
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Formally based semi-automatic implementation of an open security protocol / Pironti, Alfredo; Pozza, Davide; Sisto,
Riccardo. - In: THE JOURNAL OF SYSTEMS AND SOFTWARE. - ISSN 0164-1212. - STAMPA. - 85:4(2012), pp. 835-
849. [10.1016/j.jss.2011.10.052]

Original

Formally based semi-automatic implementation of an open security protocol

Publisher:

Published
DOI:10.1016/j.jss.2011.10.052

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460617 since:

Elsevier Science

Formally based semi-automatic implementation of an
open security protocol

Alfredo Pirontia, Davide Pozzaa, Riccardo Sistoa,∗

aPolitecnico di Torino, Dip. di Automatica e Informatica
C.so Duca degli Abruzzi 24

I-10129 Torino (Italy)

Abstract

This paper presents an experiment in which an implementation of the client
side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically
derived according to a model-driven development paradigm that leverages for-
mal methods in order to obtain high correctness assurance. The approach used
in the experiment starts with the formalization of the protocol at an abstract
level. This model is then formally proved to fulfill the desired secrecy and au-
thentication properties by using the ProVerif prover. Finally, a sound Java
implementation is semi-automatically derived from the verified model using an
enhanced version of the Spi2Java framework. The resulting implementation
correctly interoperates with third party servers, and its execution time is com-
parable with that of other manually developed Java SSH-TLP client implemen-
tations. This case study demonstrates that the adopted model-driven approach
is viable even for a real security protocol, despite the complexity of the models
needed in order to achieve an interoperable implementation.

Keywords: Model-driven-development, Security protocols, Automatic code
generation, Spi2Java

1. Introduction

Security protocols are communication protocols that use cryptographic prim-
itives in order to protect some assets. Despite their apparent simplicity, design-
ing and implementing security protocols correctly is difficult. At least three
reasons that justify this complexity can be identified: the distributed nature
of the environment, which generates a large (usually unbounded) number of
scenarios to be dealt with; the (possibly bad) interactions between different
cryptographic primitives; and the presence of an active attacker that is not con-
trolled by the protocol designer or implementer. Regarding the first reason, it

∗Corresponding author. Tel: +390110907073; Fax: +390110907099
Email addresses: alfredo.pironti@polito.it (Alfredo Pironti),

davide.pozza@polito.it (Davide Pozza), riccardo.sisto@polito.it (Riccardo Sisto)

sisto
This is the Post-Print (i.e. final draft after refereeing) Author's version of an article published in Journal of Systems and Software.Please note that beyond formatting there may be minor changes from this version to the final published version, which is available at http://dx.doi.org/10.1016/j.jss.2011.10.052This document has been made accessible through PORTO (http://porto.polito.it) in compliance with the Publisher's copyright policy as reported in the SHERPA-ROMEO website (http://www.sherpa.ac.uk/romeo/search.php?issn=0164-1212)

is worth remarking that, even if experience suggests that attacks on security
protocols are normally possible with just a few protocol sessions, it is difficult
to know in advance the number of sessions required. More importantly, the
unconstrained behavior of the attacker or the potentially honest-but-curious at-
titude of a protocol participant may be enough to puzzle a human analyzer even
when considering only a few sessions, because attention is normally focused on
the functional part, i.e. that the protocol does something useful, which makes
it very difficult to think about how to break the protocol.

On the protocol design side, formal methods can provide rigorous assurance
that a desired property holds for a given protocol model. The property is usually
assured to hold under some assumptions about the attacker’s capabilities and
the behavior of the cryptographic primitives, which form the model according
to which the protocol is verified. Several attacker and cryptographic primitive
models, as well as several verification techniques, have been proposed in order
to formally verify abstract security protocol specifications (e.g. Blanchet, 2001;
Blanchet and Pointcheval, 2006; Durante et al., 2003; Escobar et al., 2009; Lowe,
1998; Mödersheim and Viganò, 2009).

