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A novel algorithm for shape parameter selection in
radial basis functions collocation method

M. Gherlone, L. Iurlaro *, M. Di Sciuva

Department of Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Torino, Italy

ABSTRACT

Many Radial Basis Functions (RBFs) contain a free shape parameter that plays an important role for the application of Meshless method to the
analysis of multilayered composite and sandwich plates. In most papers the authors end up choosing this shape parameter by trial and error or
some other ad hoc means. In this paper a novel algorithm for shape parameter selection, based on a convergence analysis, is pre-sented. The
effectiveness of this algorithm is assessed by static analyses of laminated composite and sandwich plates.
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1. Introduction

The finite element method has been used with great success in
many fields (static/dynamic, linear/nonlinear analysis of solids,
structures as well as fluid flows) with both academic and industrial
applications. Most practical engineering problems related to solids
and structures are currently solved using well-known FEM pack-
ages that are commercially available. However, the following lim-
itations of displacement-based FEM are becoming increasingly
evident: the analyst spends the majority of his time in creating the
mesh and this becomes a major component of the simulation cost;
stresses are discontinuous and less accurate than displace-ments;
when handling large deformation, considerable accuracy is lost
because of the element distortion; it is very difficult to sim-ulate
crack growth with arbitrary and complex paths due to dis-
continuities that do not coincide with the original nodal lines.
These are only some of the limitations, but they are sufficient to re-
veal the root of the problem: the need to use elements or, in other
words, the need to use a mesh. Thus, starting from this observa-
tion, the Meshless methods have been proposed.

In fact, Meshless methods [1,2] establish a system of algebraic
equations for the whole problem domain without the use of a
mesh. Nodes arbitrarily scattered within the problem domain as
well as on its boundaries are adopted. These nodes do not form a
mesh and do not discretize the problem domain but represent it.
Since the distribution of the nodes could be obtained through an
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automatic process, Meshless methods allow saving the time spent
by analysts for mesh creation.

Meshless methods can be grouped into two categories: in the
first, methods which establish the algebraic system of equations
using the weak form of the problem are collected; methods that use
the strong form of the problem belong to the second group.

Due to the use of the weak form, the methods belonging to the
first category are not truly Meshless because they require the inte-
gration of the equations and, thus, the construction of a computa-
tional grid. On the contrary, this is not necessary for the methods of
the second category and for this reason they are considered truly
Meshless. In these methods, also called Meshless Collocation meth-
ods, the strong-form of the governing equations and boundary
conditions are directly discretized at the field nodes using simple
collocation technique to obtain a set of discretized system equa-
tions. The reader is referred to Refs. [1,2] for a detailed description.

In order to investigate the accuracy of a Meshless method
belonging to the second category, this paper focus on the static
analysis of laminated composite and sandwich plates by means of
an unsymmetric Radial Basis Functions collocation method (RBFs).
Among all the interpolation schemes, the RBF outperformed all the
other methods in terms of accuracy, stability, efficiency and
simplicity of implementation. As stated in [3], the system of
algebraic equations obtained with the unsymmetric method is in
general easier to implement but computationally more expensive
than the one obtained with the symmetric method.

There are different types of radial basis functions [3] but among
these, the Hardy’s multiquadratics (MQ) were ranked the best in
accuracy and convergence. However, despite MQ’s excellent per-
formance, it contains an user defined shape parameter, ¢, which
affects the stability and accuracy of the solution. So far, the choice
of the optimal value of the shape parameter remains an open



roblem; no mathematical theory has been developed yet to deter-
mine its optimal value. For this purpose, different models are
available [4] and will be briefly discussed in Section 2.1.

In this paper, we suggest an alternative method for estimating
the optimal shape parameter that is based on a convergence analy-
sis. In order to validate the accuracy of the proposed algorithm,
numerical results are presented and compared with the ones avail-
ablein the open literature. In particular, multilayered composite and
sandwich plates subjected to various loads and with different
boundary conditions are analyzed using the First-order Shear Defor-
mation Theory and the unsymmetric Radial Basis Functions colloca-
tion method with different choices of the optimal shape parameter.

