## POLITECNICO DI TORINO

Repository ISTITUZIONALE

Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory tests

Original
Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory tests / Luciani, A.; Todaro, C.; Martinelli, D.; Peila, D.. - In: TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY. - ISSN 0886-7798. ELETTRONICO. - 103:(2020), pp. 1-11. [10.1016/j.tust.2020.103499]

## Availability:

This version is available at: 11583/2841211 since: 2020-07-23T10:27:05Z
Publisher:
Elsevier Ltd

Published
DOI:10.1016/j.tust.2020.103499

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

# TWO CONDITIONAL RESULTS ABOUT PRIMES IN SHORT INTERVALS 

DANILO BAZZANELLA


#### Abstract

In 1937 A. E. Ingham proved that $\psi\left(x+x^{\theta}\right)-\psi(x) \sim x^{\theta}$ for $x \rightarrow \infty$, under the assumption of the Lindelöf hypothesis for $\theta>1 / 2$. In this paper we examine how the above asymptotic formula holds by assuming in turn two different heuristic hypotheses. It must be stressed that both the hypotheses are weaker than the Lindelöf hypothesis.


This is the authors' post-print version of an article published on

$$
\begin{gathered}
\text { Int. J. Number Theory } 7 \text { (2011), No 7, 1753-1759, } \\
\text { DOI:10.1142/S1793042111004563. }{ }^{1}
\end{gathered}
$$

## 1. Introduction

Let $\psi(x)=\sum_{n \leq x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangoldt function. This paper is concerned with the asymptotic formula

$$
\begin{equation*}
\psi\left(x+x^{\theta}\right)-\psi(x) \sim x^{\theta} \quad x \rightarrow \infty \tag{1}
\end{equation*}
$$

which estimates the number of primes in the interval $\left(x, x+x^{\theta}\right]$. If $\theta<1$ this type of interval is called short interval. The prime number theorem implies that (1) holds with $\theta \geq 1$. In 1930 G . Hoheisel [7] proved that there is a prime in each of the intervals of the form $\left(x, x+x^{\theta}\right]$, with a constant $\theta<1$. The best known unconditional result about the constant $\theta$ is due to M. N. Huxley [8] and asserts that (1) holds for $\theta>7 / 12$, which was slightly improved by D. R. Heath-Brown [5] to $\theta \geq 7 / 12-\varepsilon(x)$, for every $\varepsilon(x) \rightarrow 0$. If we assume some well-known hypotheses we can handle smaller $\theta$. For instance A. E. Ingham [9, Theorem 4] proved that the asymptotic formula (1) holds for $\theta>1 / 2$, assuming the Lindelöf hypothesis, which states that the Riemann Zeta-function satisfies

$$
\zeta(\sigma+i t) \ll t^{\eta} \quad\left(\sigma \geq \frac{1}{2}, t \geq 2\right)
$$

[^0]for any $\eta>0$.
In a previous paper, see D. Bazzanella [1], we proved that (1) holds for $\theta>1 / 2$, under the assumption of the following unproved hypothesis.

Hypothesis 1. There exist a constant $X_{0}$ and a function $\Delta(y, T)$ such that, for every $5 / 12<\beta<1 / 2$ and $\varepsilon>0$, we have

$$
\begin{equation*}
\int_{X}^{2 X}\left|\psi\left(y+\frac{y}{T}\right)-\psi(y)-\frac{y}{T}+\Delta(y, T)\right|^{4} \mathrm{~d} y \ll X^{4+\varepsilon} T^{-3} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(y, T) \ll \frac{y}{T \ln y} \tag{3}
\end{equation*}
$$

uniformly for $X \geq X_{0}, X^{5 / 12} \leq T \leq X^{\beta}$ and $X \leq y \leq 2 X$.
Through the work of G. Yu [13, Lemma B ] the above hypothesis was proved to be weaker than the Lindelöf hypothesis.
In this paper we give two new conditional results about the validity of (1) for $\theta>1 / 2$. To state the theorems we need to use the counting functions $N(\sigma, T)$ and $N^{(k)}(\sigma, T)$. The former is defined as the number of zeros $\rho=\beta+i \gamma$ of the Riemann zeta function which satisfy $\sigma \leq \beta \leq 1$ and $|\gamma| \leq T$, while $N^{(k)}(\sigma, T)$ is defined as the number of ordered sets of zeros $\rho_{j}=\beta_{j}+i \gamma_{j}(1 \leq j \leq 2 k)$, each counted by $N(\sigma, T)$, for which $\left|\gamma_{1}+\cdots+\gamma_{k}-\gamma_{k+1}-\cdots-\gamma_{2 k}\right| \leq 1$. We now state the heuristic hypotheses that we need to assume. The first new hypothesis is the natural generalization of Hypothesis 1.