On the protocol implementation side, different techniques can be used to
enhance confidence regarding implementation correctness. By using techniques
such as testing or code reviews, only a limited number of scenarios is considered,
which may not be enough, especially when the protocols are deployed in safety
or mission critical applications. It is important to note that some subtle imple-
mentation errors, such as the omission or the wrong execution of a prescribed
check, do not infringe interoperability. They can only be discovered, by test-
ing, if the test patterns include one of the particular protocol scenarios where
the implementation should abort a session while, in fact, it does not. Even if
these scenarios are very special cases, attackers who know of a vulnerability will
trigger it on purpose. Again, in the implementation phase formal methods can
provide the necessary assurance level. This is done by formally linking security
protocol implementations to their formal specifications, so that an implementa-
tion is proved to preserve the same security properties that are guaranteed to
hold on its formally verified specification, under the same assumptions.

Model-Driven Development (MDD) is one of the possible approaches for
achieving this linkage. MDD is based on designing a model, from which code is
later automatically generated. If the model is expressed in a formal language,
it can be formally verified, and code can be automatically produced in such a
way that the verified properties are preserved in the generated code.

This paper presents an MDD technique for security protocols applied to
the SSH Transport Layer Protocol (SSH-TLP) (Ylonen and Lonvick, 2006a,b).
First, a formal model is written according to the SSH-TLP RFC, and secrecy
and authentication are formally verified to hold under the Dolev and Yao (1983)
perfect cryptography assumptions. This model differs from already existing
Dolev-Yao models of SSH-TLP (e.g. the ones provided with the ProVerif tool, or
by the AVISPA project), because it includes enough detail to let an interoperable
Java implementation be derived. Because of such protocol details, verification is
more challenging on this model than on the simplified models that are usually

2

analyzed just to verify the main protocol logic. From this formally verified
model, an implementation of an SSH-TLP client is then soundly derived. An
SSH-TLP server could have been derived as well, requiring a similar effort, but
this would not have added anything fundamentally new to the case study.

The design and development of both model and application are performed
with the support of state of the art tools. Formal verification of the model is
done by means of the ProVerif tool (Blanchet, 2001), while the implementation
code is semi-automatically generated by means of an enhanced version of the
Spi2Java code generation framework (Pozza et al., 2004).

The main contribution and motivation of this paper is to present this formally-
based model-driven approach for security protocols, and to show its practical
viability by handling the full version of a real protocol. Furthermore, the lessons
learned about the strengths and current limitations of the approach are reported.

Even if the formal analysis of Dolev-Yao models can only exclude the main
protocol logic errors, the model-driven technique presented here provides a
higher assurance level for the final product than manual implementation, be-
cause a formal proof rules out all such logical errors. Even better assurance could
be obtained by using the more precise computational models (e.g. Blanchet,
2008) for verification. However, although some automated tools for analyzing
computational models have just appeared, the scalability and automation of
these tools have still to be improved before they are ready for production envi-
ronments. So, the approach presented here, using Dolev-Tao models, can benefit
from the maturity and full automation of formal verification tools.

This paper extends the work presented by Pironti and Sisto (2007), where
a preliminary, not formally verified and stripped-down version of SSH-TLP was
considered. Since then, the Spi2Java framework has been extended, enabling
the development of abstract models that include all the main protocol features.

The paper gives an account of the current Spi2Java features and how they
have been exploited to develop an implementation of the SSH-TLP protocol.
For the sake of brevity, only small parts of the full SSH-TLP formal model are
reported in this paper. The full model that was formally verified, and the full
source code of the generated client can be found online (Pironti et al., 2011).

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 gives an overview of the MDD workflow that was used
to develop the SSH-TLP case study with the Spi2Java framework. Section 4
presents the abstract formal modeling of SSH-TLP, while section 5 shows the re-
sults of formal verification of the developed model. Section 6 describes the steps
followed for semi-automatic generation of a SSH-TLP client from its specifica-
tion. Section 7 discusses correctness assurance provided by this model-driven
approach, section 8 presents the results of interoperability and performance
testing, and section 9 concludes the paper.