2. The unsymmetric radial basis functions collocation method

In this paper the Kansa’s unsymmetric collocation method [5]
will be adopted. Consider a boundary value problem defined by

Du(x) =s(x) on Q (1)
Bu(x) =f(x) on oQ (2)

where (2 is the problem domain, 992 its boundary, and the operators
D and B are linear partial differential operators on 2 and on 9,
respectively. Points in the interior of the domain are denoted by
(%, i=1,...,N;) while those on the boundary are (x;
i=N’+],...,N[+NB=N).

The solution u(x) may be approximated by using the following
RBF-based interpolation

N
ux) = aigy([1x —xill c) (3)
i=1

where ¢; is the Radial Basis Function (RBF) centered at x; [5]. The
RBF considered is this paper is the multiquadratics (MQ) one, which
assumes the following expression

$i(%) = (% — x| +c*)'/2 (4)
where ||x — x;|| is the Euclidian norm while c is a user-defined shape
parameter.

Collocation with the boundary data at the boundary points and
with field equations at the interior points leads to

N
> aDey(|x; - xill,¢) = D)), j=1,...,N, (5)
i1
N
> aBei(X —xill,c) = i(X;), j=Ni+1,....,N;+Np (6)
P

where /(x;) and ®(x;) are the prescribed values at the boundary
nodes and the function values at the interior nodes, respectively.
In matrix compact form, Egs. (5) and (6) read

o] -]

with an unsymmetric coefficient matrix [L]. The solution of the sys-
tem (7) gives the unknown vector {a}.

i) = |

2.1. Methods for shape parameter selection

The accuracy and the well-conditioning of the solution of Eq. (7)
depends on c. In a number of numerical methods that uses global
shape functions, such as the MQ collocation, it has been observed
[6] that, as the basis functions become flatter and flatter, the
accuracy of the solution improves. This may be obtained increasing
the value of c, since ¢; would become, in the limit, a constant func-
tion of x (see Eq. (4)). On the other hand, increasing the value of ¢

also leads to a growth of the condition number of the solution ma-
trix which makes the problem ill-conditioned [6]. Ultimately,
though, the round off error dominates and the matrix solution be-
comes unstable; at that point, the solution breaks down.

Table 1 summarizes some of the methods proposed in the liter-
ature for the shape parameter calculation: d represents the average
distance between nodes, D is the diameter of the minimal circle
enclosing all data points, while N is the number of nodes.

The models quoted in Table 1 are related with the number of
nodes in the grid and with the distance between them. Among
all the approaches collected in Table 1, the Fasshauer ‘one is the
best in terms of accuracy and has been used both for static and free
vibration analyses. In particular, accurate results have been
achieved by Ferreira when natural frequencies of composite shells

Table 1
Shape parameter selection methods.

Reference Shape parameter, ¢
Hardy [7] c=0.815d

Franke [8] c=125D/vN
Fasshauer [9] c=2/VN

Fig. 2. Rate of convergence.



Table 2
Mechanical properties of unidirectional lamina.
EL Gir T Grr
25 - Er 0.5 Er 0.25 0.2 -Er

are computed by means of multiquadratics radial basis functions
[10]. When the radial basis functions are used coupled with the
Pseudospectral Method (PS), the estimation of an optimal value
of the shape parameter requires a careful selection since the prob-
lem could become very ill - conditioned. In [11] Ferreira and Fass-
hauer suggest a formula a formula for the estimation of the optimal
c that depends on the number of nodes. However, according to Rip-
pa [12], the shape parameter should depend on many others fac-
tors, such as: distribution of grid points, condition number of the
matrix, computer precision and interpolation function, ¢.

Building on these observations, Rippa [12] proposed an algo-
rithm allowing to select an optimal value of the shape parameter.
This algorithm minimizes a cost function that imitates the behav-
ior of the RMS error between the numerical solution and the exact
one. According to [12], the cost function is given by the norm of an
error vector E(c) with components

a;

Ei(c) = LT

(8)
where q; is the ith component of the vector {a} and L; ' is the ith
diagonal element of the inverse of the coefficient matrix (Eq.(7)).
Thus, the optimal value of the shape parameter is considered as the
one which minimizes the cost function E(c). Particular atten-tion
must be paid to the interval inside which searching for the optimal
c; in [4] it is suggested to inspect the cost function on a large interval
and then select a smaller one; this procedure is very expensive.

In recent years, the use of radial basis functions coupled with
Pseudospectral Method has undergone intensive research since it
ensures several potential advantages [11]. Since the original work
of Rippa concerns interpolation problems, a modification of his

algorithm is required if it has to be used for the selection of an opti-
mal c in the RBF-PS method. In [13] a modification of the original
procedure is suggested.