Hypothesis 2. There exist an integer $k \geq 1$, a constant $X_{0}$ and a function $\Delta(y, T)$ such that, for every $5 / 12<\beta<1 / 2$ and $\varepsilon>0$, we have

$$
\int_{X}^{2 X}|\psi(y+y / T)-\psi(y)-y / T+\Delta(y, T)|^{2 k} \mathrm{~d} y \ll X^{2 k+\varepsilon} T^{1-2 k}
$$

and

$$
\Delta(y, T) \ll y /(T \log y)
$$

uniformly for $X \geq X_{0}, X^{5 / 12} \leq T \leq X^{\beta}$ and $X \leq y \leq 2 X$.
The second new hypothesis is about the upper bound of the counting functions $N^{(k)}(\sigma, T)$. We start to observe that D. Bazzanella and A. Perelli [3] made the heuristic assumption that

$$
N^{(2)}(\sigma, T)=N^{*}(\sigma, T) \ll \frac{N(\sigma, T)^{4}}{T} \quad(1 / 2 \leq \sigma \leq 1) .
$$

The above may be generalized and weakened to

$$
N^{(k)}(\sigma, T) \ll \frac{N(\sigma, T)^{2 k}}{T} T^{\varepsilon} \quad(1 / 2 \leq \sigma \leq \bar{\sigma})
$$

with suitable $\bar{\sigma}<1$ and arbitrarily small $\varepsilon>0$. If we recall that the Lindelöf hypothesis implies that for every $\eta>0$ we have

$$
N(\sigma, T) \ll T^{2(1-\sigma)+\eta} \quad(1 / 2 \leq \sigma \leq 1)
$$

see A. E. Ingham [9], we are led to claim the following.
Hypothesis 3. For every $\eta>0$ there exists an integer $k \geq 2$ such that

$$
N^{(k)}(\sigma, T) \ll T^{4 k(1-\sigma)-1+\eta} \quad(1 / 2 \leq \sigma \leq 5 / 6+\eta) .
$$

Our new conditional results are the following.
Theorem 1. If we assume Hypothesis 2, then the asymptotic formula (1) holds for every $\theta>1 / 2$.

Theorem 2. If we assume Hypothesis 3, then the asymptotic formula (1) holds for every $\theta>1 / 2$.

Note that despite Hypothesis 2 and 3 being weaker than the Lindelöf hypothesis, see G. Yu [13, Lemma B] and D. R. Heath-Brown [6, Lemma 1] respectively, the result obtained about the the asymptotic formula (1) is the same of A. E. Ingham [9, Theorem 4].

## 2. The basic lemma

The basic lemma is a result about the structure of the exceptional set for the asymptotic formula (1). Let $X$ be a large positive number, $\delta>0$ and let | | denote the modulus of a complex number or the Lebesgue measure of a set. We define

$$
E_{\delta}(X, \theta)=\left\{X \leq x \leq 2 X:\left|\psi\left(x+x^{\theta}\right)-\psi(x)-x^{\theta}\right| \geq \delta x^{\theta}\right\} .
$$

It is clear that (1) holds if and only if for every $\delta>0$ there exists $X_{0}(\delta)$ such that $E_{\delta}(X, \theta)=\emptyset$ for every $X \geq X_{0}(\delta)$. Hence for small $\delta>0$ and $X$ tending to $\infty$, the set $E_{\delta}(X, \theta)$ contains the exceptions, if any, to the expected asymptotic formula for
the number of primes in short intervals. Moreover, we observe that

$$
E_{\delta}(X, \theta) \subset E_{\delta^{\prime}}(X, \theta) \quad \text { if } \quad 0<\delta^{\prime}<\delta .
$$

We now provide a useful result about the exceptional set $E_{\delta}(X, \theta)$.