2. Related Work

Formally linking security protocol models and their implementations is a
relatively recent research field. During recent years, several approaches have

3

been investigated.
One technique consists of extracting a model from an already existing se-

curity protocol implementation source code. The independent works by Bhar-
gavan et al. (2006a); Jürjens (2009); O’Shea (2008) are different examples of
this approach. The (over-approximated) extracted model is then verified for
the desired security properties. Bhargavan et al. (2006a) prove soundness of
the model extraction algorithm under the Dolev-Yao abstraction, so that au-
thenticity and secrecy properties verified on the formal model also hold on the
implementation. In principle, this approach has the advantage of allowing ex-
isting implementations to be verified without changing the way applications are
currently written. However, currently so many constraints are required on the
implementation source code that only ad-hoc written programs can be verified.
This approach has already been tested on real protocol implementations, as
documented for example by Bhargavan et al. (2006b, 2008). On the other hand,
Jürjens (2009) starts from somewhat arbitrary Java implementations of crypto-
graphic protocols, but formal soundness proofs are lacking, and the extraction
process is not fully automatic.

Another available technique is to add refinement types to an existing imple-
mentation source code, so that some security properties can be proved directly
on the implementation (Bengtson et al., 2011; Bhargavan et al., 2010). This
approach has the potential of being applied to real protocols, although the sup-
ported source code is a restricted version of an ML-like functional language, as
opposed to the imperative or object-oriented languages such as C, C++ or Java
often used to develop implementations of security protocols. Another limitation
of this approach is that adding refinement types requires expertise not usually
available in protocol implementation developers.

Code generation is a further technique, where the developer starts from a
formally verified model of a security protocol, and semi-automatically derives
an implementation from it. In principle, this approach may require the de-
veloper to deal with the formal protocol model, which is usually described in
a (domain-specific) formal modeling language. Nevertheless, since the formal
model abstracts some low level details away, it is simpler than the full implemen-
tation and the developer can concentrate attention only on the protocol logic
aspect during the model design phase, and later only on the low level aspects,
when deriving the implementation from the model.

The independent works by Bangerter et al. (2008); Bhargavan et al. (2009);
Hubbers et al. (2003); Jeon et al. (2005); Kiyomoto et al. (2008); Pironti and
Sisto (2007); Pozza et al. (2004); Song et al. (2001); Tobler and Hutchison (2004)
are different implementations of the code generation approach. Most of them do
not give the user full control over aspects such as message encoding, thus being
unable to generate interoperable implementations of open protocols. Another
limitation found in most of these works is the lack of soundness proofs about
the refinement steps, so that there is no formal link between formal models and
the implementations derived from them.

Grandy et al. (2008) give a formal proof of correctness for an interoperable
Java Card implementation of the Mondex protocol. Unfortunately, the results

4

by Grandy et al. (2008) are not general, but specifically tailored to the analyzed
Mondex case. This means that the results are not easily reusable, and they
could not be directly adopted for the SSH-TLP case study considered.

SecureMDD (Moebius et al., 2009) is a model-driven approach based on UML
representation of security protocols. From the UML model both a formal model
based on state machines and an interoperable Java Card implementation can be
obtained. UML is a powerful modeling language and, compared to spi calculus,
it is relatively easier to use. However, UML lacks a formal semantics, and
the SecureMDD approach does not provide a formal proof that links together
the UML model, the generated formal model based on state machines and the
generated Java Card code.

Other work has focused on graphical modeling of security protocols, such
as the UML-based SecureUML by Basin et al. (2006) and UMLSec by Jürjens
(2005), or the GSPML graphical language (McDermott, 2005) which can be
translated into CSP models. These graphical languages can be used to describe
security protocols and to verify their properties, but none of these works address
code generation from the model.