In this paper we suggest an alternative algorithm for the esti-
mation of the shape parameter based on a convergence analysis.

2.2. A novel algorithm for the choice of the shape parameter

The algorithm proposed in this paper estimates the optimal
value of the shape parameter ¢ through a convergence analysis,
varying the number of nodes N and the shape parameter value itself
in a user-defined range. The control variable for the conver-gence
analysis in static problems may be chosen as the displace-ment w~
(for example, the normalized maximum displacement of a plate
subjected to a pressure load). Fixed the value of the shape
parameter in the user-defined range, the solution will be estimated
for all the number of nodes in the interval (Fig. 1). As it is possible
to understand looking at Fig. 1, solutions with a higher value of the
shape parameter reach a value of the control variable greater than
those with a lower shape parameter. This behavior is true in the
first part of the Fig. 1; when the number of nodes increases, a
greater value of ¢ does not ensure a higher value of the control var-
iable. Thus it is not correct to choose a good value of the shape
parameter selecting the ¢ that guarantees the fastest convergence
for a small number of nodes.

In order to estimate the good value for the shape parameter, the
optimization is made on the rate of convergence, defined as follows

_ [WNji1, &) — WN;j, ¢

r(N;, ) T ©)

where w(Nj, ¢;) is the solution estimated with N; nodes and a value
of the shape parameter cy.

Chosen a number of nodes N*, the optimal shape parameter is
that which ensure the minimum value of r. In Fig. 2 the rate of con-
vergence related to the problem of Fig. 1 is represented.

Following this approach, the optimal value of the shape param-
eter changes with the number of nodes and also, as it will be seen
in Section 4, it depends on the regularity of the grid.

Table 3
Results for a simply supported laminated composite square plate subjected to sinusoidal pressure.

alh Method w Txx Gyy Tz Copt

4 FSDT exact 1.7100 0.4059 0.5765 0.2686
Present 1.7086 0.4064 0.5773 0.2644 0.1250
Fasshauer 1.7093 0.4071 0.5779 0.2621 0.1168
Franke 1.7179 0.3580 0.5912 0.5113 0.0620
Hardy 1.7232 0.4013 0.5914 0.0836 0.0584
Rippa 1.7099 0.4052 0.5770 0.2572 0.1551

10 FSDT exact 0.6628 0.4989 0.3615 0.3181
Present 0.6623 0.4986 0.3612 0.3056 0.1600
Fasshauer 0.6651 0.5021 0.3628 0.3215 0.1168
Franke 0.6765 0.5465 0.3688 1.6316 0.0620
Hardy 0.6812 0.5310 0.3712 0.8263 0.0584
Rippa 0.6620 0.4983 0.3611 0.3046 0.1699

20 FSDT exact 0.4912 0.5273 0.2957 0.3332
Present 0.4916 0.5285 0.2957 0.3245 0.1750
Fasshauer 0.4986 0.5360 0.2982 0.3499 0.1168
Franke 0.5222 0.5629 0.3082 0.8994 0.0620
Hardy 0.5254 0.5668 0.3100 1.0642 0.0584
Rippa 0.5158 0.5541 0.3055 0.2318 0.0723

100 FSDT exact 0.4337 0.5382 0.2705 0.3390
Present 0.4611 0.5674 0.2800 0.4458 0.1950
Fasshauer 0.6032 0.7191 0.3247 0.7997 0.1168
Franke 7.9090 8.8313 1.8805 9.5939 0.0620
Hardy 37.8063 42.071 7.6575 42.9480 0.0584
Rippa 0.5246 0.6348 0.3017 0.6270 0.1406
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Fig. 3. Relative error on maximum displacement between the FSDT exact solution
and the RBF solution with different shape parameters.
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Fig. 4. Relative error on 6, between the FSDT exact solution and the RBF solution
with different shape parameters.

3. Static analysis of composite and sandwich plates using a
Meshless solution approach

The First-order Shear Deformation Theory (FSDT) [14] is here
briefly summarized as it will be used, coupled with the
unsymmetric radial basis functions collocation method and the
novel shape parameter selection procedure, for the analysis of
multilayered composite and sandwich plates subjected to static
loads.