Lemma. Let $0<\theta<1$, $X$ be sufficiently large, $0<\delta^{\prime}<\delta$ with $\delta-\delta^{\prime} \geq \exp (-\sqrt{\log X})$. If $x_{0} \in E_{\delta}(X, \theta)$ then $E_{\delta^{\prime}}(X, \theta)$ contains the interval $\left[x_{0}-c X^{\theta}, x_{0}+c X^{\theta}\right] \cap[X, 2 X]$, where $c=\left(\delta-\delta^{\prime}\right) \theta / 5$. In particular, if $E_{\delta}(X, \theta) \neq \emptyset$ then

$$
\left|E_{\delta^{\prime}}(X, \theta)\right| \gg_{\theta}\left(\delta-\delta^{\prime}\right) X^{\theta}
$$

The lemma essentially says that if we have a single exception in $E_{\delta}(X, \theta)$, with a fixed $\delta$, then we necessarily have an interval of exceptions in $E_{\delta^{\prime}}(X, \theta)$, with $\delta^{\prime}$ being a little smaller than $\delta$. The interesting consequence of this lemma is that we can use a suitable bound for the exceptional set to prove the non-existence of the exceptions. The above lemma is part (i) of Theorem 1 of D. Bazzanella and A. Perelli, see [3].

## 3. Proof of the Theorems

We will always assume that $n$ and $X_{n}$ are sufficiently large as prescribed by the various statements, and $\varepsilon>0$ is arbitrarily small and not necessarily the same at each occurrence. Our theorems assert that (1) holds with $\theta>1 / 2$. For $\theta \geq 7 / 12$ the result follows unconditionally from the work of D. R. Heath-Brown [5] and so we consider only $1 / 2<\theta<7 / 12$. In order to prove the theorems we assume that (1)
does not hold. Then there exists $\delta_{0}>0$ and a sequence $X_{n} \rightarrow \infty$ such that

$$
\left|\psi\left(X_{n}+X_{n}^{\theta}\right)-\psi\left(X_{n}\right)-X_{n}^{\theta}\right| \geq \delta_{0} X_{n}^{\theta}
$$

From the definition of the exceptional set, we then have $X_{n} \in E_{\delta_{0}}\left(X_{n}, \theta\right)$. The use of the Lemma with $\delta^{\prime}=\delta_{0} / 2$ leads to

$$
\begin{equation*}
\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| \gg X_{n}^{\theta} \tag{4}
\end{equation*}
$$

for every $1 / 2<\theta<7 / 12$.
On the other hand, assuming the suitable heuristic hypotheses, we can get an upper bound for $\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right|$. If we consider $y \in E_{\delta^{\prime}}\left(X_{n}, \theta\right)$ we get

$$
\begin{equation*}
\left|\psi\left(y+y^{\theta}\right)-\psi(y)-y^{\theta}\right| \gg X_{n}^{\theta} . \tag{5}
\end{equation*}
$$

We divide the interval $\left[X_{n}, 2 X_{n}\right]$ into $O\left(\ln ^{2} X_{n}\right)$ subintervals $J_{i}=\left[a_{i}, a_{i+1}\right]$, with

$$
\begin{equation*}
a_{i}=X_{n}+\frac{i X_{n}}{\log ^{2} X_{n}} \tag{6}
\end{equation*}
$$

and define

$$
E_{\delta^{\prime}}^{i}\left(X_{n}, \theta\right)=E_{\delta^{\prime}}\left(X_{n}, \theta\right) \cap J_{i} .
$$