The only general approach that both admits in principle the development
of interoperable implementations of security protocols and provides a formal
soundness proof of the refinement steps is Spi2Java (Pironti and Sisto, 2007,
2010; Pozza et al., 2004).

Up to now, the applicability of Spi2Java to real open protocols has been only
partially tested by Pironti and Sisto (2007), where a stripped-down version of
the SSH-TLP protocol was implemented. Since then, the framework has been
extended and now it accepts a richer input language. In this way, protocol
models can be made closer to real protocol implementations, thus improving
overall correctness assurance.

3. SSH-TLP Client Application Development with Spi2Java

The workflow that was used to develop an implementation of the SSH-TLP
client side with Spi2Java is depicted in figure 1. Starting from the SSH-TLP
RFCs, a formal model of the whole protocol was manually developed. This
model includes all protocol actors, and is enriched with the definition of the
desired security properties. The model was then fed to the ProVerif formal
verification tool, to ensure the security goals were met.

Then, the whole protocol model was parsed by the Spi2Java spi calculus
parser, to extract the client side model. The Spi2Java refiner was run a first
time on the client model, to automatically infer the implementation details
that were missing in the spi calculus model. These implementation details were
manually refined, in order to match the requirements specified in the SSH-TLP
RFCs.

When all the implementation details were filled, the Spi2Java Java code gen-
erator was used to automatically generate the code implementing the protocol
logic. This protocol logic is linked against a Spi2Java provided library, called

5

Figure 1: SSH-TLP application development workflow with Spi2Java.

SpiWrapper, and a library containing data marshaling functions. The latter
library was manually developed, and is customized to fit the SSH-TLP binary
packet representation specified in the RFCs.

The application obtained was finally tested for interoperability with third
party servers, and for reliability against maliciously crafted sessions of the pro-
tocol.

4. Formal Model

4.1. Formal language

In the Spi2Java framework, formal models of security protocols are spec-
ified by an extension of the spi calculus language (Abadi and Gordon, 1998).
With respect to the original definition of spi calculus, the language accepted by
Spi2Java now includes else branches, additional operations and some syntactic
sugar. Moreover, Spi2Java is extensible in order to handle more cryptographic
primitives. The input language of Spi2Java can be considered as a subset of the
input language accepted by the verification tool ProVerif, albeit with a syntax
that is not exactly the same. A simple syntax translation can automatically
transform a spi calculus specification accepted by Spi2Java into a correspond-
ing ProVerif input file. The part of the syntax accepted by Spi2Java that has
been used in the case study is shown in tables 1 and 2.

6

Table 1: Term syntax of spi calculus (the part used for the case study).

σ, ρ, τ ::= terms
m name
x variable
(σ, ρ) pair
H(σ) hashing
DHPub(σ) DH public part
DHKey(σ, ρ) DH shared key
σ∼ shared-key
{σ}ρ shared-key encryption
σ+ public key
σ− private key
{[σ]}ρ public-key encryption
[{σ}]ρ private-key encryption (signature)

Briefly, a spi calculus specification is a set of process definitions P,Q, ...,
written using the syntax in table 2. Process definitions make use of terms which
are abstract representations of data, written using the syntax in table 1.

In typical client-server protocols, like SSH-TLP, several client and server in-
stances may run concurrently, participating in protocol sessions. This is usually
modeled for formal verification by defining a top level process Inst that instan-
tiates an unbounded number of client and server processes, thus representing
any scenario involving concurrent protocol sessions. For example, if C and S
are the client and server processes respectively, then the Inst process can be
defined as

Inst ,!C |!S

where the parallel composition expression P | Q means parallel execution of
processes P and Q, and the replication expression !P means an unbounded
number of instances of P running concurrently.