3.1. FSDT basic equations

The FSDT displacement field is

”(XJ’J) = uO(va) + ¢x(x>y)z
v(X,¥,2) = vo(x,Y) + ¢y(X,y)Z
W(X7yvz) :W()(X,y)

(10)

where x, y and z are the coordinates of a Cartesian orthogonal
system (z is the plate thickness coordinate while the x — y plane
corresponds to the plate reference surface); ug, v and wyp are the
displacements of a point on the reference surface, and ¢, and ¢,

Relative error [%]
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Fig. 5. Relative error on &y, between the FSDT exact solution and the RBF solution
with different shape parameters.
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Fig. 6. Relative error on 7,, between the FSDT exact solution and the RBF solution
with different shape parameters.

Table 4

Mechanical properties of the core.
Eq Gz V12 Gi3 Ga3
1.90 E, 0.56 E; 0.44 033 E; 0.56 E;

are the rotations of the transverse normal about the positive y-axis
and negative x-axis, respectively. The equilibrium equations of the
plate subjected to a transverse distributed load g(x,y) are

Nx.x + nyy =0

Ny_y + ny.x =0
Qux+Qyy+q(x,y) =0
Mx,x +Mxyy - Qx =0
Myy +Myx—Q, =0

(1)

where Ny, Ny, and N, are the in-plane forces, Q and Q, the shear
forces, My, My, and M, the bending moments. The constitutive



Table 5
Results for a simply supported sandwich plate subjected to a uniform pressure, a/h =10, R =5.
Method fi0(3.3.-9 fi0(8.3.- fi7(0.5.0) FoWmax
FSDT exact 59.06 38.00 4.42 258.30
Present (15 x 151) 58.81 37.82 3.87 256.96 0.100
Ferreira (15 x 151) [5] 58.72 37.64 3.85 257.38 -
Present (21 x 21r) 58.98 37.96 411 258.05 0.075
Ferreira (21 x 2171)[5] 59.02 38.00 4.02 258.80 -
Present (15 x 15 ir) 59.44 38.41 3.87 260.23 0.090
Present (15 x 15 ir2) 59.09 37.94 3.66 256.88 0.090
Present (21 x 21 ir) 58.89 37.93 4.62 258.12 0.130
Present (21 x 21 ir2) 58.81 37.91 4.03 257.29 0.110
Table 6
Results for a simply supported sandwich plate subjected to a uniform pressure, a/h =10, R = 10.
Method fiow(§.5.-9) fiow(§.5.-9) fi1(0,4,0) JiWmax Copt
FSDT exact 63.04 42.71 4.16 158.74
Present (15 x 1571) 62.97 42.66 3.70 158.20 0.070
Ferreira (15 x 15 1) [5] 62.72 42.56 3.60 158.55 -
Present (21 x 211) 63.16 42.79 4,07 159.02 0.050
Ferreira (21 x 211)[5] 63.03 42.75 3.76 159.34 -
Present (15 x 15 ir) 63.92 43.18 3.74 160.86 0.110
Present (15 x 15 ir2) 63.00 42.56 3.46 157.36 0.070
Present (21 x 21 ir) 60.82 42.16 3.13 157.53 0.130
Present (21 x 21 ir2) 63.37 42.59 3.86 158.44 0.050
Table 7
Results for a simply supported sandwich plate subjected to a uniform pressure, a/h =10, R = 15.
Method fiow($,9,-8) fiow(3.9,-h fi7x(0.4,0) faWinax Copt
FSDT exact 63.52 4518 4.05 121.17
Present (15 x 1571) 63.25 45.02 3.57 120.46 0.070
Ferreira (15 x 151) 5] 63.21 45.05 3.47 121.18 -
Present (21 x 217r) 63.55 45.21 3.93 121.25 0.050
Ferreira (21 x 2171)[5] 63.55 4525 3.63 121.74 -
Present (15 x 15 ir) 55.40 39.71 2.38 106.04 0.050
Present (15 x 15 ir2) 62.86 44.83 3.50 120.05 0.100
Present (21 x 21 ir) 63.96 4548 413 121.54 0.130
Present (21 x 21 ir2) 63.37 45.18 3.72 121.05 0.070
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Fig. 7. Regular grid. Fig. 8. Irregular grid (ir).



equations relating the resultant forces and moments to the strain
measures are

Nx Upx (bx,x
Ny o =1[A] Voy + [B] byy (12)
ny Upy + Vox ¢x,y + d’y,x
Mx U x d’x,x
M, ¢ =[B] Voy + D] byy (13)
Mxy uOy + Vox ¢x.y + Qby‘x
to -l
= k[Af] (14)
Q ¢y + Wy

where [A], [B], [D] and [Ar] are the membrane, coupling, bending
and transverse shear stiffness matrices [14], k being the transverse
shear correction factor. Several methods have been proposed for
calculating the shear correction factors for multilayered composite
[15] and sandwich [16] plates.