We let

$$
\begin{equation*}
T_{i}=a_{i}^{1-\theta} \tag{7}
\end{equation*}
$$

and observe that Hypothesis 2 implies that there exist an integer $k \geq 1$, a constant $X_{0}$ and a function $\Delta(y, T)$ such that, for every $i$, we have

$$
\begin{equation*}
\int_{X_{n}}^{2 X_{n}}\left|\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+\Delta\left(y, T_{i}\right)\right|^{2 k} \mathrm{~d} y \ll X_{n}^{2 k+\varepsilon} T_{i}^{1-2 k} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(y, T_{i}\right) \ll y /\left(T_{i} \log y\right) \tag{9}
\end{equation*}
$$

uniformly for $X_{n} \geq X_{0}$ and $X_{n} \leq y \leq 2 X_{n}$. From the Brun-Titchmarsh theorem, see
H. L. Montgomery and R. C. Vaughan [12], we can deduce that for every $i$ we have

$$
\psi\left(y+y^{\theta}\right)-\psi(y)-y^{\theta}=\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+\Delta\left(y, T_{i}\right)+O\left(\frac{X_{n}^{\theta}}{\log X_{n}}\right)
$$

for every $y \in J_{i}$. The above bound and (5) imply that

$$
\left|\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+\Delta\left(y, T_{i}\right)\right| \gg X_{n}^{\theta}
$$

$$
\begin{aligned}
& \text { for every } y \in E_{\delta^{\prime}}^{i}\left(X_{n}, \theta\right) \text {. Thus we obtain } \\
&\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| \ll X_{n}^{-2 k \theta} \sum_{i} \int_{E_{\delta^{\prime}}^{i}\left(X_{n}, \theta\right)}\left|\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+\Delta\left(y, T_{i}\right)\right|^{2 k} \mathrm{~d} y \\
& \ll X_{n}^{-2 k \theta} \sum_{i} \int_{X_{n}}^{2 X_{n}}\left|\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+\Delta\left(y, T_{i}\right)\right|^{2 k} \mathrm{~d} y .
\end{aligned}
$$

By (8) we conclude that

$$
\begin{equation*}
\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| \ll X_{n}^{-2 k \theta} \sum_{i} X_{n}^{2 k+\varepsilon} T_{i}^{1-2 k} \ll X_{n}^{1-\theta+\varepsilon} . \tag{10}
\end{equation*}
$$

For $1 / 2<\theta<7 / 12$, when $\varepsilon$ is sufficiently small and $X_{n}$ is sufficiently large we have a contradiction between (10) and (4), and this completes the proof of Theorem 1.
To prove Theorem 2 we use the classical explicit formula, see H. Davenport [4, Chapter 17], to write

$$
\begin{equation*}
\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}=-\sum_{|\gamma| \leq R_{i}} y^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}+O\left(\frac{X_{n} \log ^{2} X_{n}}{R_{i}}\right) \tag{11}
\end{equation*}
$$

uniformly for $X_{n} \leq y \leq 2 X_{n}$, where $\delta_{i}=1+T_{i}^{-1}, 10 \leq R_{i} \leq X_{n}$ and $\rho=\beta+i \gamma$ runs over the non-trivial zeros of $\zeta(s)$. If we choose $R_{i}=T_{i} \log ^{3} X_{n}$ and recall (7) and (6) we have

$$
\begin{aligned}
X_{n}^{1-\theta} \log ^{3} X_{n} \ll & R_{i} \ll X_{n}^{1-\theta} \log ^{3} X_{n} \\
& \text { and } \\
\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}= & -\sum_{|\gamma| \leq R_{i}} y^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}+O\left(\frac{X_{n}^{\theta}}{\log X_{n}}\right) .
\end{aligned}
$$

We note also that

$$
\begin{equation*}
\left|\frac{e^{\delta_{i} \rho}-1}{\rho}\right|=\left|\int_{0}^{\delta_{i}} e^{t \rho} \mathrm{~d} t\right| \leq \int_{0}^{\delta_{i}} e^{t \beta} \mathrm{~d} t \leq e \delta_{i} \ll \frac{1}{T_{i}} . \tag{12}
\end{equation*}
$$

