. A snout
length evaluation based on the 45◦ slope assumption will then
introduce a Type B uncertainty contribution. Still, this appears
to be the best than can be done, topped only by the possibility
to reduce this uncertainty with the help of a model-based cal-
culation of the expected snout profile in the particular device.
However, if the device’s geometry and materials are so well
known as to allow this improvement, it may well be possible
to avoid altogether the experimental approach and settle with
a snout length evaluation by Eq. (16).

Among other conceivable ways to exploit the expected
snout profile, an experimental procedure structured in three
steps is here suggested, which has the advantage of looking
for extremes of a relevant quantity as a function of frequency.

A block diagram of the assumed measurement system,
which is presently in the process of being engineered, is
shown in Fig. 10.

For the necessary experimental support to the conceptual
developments which are reported here, off the shelf instru-
mentation was used, and phase shifts were evaluated graphi-
cally from Lissajous figures. The phase resolution obtained in
this way was limited to about 5 mrad. This is far from the best
that can be done, but was still adequate, albeit marginally, to
provide experimental support to the present work within its
scope.

The suggested experimental procedure will be illustrated
here with reference to Figs. 11 and 12, which are based on
the calculated porcupine profile for the device of Fig. 6. In
Figs. 13 and 14, instead, data points taken in the course of
applying this procedure to an available device are compared
to the corresponding calculated curves. The geometry of the
module is defined by L0 = 1.45 mm, L1 = 0.25 mm, and L2

= 0.9 mm, with an area filling factor3 of 0.35. As usual,
Bi2Te3, copper and alumina are assumed to be its materials.

FIG. 10. Block diagram of a possible configuration of an electronic system
dedicated to the measurement of the figure of merit of a thermoelectric de-
vice. DDFS = direct digital frequency synthesizer, DCA = digitally con-
trolled attenuator, DPM = digital phase meter, μP = micro-processor, UI =
user interface, TE DUT = thermoelectric device under test. Operational am-
plifiers and differential amplifier are selected for low noise and high CMRR.
The resistor RI defines the ratio between the input voltage Vin generated by
the DDFS and the current fed to the DUT.

The three steps are carried out as follows.

Step 1: The phase angle between the input driving cur-
rent and the total voltage VP developed at the terminals of the
device is maximized to γ M by adjusting the frequency of the
sine-wave generator, and measured to better than 1 mrad with
a digital phase meter (DPM) of the time interval counter type.
The frequency fM at which γ M is obtained is stored for later
use and zT* is calculated with Eq. (6).

For the experimentally tested device, the mentioned sub-
optimum instrumentation allowed finding the values fM = 9.5
(0.3) mHz and γ M = 12.56 (0.3) deg for these quantities,
which yield an estimate of 0.555 (0.016) for zT*, similar to
the values obtained with the transient Harman method and the
modified Harman method.

Step 2: The frequency is set to the value f45 given by

f45 = fM
tan(3π/8)

tan(π/4 + γM/2)
(23)

at which the tangent to the porcupine body has a slope of 45◦,
as shown in Fig. 11. Equation (23) is derived from Eq. (17)
by considering that 2 ψM = γ M + π /2, as shown in Fig. 4. At

FIG. 11. Diagram of the complex voltage at the electrical terminals of the
device around the porcupine snout. The indicated quantities are the ones used
in the proposed snout length evaluation procedure.
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FIG. 12. Plot as a function of frequency, for the device of Fig. 6, of relative
V1 values for which the output VD of the differential amplifier is 45◦ out of
phase from the injected current.

this frequency the phase angle between the input current and
the output VD of the differential amplifier is then driven to 45◦

by adjusting the voltage V1 of the reference branch, at which
point the value V1a of the latter is measured and stored. In
Fig. 12 a plot is given, as a function of frequency, of the V1

values for which VD is at 45◦. It is clear that V1a is the min-
imum of this function. As a consequence, the uncertainty as-
sociated with V1a can be very small even if the frequency f45

were not exceedingly precise. Incidentally, it can be noticed
that an independent evaluation of zT* may also be obtained
from V1a and the output VDa of the differential amplifier in this
situation, divided by its differential gain G. Simple trigonom-
etry is sufficient for this task, yielding

zT ∗ = 2√
2 − 1 + G V1a

VDa

. (24)

For the tested module, as shown in Fig. 13, the frequency
f45 turned out to be 18.5 mHz and the voltage V1a was mea-

FIG. 13. Measured complex voltages at the electrical terminals of the avail-
able device in the course of the suggested three steps procedure for the eval-
uation of the figure of merit corrected for the porcupine snout. The dashed
lines at 45◦ identify for each frequency the corresponding V1 value.

FIG. 14. Values of V1 for which the output VD of the differential amplifier
was 45◦ out of phase from the injected current in the course of the evaluation
of the available device. The relevant measured values of V1a and V1b are
indicated.

sured to be 14.25 (0.1) mVpp when the device was driven with
a current of 40 mApp.