The equilibrium equations written in terms of kinematic
unknowns may be obtained substituting the constitutive Egs.
(12)-(14) into Eq. (11). For the case of a symmetric cross-ply lam-
inate, the equations governing the transverse behavior are uncou-
pled from those governing the in-plane behavior and read as
follows

52 ¢ 2 02 ;
Dy 58 + Des 2% + (D12 + Des) st — KAaa (¢ +22) = 0

-2) 2) .
Dy, 8 + Des Of))jzy + (D12 + Des)% — kAss (f{by +‘?TW) =0 (15)

ay?

kA44 (% + ?:T‘év) + kASS (% + ?}j/\;v) + q(x,y) =0

3.2. Multiquadratic interpolation of the FSDT differential governing
equations

Let us now apply the unsymmetrical radial basis function collo-
cation method and the FSDT to the static analysis of a symmetric
rectangular panel (dimensions a x b x h). The first step is to dis-
tribute N nodes on the plate domain: the nodes inside the plate do-
main are numbered with j=1, ..., N; while the ones placed on the
boundary with j=N;+1, ..., N;+ Ng=N. The kinematic unknowns
may be then written as

w N O
x p = Z Bi ¢ i(X) (16)
by - Vi

where ¢;(x) represents the ith radial basis function (Eq. (4)) and (o;,
Bi, vi) are the ith kinematic unknown coefficients of the approx-
imation. Substitution of Eq. (16) into Eq. (15) is done for the N;nodes
inside the plate domain(j=1,... ,Nj)

N N
Di1 Y Bidia(®) + Des » _ Bidbiyy (%) + (D12 + Do)
P i1

N N N
XY Vibiay(X) —kAsa Y Bii(X) +D O‘id’i_x(xj)) =0 (17)
i=1 i=1 i=1

N N
Dy, Z Viiyy (%) + Des Z Vi®ixx(X;) + (D12 + Des)
i=1 i=1

N N N
Y Bidiag (X)) — kAss D (%) + > 0€i¢iy(xj)> =0 (18)
i1 i1 i1
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Fig. 9. Irregular grid (ir2).
N N
kA44 Z ﬁi¢i,x(xj) + Z ai¢i,xx(xj)
i=1 i=1
N N
+kAss D ity () + Y didiyy (%) | +q(x,y;) =0 (19)
i=1 i=1

Boundary conditions are satisfied on the Np nodes located on
the plate edges. For a plate simply supported on all four edges,
the boundary conditions are

w=0 w=0
x=0a—-{My=0 y=0, b—(¢M,=0 (20)
¢y = 0 ¢=0
while, if the plate is fully clamped, the boundary conditions are
w=0
x=0,ay=0b—< ¢ =0 (21)
¢, =0

For example, the boundary condition on the bending moments
(20) will be written as follows when using the approximation (16)

Fig. 10. Deformation of simply supported sandwich plate subjected to uniform
pressure (R=5).



Table 8
Results for a sandwich plate fully clamped subjected to uniform pressure, a/h = 10.
Method fiow(5.5.-5) fioyy (3.5, - fi7x2(0,5.0) JoWimax Copt
R=5
FSDT 27.12 20.19 5.01 114.54
Present (15 x 15 r) 27.31 20.35 3.11 113.29 0.19
Present (21 x 21 1) 27.43 20.42 3.46 113.74 0.14
R=10
FSDT 28.44 23.75 4.42 81.71
Present (15 x 15 1) 28.72 23.94 3.00 79.59 0.20
Present (21 x 21 1) 28.82 24.01 3.14 79.82 0.14
R=15
FSDT 28.58 25.90 411 68.53
Present (15 x 15 1) 28.73 25.90 2.85 66.36 0.20
Present (21 x 21 1) 28.84 25.98 2.97 66.51 0.14
N N tion method and the novel shape parameter selection) and the
My =Dy Zﬁi¢i,x(xj) + D1z ZVi¢iy(xj) =0 (22) exact FSDT solution, all estimated with a shear correction factor
i—1 i=1