Follow the method of D. R. Heath-Brown we can prove that for $\theta>1 / 2$ and every fixed $u>5 / 6$ we have

$$
\sum_{|\gamma| \leq R_{i}, \beta>u} y^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho} \ll \frac{X_{n}^{\theta}}{\log X_{n}},
$$

see (12.79) in [10]. Thus we obtain

$$
\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}=-\sum_{|\gamma| \leq R_{i}, \beta \leq u} y^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}+O\left(\frac{X_{n}^{\theta}}{\log X_{n}}\right),
$$

for every $i$ and $y \in J_{i}$. As before we observe that for every $y \in J_{i}$ we have

$$
\psi\left(y+y^{\theta}\right)-\psi(y)-y^{\theta}=\psi\left(y+y / T_{i}\right)-\psi(y)-y / T_{i}+O\left(\frac{X_{n}^{\theta}}{\log X_{n}}\right)
$$

and then

$$
\psi\left(y+y^{\theta}\right)-\psi(y)-y^{\theta}=-\sum_{|\gamma| \leq R_{i}, \beta \leq u} y^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}+O\left(\frac{X_{n}^{\theta}}{\log X_{n}}\right),
$$

for every $i$ and $y \in J_{i}$. This implies that

$$
\begin{equation*}
\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| X_{n}^{2 k \theta} \ll \sum_{i} \int_{X_{n}}^{2 X_{n}}\left|\sum_{|\gamma| \leq R_{i}, \beta \leq u} x^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}\right|^{2 k} \mathrm{~d} x . \tag{13}
\end{equation*}
$$

To estimate the $2 k$-power integral we divide the interval $[0, u]$ into $O\left(\ln X_{n}\right)$
subintervals $I_{j}$ of the form

$$
I_{j}=\left[\frac{j}{\log X_{n}}, \frac{j+1}{\log X_{n}}\right] .
$$

By Hölder inequality we obtain

$$
\left|\sum_{|\gamma| \leq R_{i}, \beta \leq u} x^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}\right|^{2 k} \ll\left(\ln X_{n}\right)^{2 k-1} \sum_{j}\left|\sum_{|\gamma| \leq R_{i}, \beta \in I_{j}} x^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}\right|^{2 k} .
$$

Following again the method of D. R. Heath-Brown, we write

$$
\begin{gathered}
\int_{X_{n}}^{2 X_{n}}\left|\sum_{|\gamma| \leq R_{i}, \beta \in I_{j}} x^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}\right|^{2 k} \mathrm{~d} x \ll \\
\sum_{\substack{\beta_{1}, \ldots, \beta_{2 k} \in I_{j} \\
\left|\gamma_{1}\right| \leq R_{i}, \ldots,\left|\gamma_{2 k}\right| \leq R_{i}}} \frac{\left(2 X_{n}\right)^{\rho_{1}+\cdots+\rho_{k}+\overline{\rho_{k+1}}+\cdots+\overline{\rho_{2 k}}+1}-X_{n}^{\rho_{1}+\rho_{2}+\cdots+\rho_{k}+\overline{\rho_{k+1}}+\cdots+\overline{\rho_{2 k}+1}}}{\rho_{1} \cdots \rho_{2 k}\left(\rho_{1}+\cdots+\rho_{k}+\overline{\rho_{k+1}}+\cdots+\overline{\rho_{2 k}}+1\right)} \\
<\left(e^{\delta_{i} \rho_{1}}-1\right) \cdots\left(e^{\delta_{i} \rho_{k}}-1\right)\left(e^{\delta_{i} \overline{\rho_{k+1}}}-1\right) \ldots\left(e^{\left.\delta_{i} \overline{\rho_{2 k}}-1\right)}\right. \\
<\frac{1}{T_{i}^{2 k}} X_{n}^{1+2 k j / \log X_{n}} \sum_{\substack{\beta_{1}, \ldots, \beta_{2 k} \geq j / \log X_{n} \\
\left|\gamma_{1}\right| \leq R_{i}, \ldots,\left|\gamma_{2 k}\right| \leq R_{i}}} \overline{\left|\rho_{1}+\cdots+\rho_{k}+\overline{\rho_{k+1}}+\cdots+\overline{\rho_{2 k}}+1\right|} .
\end{gathered}
$$

