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TWO CONDITIONAL RESULTS
ABOUT PRIMES IN SHORT INTERVALS

DANILO BAZZANELLA

Abstract. In 1937 A. E. Ingham proved that ψ(x + xθ) − ψ(x) ∼ xθ for x → ∞,
under the assumption of the Lindelöf hypothesis for θ > 1/2. In this paper we
examine how the above asymptotic formula holds by assuming in turn two different
heuristic hypotheses. It must be stressed that both the hypotheses are weaker than
the Lindelöf hypothesis.
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1. Introduction

Let ψ(x) =
∑

n≤x Λ(n), where Λ(n) is the von Mangoldt function. This paper is
concerned with the asymptotic formula

(1) ψ(x+ xθ)− ψ(x) ∼ xθ x→∞,
which estimates the number of primes in the interval (x, x+ xθ]. If θ < 1 this type of

interval is called short interval. The prime number theorem implies that (1) holds
with θ ≥ 1. In 1930 G. Hoheisel [7] proved that there is a prime in each of the

intervals of the form (x, x+ xθ], with a constant θ < 1. The best known unconditional
result about the constant θ is due to M. N. Huxley [8] and asserts that (1) holds for
θ > 7/12, which was slightly improved by D. R. Heath-Brown [5] to θ ≥ 7/12− ε(x),
for every ε(x)→ 0. If we assume some well-known hypotheses we can handle smaller
θ. For instance A. E. Ingham [9, Theorem 4] proved that the asymptotic formula (1)
holds for θ > 1/2, assuming the Lindelöf hypothesis, which states that the Riemann

Zeta-function satisfies

ζ(σ + it)� tη (σ ≥ 1

2
, t ≥ 2),
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2 D. BAZZANELLA

for any η > 0.
In a previous paper, see D. Bazzanella [1], we proved that (1) holds for θ > 1/2,

under the assumption of the following unproved hypothesis.

Hypothesis 1. There exist a constant X0 and a function ∆(y, T ) such that, for every
5/12 < β < 1/2 and ε > 0, we have

(2)

∫ 2X

X

∣∣∣ψ (y +
y

T

)
− ψ(y)− y

T
+ ∆(y, T )

∣∣∣4 dy � X4+εT−3

and

(3) ∆(y, T )� y

T ln y

uniformly for X ≥ X0, X
5/12 ≤ T ≤ Xβ and X ≤ y ≤ 2X.

Through the work of G. Yu [13, Lemma B ] the above hypothesis was proved to be
weaker than the Lindelöf hypothesis.

In this paper we give two new conditional results about the validity of (1) for
θ > 1/2. To state the theorems we need to use the counting functions N(σ, T ) and
N (k)(σ, T ). The former is defined as the number of zeros ρ = β + iγ of the Riemann
zeta function which satisfy σ ≤ β ≤ 1 and |γ| ≤ T , while N (k)(σ, T ) is defined as the
number of ordered sets of zeros ρj = βj + iγj (1 ≤ j ≤ 2k), each counted by N(σ, T ),
for which |γ1 + · · ·+ γk − γk+1− · · · − γ2k| ≤ 1. We now state the heuristic hypotheses

that we need to assume. The first new hypothesis is the natural generalization of
Hypothesis 1.

Hypothesis 2. There exist an integer k ≥ 1, a constant X0 and a function ∆(y, T )
such that, for every 5/12 < β < 1/2 and ε > 0, we have∫ 2X

X

|ψ(y + y/T )− ψ(y)− y/T + ∆(y, T )|2kdy � X2k+εT 1−2k

and
∆(y, T )� y/(T log y)

uniformly for X ≥ X0, X
5/12 ≤ T ≤ Xβ and X ≤ y ≤ 2X.

The second new hypothesis is about the upper bound of the counting functions
N (k)(σ, T ). We start to observe that D. Bazzanella and A. Perelli [3] made the

heuristic assumption that

N (2)(σ, T ) = N∗(σ, T )� N(σ, T )4

T
(1/2 ≤ σ ≤ 1) .

The above may be generalized and weakened to

N (k)(σ, T )� N(σ, T )2k

T
T ε (1/2 ≤ σ ≤ σ) ,

with suitable σ < 1 and arbitrarily small ε > 0 . If we recall that the Lindelöf
hypothesis implies that for every η > 0 we have

N(σ, T )� T 2(1−σ)+η (1/2 ≤ σ ≤ 1),
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see A. E. Ingham [9], we are led to claim the following.

Hypothesis 3. For every η > 0 there exists an integer k ≥ 2 such that

N (k)(σ, T )� T 4k(1−σ)−1+η (1/2 ≤ σ ≤ 5/6 + η) .

Our new conditional results are the following.