j:Nl+1,...,N] and j:N]+1,...,NL

N N
My, = Dy, Z Bidix(Xi) + Doz Z Vidiy(®) =0
i1 i1

k=N +1,....Ny and k=Ny+1,....Nyv=N

where nodes numbered from N; +1 to N; and from N;+ 1 to N, are
those placed on the boundary x = 0 and x = g, respectively. In a sim-
ilar manner, nodes numbered from N; + 1 to Ny, and from Ny, + 1 to
Ny, are those placed on the edge with y =0 and y = b, respectively.

Considering the 3N;equilibrium Eqgs. (17)-(19) together with the
boundary conditions based on Eq. (20) or (21), a linear system in
terms of the unknown coefficients (o, f;, ;) is obtained.

4. Numerical results

In order to demonstrate the accuracy of the proposed approach
for calculating the shape parameter ¢, numerical results pertaining
elasto-static deformation of composite and sandwich plates are
presented and compared with those obtained with different
choices of the shape parameter and with analytical FSDT solutions.

4.1. Laminated composite plate subjected to a sinusoidal pressure

A cross-ply and symmetric composite plate, simply supported
on all the edges and subjected to a bi-sinusoidal pressure

p(x,y) = Posin (%) sin (%)

is considered. The layers have the same thickness and the stacking
sequence is (0°/90°/90°/0°). Material mechanical properties of the
unidirectional lamina are reported in non-dimensional form in Table
2.

Analyses will be conducted using k = 5/6, although authors are
conscious that this value could be not the best choice for this lam-
inate. Because the purpose of the paper is to assess the accuracy
and reliability of the algorithm for the selection of parameter c,
the use of a not suitable shear correction factor is not an issue, pro-
vided that comparisons with analytical solution are made under
the same conditions, in particular with the same k. Readers which
want to estimate a more adequate shear correction factor, could re-
fer to [15].

Numerical results are obtained using a 17 x 17 regular grid
(N =17 r), where “r” stands for regular, and different aspect ratios
a/h.

Table 3 shows the results obtained using the present approach
(FSDT solved with the unsymmetric radial basis functions colloca-

k = 5/6. Furthermore, Table 3 compares solutions obtained using
the unsymmetric radial basis functions collocation method and
the shape parameter estimated by means of the models shown in
Section 2.1. The transverse shear stresses have been estimated
integrating the equilibrium equations. Stresses and displacements
are given in the following non-dimensional form

_ 10°Wna’Er _ Gwl(a/2,a/2,h/2)0°
B POa4 o Poa2
__0y(a/2,0/2,h/4)h* _ 14(0,a/2,0)h
w - =

P()Cl2 X Poa

In order to make the comparison easier, in Fig. 3 the relative er-
ror between the maximum displacement estimated by means the
FSDT exact solution and the others collected in Table 3 is repre-
sented. The same comparison, now on the stresses, is shown in
Figs. 4-6.

Generally speaking, results obtained with the present algorithm
for the selection of the shape parameter are better than those esti-
mated with other models, in particular for thin plates. As for the
other models, these could ensure, sometimes, accurate results; the
best appears to be the Fasshauer’s one. As stated in [4], the Rippa’s
algorithm is applied to a user-defined interval, which has to be
carefully chosen. It has been observed by Rippa [12] that the error
presents two distinct behaviors: the former, more stable, is
confined in a small interval of c; the latter could be very erratic.
Thus it is important to select an interval inside the stable region.
This could be achieved selecting a large interval at the first time
and then focusing on a smaller one. The interval that has been used
to obtain the results presented in Table 3 is [0.01, 0.2].

4.2. Sandwich plate subjected to a uniform pressure

In order to investigate the effect of the stacking sequence and
the regularity of the grid on the shape parameter selection, we
have considered a sandwich square plate, loaded with a transverse
uniform unit pressure.? The core is assumed to be orthotropic and
its mechanical properties are collected in Table 4.

The mechanical properties of the face are those of the core mul-
tiplied by R (except for the Poisson ratio). The sandwich plate has
an aspect ratio a/h =10 while the thickness of the core is eight
times that of each skin, h¢/hs= 8.