In the Dolev and Yao (1983) modeling approach, all data are represented
symbolically as terms of an algebra and all operations on data, including cryp-
tographic primitives, are represented as algebraic operators that are applied
over terms in order to build new terms. For example, in the spi calculus, given
terms σ and ρ, term {σ}ρ represents the encryption of σ under symmetric key
ρ, while H(σ) represents the result of computing a cryptographic hash function
on σ. Other operators are available for other kinds of encryption, for pair-
ing messages into structured messages, and for building shared keys from their
key material or for extracting public and private keys from key pairs. The
DHPub() and DHKey() are the operators that represent Diffie-Hellman (DH)
public part generation and DH shared secret derivation respectively. During
formal verification with ProVerif, the DH equation DHKey(x,DHPub(y)) =
DHKey(y,DHPub(x)) (Blanchet et al., 2008) will be taken into account to cor-

7

Table 2: Process syntax of spi calculus (the part used for the case study).

P, Q ::= process behavior expressions
σ〈ρ〉.P output
σ(x).P input
P | Q parallel composition
!P replication
(@m) P restriction
0 nil
let x = σ in P assignment
[σ is ρ] P match (equality check)
[σ is ρ] (P) else (Q)
let (x, y) = σ in P pair splitting
let (x, y) = σ in (P) else (Q)
case σ of {x}ρ in P shared-key decryption
case σ of {x}ρ in (P) else (Q)
case σ of {[x]}ρ in P private-key decryption
case σ of {[x]}ρ in (P) else (Q)
case σ of [{x}]ρ in P public-key decryption
case σ of [{x}]ρ in (P) else (Q)
check σ of τ with ρ in P signature check
check σ of τ with ρ in (P) else (Q)

rectly model and verify the DH key exchange. The primitive terms are names,
i.e. symbolic representations of unstructured plain data, and variables.

All names are assumed by default to be publicly known. However, a process
can make new restricted names, representing private data initially not known by
the attacker. Creation of a new private name m is represented in spi calculus by
the process (@m) P which is like P , but with the additional specification that
m is a private name in P . A private name can be used, for example, to model
a secret key initially not known by the attacker or a nonce, i.e. a randomly
generated large number.

The spi calculus processes communicate over channels. Process σ〈ρ〉.P sends
message ρ over channel σ and then behaves like process P ; process σ(x).P
receives a message on channel σ, stores it in variable x, then behaves like process
P , where x is bound to the received message. Like any other term, a channel can
be either public, so that the attacker has access to it, or private. For instance,
in the SSH-TLP model presented here, clients and servers communicate over
a public channel cAB, and each client and server process has its own private
channel ks, used to exchange data with its local key store.

In spi calculus, a Dolev-Yao attacker is implicitly modeled as an environ-
ment process that can eavesdrop, delete, inject or alter any message over public
channels. On the contrary, none of these actions can be performed on private

8

channels. For each message it reads, the attacker increases its knowledge, which
can then be used by the attacker to forge new messages or to alter existing
ones in order to break the protocol. No other assumptions are made on the
attacker, so that any behavior (including the worst one) is considered during
formal verification.

Associated with term construction operations (the ones shown in Table 1),
there are corresponding inverse operations (e.g. decryption or pair splitting
shown in Table 2) also known as destructors. For example, case σ of {x}ρ.P
decrypts term σ using symmetric key ρ. If decryption is successful, the result
of decryption is assigned to variable x and the process continues as specified by
process P . If decryption fails, the process gets stuck. An optional else branch in
the construct specifies an alternative behavior to be adopted when decryption
is unsuccessful, instead of getting stuck. Similar constructs are available for dif-
ferent kinds of encryption. An additional construct, not available in the original
spi calculus, is signature check. check σ of ρ with τ in P checks whether σ is a
valid signature of message ρ using public key τ . If this is the case, then process
P is executed; otherwise the process gets stuck, or it behaves like process Q if
an else Q branch follows.