This implies

$$
\begin{gather*}
\int_{X_{n}}^{2 X_{n}}\left|\sum_{|\gamma| \leq R_{i}, \beta \leq u} x^{\rho} \frac{e^{\delta_{i} \rho}-1}{\rho}\right|^{2 k} \mathrm{~d} x \ll \frac{1}{T_{i}^{2 k}} \max _{\sigma \leq u} X_{n}^{2 k \sigma+1} M_{k}\left(\sigma, R_{i}\right),  \tag{14}\\
M_{k}\left(\sigma, R_{i}\right)=\sum_{\substack{\beta_{1}, \ldots, \beta_{2 k} \geq \sigma \\
\left|\gamma_{1}\right| \leq R_{i}, \ldots,\left|\gamma_{2 k}\right| \leq R_{i}}} \frac{1}{1+\left|\gamma_{1}+\cdots+\gamma_{k}-\gamma_{k+1}-\cdots-\gamma_{2 k}\right|}
\end{gather*}
$$

and

$$
\begin{equation*}
M_{k}\left(\sigma, R_{i}\right) \ll N^{(k)}\left(\sigma, R_{i}\right) \log X_{n} \tag{15}
\end{equation*}
$$

see [10, p. 336]. From (13), (14) and (15) we have

$$
\begin{equation*}
\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| \ll X_{n}^{1-2 k+\varepsilon} \sum_{i} \max _{\sigma \leq u} X_{n}^{2 k \sigma} N^{(k)}\left(\sigma, R_{i}\right) \tag{16}
\end{equation*}
$$

We now consider an arbitrarily small constant $\eta>0$, let $u=5 / 6+\eta$ and assume
Hypothesis 3. Thus for every $1 / 2 \leq \sigma \leq u$ we have

$$
X_{n}^{2 k \sigma} N^{(k)}\left(\sigma, R_{i}\right) \ll X_{n}^{2 k \sigma} R_{i}^{4 k(1-\sigma)-1+\eta} \ll X_{n}^{2 k \sigma+(1-\theta)(4 k(1-\sigma)-1)+\eta} .
$$

For $\theta>1 / 2$ the above upper bound attains its maximum at $\sigma=u$ and then from
(16) we obtain

$$
\begin{equation*}
\left|E_{\delta^{\prime}}\left(X_{n}, \theta\right)\right| \ll X_{n}^{\theta-k(2 \theta-1) / 3+\varepsilon} \tag{17}
\end{equation*}
$$

For $1 / 2<\theta<7 / 12$, when $\varepsilon$ is sufficiently small and $X_{n}$ is sufficiently large we have a contradiction between (17) and (4), and this completes the proof of Theorem 2.

## References

[1] D. Bazzanella, A note on primes in short intervals, Arch. Math. 91 (2008), 131-135.
[2] D. Bazzanella, Primes between consecutive squares, Arch. Math. 75 (2000), 29-34.
[3] D. Bazzanella and A. Perelli, The exceptional set for the number of primes in short intervals, J. Number Theory 80 (2000), 109-124 .
[4] H. Davenport, Multiplicative Number Theory (2nd Edn.), GTM 74, Springer - Verlag, New York (1980).
[5] D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math., 389 (1988), 22-63.
[6] D. R. Heath-Brown, The difference between consecutive primes IV, A tribute to Paul Erdős, 277287, Cambridge Univ. Press, Cambridge (1990).
[7] G. Hoheisel, Primzahlprobleme in der Analysis, Sitz. Preuss. Akad. Wiss. 33 (1930), 3-11.
[8] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
[9] A. E. Ingham, On the difference between consecutive primes, Quart. J. of Math. (Oxford) 8 (1937), 255-266.
[10] A. Ivić, The Riemann Zeta-Function, John Wiley \& Sons, New York (1985).
[11] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer, Berlin (1971).
[12] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[13] G. Yu, The differences between consecutive primes, Bull. London Math. Soc. 28 (1996), no. 3, 242-248.

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino - Italy
E-mail address: danilo.bazzanella@polito.it


[^0]:    1991 Mathematics Subject Classification. 11NO5.
    Key words and phrases. distribution of prime numbers, primes in short intervals.
    ${ }^{1}$ This version does not contain journal formatting and may contain minor changes with respect to the published version. The final publication is available at http://dx.doi.org/10.1142/S1793042111004563. The present version is accessible on PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in compliance with the Publisher's copyright policy as reported in the SHERPA-ROMEO website: http://www.sherpa.ac.uk/romeo/issn/1793-0421/