Theorem 1. If we assume Hypothesis 2, then the asymptotic formula (1) holds for
every θ > 1/2.

Theorem 2. If we assume Hypothesis 3, then the asymptotic formula (1) holds for
every θ > 1/2.

Note that despite Hypothesis 2 and 3 being weaker than the Lindelöf hypothesis, see
G. Yu [13, Lemma B] and D. R. Heath-Brown [6, Lemma 1] respectively, the result

obtained about the the asymptotic formula (1) is the same of A. E. Ingham [9,
Theorem 4].

2. The basic lemma

The basic lemma is a result about the structure of the exceptional set for the
asymptotic formula (1). Let X be a large positive number, δ > 0 and let | | denote

the modulus of a complex number or the Lebesgue measure of a set. We define

Eδ(X, θ) = {X ≤ x ≤ 2X : |ψ(x+ xθ)− ψ(x)− xθ| ≥ δxθ}.

It is clear that (1) holds if and only if for every δ > 0 there exists X0(δ) such that
Eδ(X, θ) = ∅ for every X ≥ X0(δ). Hence for small δ > 0 and X tending to ∞, the
set Eδ(X, θ) contains the exceptions, if any, to the expected asymptotic formula for

the number of primes in short intervals. Moreover, we observe that

Eδ(X, θ) ⊂ Eδ′(X, θ) if 0 < δ′ < δ.

We now provide a useful result about the exceptional set Eδ(X, θ).

Lemma. Let 0 < θ < 1, X be sufficiently large, 0 < δ′ < δ with
δ − δ′ ≥ exp(−

√
logX). If x0 ∈ Eδ(X, θ) then Eδ′(X, θ) contains the interval

[x0 − cXθ, x0 + cXθ] ∩ [X, 2X], where c = (δ − δ′)θ/5. In particular, if Eδ(X, θ) 6= ∅
then

|Eδ′(X, θ)| �θ (δ − δ′)Xθ.

The lemma essentially says that if we have a single exception in Eδ(X, θ), with a
fixed δ, then we necessarily have an interval of exceptions in Eδ′(X, θ), with δ′ being a
little smaller than δ. The interesting consequence of this lemma is that we can use a
suitable bound for the exceptional set to prove the non-existence of the exceptions.
The above lemma is part (i) of Theorem 1 of D. Bazzanella and A. Perelli, see [3].
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3. Proof of the Theorems

We will always assume that n and Xn are sufficiently large as prescribed by the
various statements, and ε > 0 is arbitrarily small and not necessarily the same at

each occurrence. Our theorems assert that (1) holds with θ > 1/2. For θ ≥ 7/12 the
result follows unconditionally from the work of D. R. Heath-Brown [5] and so we
consider only 1/2 < θ < 7/12. In order to prove the theorems we assume that (1)

does not hold. Then there exists δ0 > 0 and a sequence Xn →∞ such that∣∣ψ(Xn +Xθ
n)− ψ(Xn)−Xθ

n

∣∣ ≥ δ0X
θ
n.

From the definition of the exceptional set, we then have Xn ∈ Eδ0(Xn, θ). The use of
the Lemma with δ′ = δ0/2 leads to

(4) |Eδ′(Xn, θ)| � Xθ
n,

for every 1/2 < θ < 7/12.
On the other hand, assuming the suitable heuristic hypotheses, we can get an upper

bound for |Eδ′(Xn, θ)|. If we consider y ∈ Eδ′(Xn, θ) we get

(5) |ψ(y + yθ)− ψ(y)− yθ| � Xθ
n.

We divide the interval [Xn, 2Xn] into O(ln2Xn) subintervals Ji = [ai, ai+1], with

(6) ai = Xn +
iXn

log2Xn

and define

Ei
δ′(Xn, θ) = Eδ′(Xn, θ) ∩ Ji.

We let

(7) Ti = a1−θi

and observe that Hypothesis 2 implies that there exist an integer k ≥ 1, a constant
X0 and a function ∆(y, T ) such that, for every i, we have

(8)

∫ 2Xn

Xn

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2kdy � X2k+ε
n T 1−2k

i

and

(9) ∆(y, Ti)� y/(Ti log y),

uniformly for Xn ≥ X0 and Xn ≤ y ≤ 2Xn. From the Brun–Titchmarsh theorem, see
H. L. Montgomery and R. C. Vaughan [12], we can deduce that for every i we have

ψ(y + yθ)− ψ(y)− yθ = ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti) +O

(
Xθ
n

logXn

)
,

for every y ∈ Ji. The above bound and (5) imply that

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)| � Xθ
n,
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for every y ∈ Ei
δ′(Xn, θ). Thus we obtain

|Eδ′(Xn, θ)| � X−2kθn

∑
i

∫
|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy

Ei
δ′ (Xn,θ)

� X−2kθn

∑
i

∫ 2Xn

Xn

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy.