Step 3: The frequency is gradually increased and V1 is ad-
justed each time to obtain a 45◦ phase shifted VD. A possible
criterion for the frequency increments can be, for example, to
use a geometric progression, namely fk+1 = fk (f45/fM). For
the rough test on the available module, the sequence 50, 100,
200, 500 mHz, 1, 2 Hz . . . was adopted, as shown in Figs. 13
and 14. The process is stopped when the value of V1 needed
to obtain a 45◦ phase shifted VD, stabilizes to the maximized
value V1b shown in Fig. 12. The latter is taken to be the best
possible estimate of the ohmic drop V�. The experimental
points tested in applying this process to the evaluated avail-
able module are shown in Fig. 14, where the needed peak-to-
peak V1 values at the mentioned frequencies are, respectively,
14.95 mV at 50 mHz, 15.48 mV at 100 mHz, 15.78 mV at
200 mHz, 15.93 mV at 500 mHz, and 16.00 mV from 1 Hz
on. The ohmic drop V� , or the measured V1b taken as its
proxy, is then seen to be 16.00 (0.10) mVpp with the injected
40 mApp current, which indicates a series resistance of 0.400
(0.005) �.

This information can now be used to substitute for S* in
Eq. (21), obtaining

zT − zT ∗

zT ∗ =
√

2−1
2 (1 + zT ∗)

1 −
√

2−1
2 zT ∗

{
1 −

1 − V1a
V1b√

2−1
2 zT ∗

}
. (25)

The ratio V1a/V1b appearing in Eq. (25) is the only addi-
tional experimental data necessary for the correction, and can
be obtained numerically directly from the controlling unit if
the gain of the reference branch is regulated digitally, for ex-
ample by means of a Digitally Controlled Attenuator (DCA)
as indicated in Fig. 10. The snout correction calculated with
Eq. (25) for the tested available module turned out to be 1.8%.
The corrected value of the figure of merit is than zT = 0.565
(0.016).

A heuristic survey of calculated snout profiles for a num-
ber of reasonable device geometries has indicated that V1b is
typically greater than V�, at least when L2 > L1, and that
the Type B uncertainty with which they can be identified is
conservatively smaller than 10% of the snout length. This
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is comparable with the uncertainty of an a priori evaluation
based on Eq. (16), given the unavoidable Type B contribu-
tions from data on geometry and material properties and from
uncertainty in the model of constriction and spreading effects.

However, since the experimental approach seems to leave
a positively biased uncertainty interval (from 0 to 10% of the
snout) in the evaluation of V�, it can be argued that this ac-
tually amounts to a Type B uncertainty of 5% of the snout on
top of a positive bias of the same magnitude. In this perspec-
tive, the experimental approach would seem to be somewhat
better than the mentioned a priori evaluation.

Furthermore, it can be noticed that such leftover bias
is effectively an underevaluation of the snout length, which
leads to an underevaluation of zT, and may therefore be partly
compensated by the circularity bias, which leads instead to
an overevaluation of zT, as quickly discussed at the beginning
of this section. In the big-snout case of Figs. 6, 11, and 12,
for example, the circularity bias on zT turns out to be about
+0.3% if zT* = 1, while the leftover snout bias on zT can
be evaluated to be about −0.9%, with a Type B uncertainty
of equal magnitude. In order to get this result, Eq. (21) must
be rewritten multiplying S by 0.05, the mentioned 5% of S
residual bias.

As a conclusion, it would be safe to state that the exper-
imental approach to the snout correction would lead in this
case to a zT value accurate to better than 1%.

It must be added here that both Type B uncertainty and
mentioned biases scale with the snout length. The expected
accuracy would then be comparatively improved for devices
with a smaller snout.

All Type A uncertainty contributions, which arise in con-
nection with S/N ratio, phase measurement resolution in the
DPM and attenuation resolution in the DCA, are here as-
sumed to be adequately small for the Type B uncertainty to
dominate.
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NOMENCLATURE

A = cross section of thermoelectric element (m2)
C = frontal thermal capacity of a generic layer (J m−2 K−1)

CT = frontal thermal capacity of external layers (J m−2 K−1)
f = frequency (Hz)

G = differential gain of the differential amplifier
i = electric current density (A m−2)
j = imaginary unit

K = specific thermal conductance (W m−2 K−1)
K = thermal conductance of the thermoelectric elements

(W K−1)
L = layer thickness (m)
r′ = ratio between first and third term in Eq. (16)
r′′ = ratio between second and third term in Eq. (16)
R = series electric resistance (�)
S = relative snout length referred to the dc Seebeck voltage

S* = relative snout length referred to the porcupine body
circle diameter

T = temperature (K)
Vε = Seebeck voltage (V)
VP = voltage drop on the thermoelectric module (V)
V� = ohmic voltage drop (V)
y0 = thermal admittance of the thermoelectric layer

(W m−2 K−1)
ye = overall thermal admittance of the external layers

(W m−2 K−1)
yT = total thermal admittance (W m−2 K−1)
zT = true dimensionless figure of merit

zT* = dimensionless figure of merit in the lumped parameter
approximation

Greek symbols

α = thermal diffusivity (m2 s−1)
γ = phase difference between V� and VP

δ = relative circularity error of the porcupine body
ε = Seebeck coefficient (V K−1)
φ = heat flux per unit surface (W m−2)
λ = thermal conductivity (W m−1 K−1)
ϑ = temperature excess
ρe = electric resistivity of thermoelectric material (� m)
� = Peltier coefficient (V)
ψ = angle define by Eq. (17)
ω = angular frequency (rad s−1)
ωι = characteristic angular frequency of layer i (rad s−1)

Subscripts

0 thermoelectric material
1 electrical connection layer
2 isolator layer
ε referring to Seebeck voltage

 referring to lumped parameter model
p referring to thermal pole
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