2 Authors are aware that classical FSDT model is not well suited for the analysis of
sandwich plates but they have used this approach in order to compare present results
with those quoted in Ref. [5].
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Fig. 11. Deformed shape of a fully clamped sandwich plate subjected to a uniform
pressure.

Results from the present model are compared with FSDT exact
solutions and those obtained by Ferreira et al. [5]. Tables 5-7 com-
pare results in terms of transverse displacements, normal and
shear stresses. Transverse displacement and stresses are normal-
ized through factors

0.999781 1
f2 = hq ’ fl - q

Also in these cases, transverse shear stresses are computed by
integration of the equilibrium equations. In order to compare the
results, the same shear correction factor is used as estimated by
the procedure given in [5,15].

Two grids are considered: a 15 x 15 and a 21 x 21 regular grid
(Fig. 7). In order to evaluate the performance of the Meshless
method with the present algorithm for the selection of c, also
15 x 15 and 21 x 21 irregular grids have been used. The irregular
grids are two: the first (Fig. 8), denoted by “ir”, is generated by
means the MATLAB® command rand, while the second, denoted by
“ir2”, derives from a regular one that has been perturbed (nodes are
shifted both in x and y direction of a random quantity that is lower
than the distance between the nodes in the regular grid). We thus
perturb the regular grid in order to obtain an irregular one like that
in Fig. 9.

The use of an irregular grid (ir) leads sometimes to relevant er-
rors that should be due, according to the authors, to the generation
of a grid with two or more nodes so close that are almost coinci-
dent. This causes an ill-conditioning of the problem with an obvi-
ous loss of accuracy. In fact, taking into consideration the results in
Tables 5-7, those related to the irregular grid (ir2) are more stable
than ones estimated with the fully irregular grid (ir).

In Fig. 10 a typical deformation of the plate is illustrated. De-
formed shape is quite smooth and represents quite well the ex-
pected deformation.

In order to show the robustness of the approach, results for a
fully clamped plate are given in Table 8.

Also in this case, the results are obtained with a value of the
shape parameter estimated by the algorithm presented in this pa-
per. In Fig. 11 a typical deformation of a fully clamped plate is
illustrated.

5. Conclusions

In this paper we focused on Radial Basis Function Collocation
Methods for solving the equations governing the static behavior
of sandwich and multilayered composite structures. In particular

we have taken into consideration the Unsymmetric RBF Colloca-
tion Method using the MultiQuadratic (MQ) functions. The MQ
functions introduce a shape parameter, c, that affects the accuracy
of the solution leading sometimes to ill-conditioning of the prob-
lem. This requires finding an optimal value of the shape parameter
in order to obtain accurate solutions.

After a review of several methods by which estimating the opti-
mal ¢, we have presented a new approach based on a convergence
analysis. Some of the existing methods are related only with the
number of nodes and the distances between them, thus the value
of the shape parameter does not depend on the distribution of
nodes, condition number of the matrix, computer precision and
interpolation function. Our method is based on a convergence anal-
ysis and thus it is able to account for all the key effects.

In order to assess the accuracy of the proposed new approach,
multilayered composite and sandwich plates subjected to various
loads and with different boundary conditions are analyzed using
the First-order Shear Deformation Theory and the unsymmetric
RBF collocation method with different choices of the optimal shape
parameter. As for the analysis of statically loaded composite plates,
the present method ensures relative errors on the maximum dis-
placement, on 6, and on a6y, lower than 1%, unlike other methods,
until the aspect ratio a/h is less than 20. For thinner plates, lower
accuracy is experienceded but the present method works better
than the other ones. When analyzing sandwich plates, solutions
have been obtained with different types of grid (regular, irregular
and perturbed regular) and with different boundary conditions.
The novel algorithm shows its efficiency both with regular and
irregular grid. Since the shape parameter computed by means of
the present algorithm is different depending a regular grid or an
irregular one is used, then it is assessed that the shape parameter
is affected also by the distribution of nodes.

As it is possible to catch pointing out Table 8, the present meth-
od works very well also with boundary conditions different from
the classical simply support.

Future enhancements of this activity will enclose the applica-
tion of the present new method for optimal shape parameter choice
to the analysis of multilayered composite and sandwich plates with
the Refined Zigzag Theory [17].
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