By (8) we conclude that

(10) |Eδ′(Xn, θ)| � X−2kθn

∑
i

X2k+ε
n T 1−2k

i � X1−θ+ε
n .

For 1/2 < θ < 7/12, when ε is sufficiently small and Xn is sufficiently large we have a
contradiction between (10) and (4), and this completes the proof of Theorem 1.
To prove Theorem 2 we use the classical explicit formula, see H. Davenport [4,

Chapter 17], to write

(11) ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

(
Xn log2Xn

Ri

)
,

uniformly for Xn ≤ y ≤ 2Xn, where δi = 1 + T−1i , 10 ≤ Ri ≤ Xn and ρ = β + iγ runs
over the non-trivial zeros of ζ(s). If we choose Ri = Ti log3Xn and recall (7) and (6)

we have

X1−θ
n log3Xn � Ri � X1−θ

n log3Xn

and

ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

(
Xθ
n

logXn

)
.

We note also that

(12)

∣∣∣∣eδiρ − 1

ρ

∣∣∣∣ =

∣∣∣∣∫ δi

0

etρ dt

∣∣∣∣ ≤ ∫ δi

0

etβ dt ≤ eδi �
1

Ti
.

Follow the method of D. R. Heath-Brown we can prove that for θ > 1/2 and every
fixed u > 5/6 we have∑

|γ|≤Ri, β>u

yρ
eδiρ − 1

ρ
� Xθ

n

logXn

,

see (12.79) in [10]. Thus we obtain

ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ
+O

(
Xθ
n

logXn

)
,

for every i and y ∈ Ji. As before we observe that for every y ∈ Ji we have

ψ(y + yθ)− ψ(y)− yθ = ψ(y + y/Ti)− ψ(y)− y/Ti +O

(
Xθ
n

logXn

)
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and then

ψ(y + yθ)− ψ(y)− yθ = −
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ
+O

(
Xθ
n

logXn

)
,

for every i and y ∈ Ji. This implies that

(13) |Eδ′(Xn, θ)|X2kθ
n �

∑
i

∫ 2Xn

Xn

∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx.

To estimate the 2k-power integral we divide the interval [0, u] into O(lnXn)
subintervals Ij of the form

Ij =

[
j

logXn

,
j + 1

logXn

]
.

By Hölder inequality we obtain∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

� (lnXn)2k−1
∑
j

∣∣∣∣∣∣
∑

|γ|≤Ri, β∈Ij

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

.

Following again the method of D. R. Heath-Brown, we write∫ 2Xn

Xn

∣∣∣∣∣∣
∑

|γ|≤Ri, β∈Ij

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx�

∑
β1,...,β2k∈Ij

|γ1|≤Ri,...,|γ2k|≤Ri

(2Xn)ρ1+···+ρk+ρk+1+···+ρ2k+1 −Xρ1+ρ2+···+ρk+ρk+1+···+ρ2k+1
n

ρ1 . . . ρ2k (ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1)

×(eδiρ1 − 1) · · · (eδiρk − 1)(eδiρk+1 − 1) . . . (eδiρ2k − 1)

� 1

T 2k
i

X1+2kj/ logXn
n

∑
β1,...,β2k≥j/ logXn
|γ1|≤Ri,...,|γ2k|≤Ri

1

|ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1|
.

This implies

(14)

∫ 2Xn

Xn

∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx� 1

T 2k
i

max
σ≤u

X2kσ+1
n Mk(σ,Ri),

where

Mk(σ,Ri) =
∑

β1,...,β2k≥σ

|γ1|≤Ri,...,|γ2k|≤Ri

1

1 + |γ1 + · · ·+ γk − γk+1 − · · · − γ2k|

and

(15) Mk(σ,Ri)� N (k)(σ,Ri) logXn,
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see [10, p. 336]. From (13), (14) and (15) we have

(16) |Eδ′(Xn, θ)| � X1−2k+ε
n

∑
i

max
σ≤u

X2kσ
n N (k)(σ,Ri).

We now consider an arbitrarily small constant η > 0, let u = 5/6 + η and assume
Hypothesis 3. Thus for every 1/2 ≤ σ ≤ u we have

X2kσ
n N (k)(σ,Ri)� X2kσ

n R
4k(1−σ)−1+η
i � X2kσ+(1−θ)(4k(1−σ)−1)+η

n .

For θ > 1/2 the above upper bound attains its maximum at σ = u and then from
(16) we obtain

(17) |Eδ′(Xn, θ)| � Xθ−k(2θ−1)/3+ε
n

For 1/2 < θ < 7/12, when ε is sufficiently small and Xn is sufficiently large we have a
contradiction between (17) and (4), and this completes the proof of Theorem 2.
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