The algebraic properties of the term algebra represent the ideal properties
of cryptographic operations. For example, an ideal property of symmetric cryp-
tography is that a plaintext can be recovered from the ciphertext only if the
encryption key and the ciphertext are available. Accordingly, in the term alge-
bra the only way to compute σ from {σ}ρ is by decrypting {σ}ρ with ρ. All
protocol participants and the attacker have access to the algebraic version of
the cryptographic primitives. In particular, this gives reasonable power to the
attacker, which can decrypt exchanged messages (if and only if it has the re-
quired keys) and can create new cryptographic terms in order to possibly break
the protocol.

Extending the language with new operations on terms and their correspond-
ing destructors is straightforward. The mapping into the input language of
ProVerif can be easily extended accordingly, because ProVerif allows definition
of constructors and destructors in the input file itself.

4.2. Modeling the SSH-TLP protocol in spi calculus

SSH-TLP is informally specified by Ylonen and Lonvick (2006a,b). For the
sake of clarity, a typical SSH-TLP scenario is provided in figure 2. In the first
two messages, client and server start a protocol session by exchanging their
identifiers ID C and ID S respectively. Then, with messages three and four,
client and server negotiate session algorithms by exchanging two random nonces
(c cookie and s cookie) and their lists of supported algorithms (c algorithms
and s algorithms), from which the agreed ones will be selected. Finally, with
the fifth message, the client sends its DH public key e to the server, and the
server replies with the last message, providing its public key PubKey s used for
digital signature, its DH public key f , and the signed final hash, upon which
client and server perform authentication agreement. At the end of the protocol,

9

Figure 2: SSH Transport Layer Protocol typical scenario.

both client and server can derive a shared DH session secret K, which is later
used to generate several session keys.

In order to enable formal verification, a spi calculus model of the full SSH-TLP
protocol, including client, server, the key stores, and the Inst process, was man-
ually written. This model includes significant protocol features that were neither
considered by Pironti and Sisto (2007) nor in other existing Dolev-Yao models
of SSH-TLP:

• Algorithm negotiation is modeled;

• Cryptographic parameters related to the agreed algorithms are taken into
account in both cryptographic primitives and in data upon which authen-
tication agreement is performed;

• Interaction between each protocol agent and its key store is modeled;

• Error states of the protocol are considered, and emission of proper error
messages is modeled.

Modeling such features is essential in order to later derive a working and inter-
operable Java implementation of the protocol that closely corresponds to the
formal model. Furthermore, including these details in the model that is for-
mally verified leads to a proof of correctness of the real protocol as opposed to
the proofs of correctness of simplified versions of this protocol that previously
appeared in the literature.

10

Optional aspects have not been included in the model, thus considering the
smallest protocol configuration compliant with the standard. Only one manda-
tory aspect of the standard protocol logic was left out of the model, namely the
management of the SSH-TLP first_kex_packet_follows flag. Handling this
flag, which was introduced as a way to optimize implementation performance,
is rather complex and this option is hardly ever used in real implementations.

While the protocol logic is fully modeled (albeit with the exception of the
first_kex_packet_follows flag), data marshaling functions that are used to
convert data to/from serial binary streams before transmission or before apply-
ing cryptographic operations are not included at all in the formal model. Indeed,
according to the Spi2Java development approach, they will be added later, after
formally verifying the model, in a separate refinement step. In this way, formal
verification does not become too complex. At the same time, formally proving
the relevant security properties (i.e. secrecy and authentication under Dolev-
Yao assumptions) on the model that does not include these functions has been
proved sufficient to conclude that the same properties hold when such functions
are added, provided the added functions satisfy some general assumptions such
as injectivity and non-leakage of secret data (Pironti and Sisto, 2008; Pironti,
2010). These assumptions are normally fulfilled by the code implementing such
functions, and this can be verified in isolation by state-of-the-art information
flow tools and model checking tools for sequential code.

In its full length, the model of SSH-TLP discussed here amounts to 254 lines.
For the sake of brevity, and since simpler versions of the model have appeared
in the literature, only the significant aforementioned additional aspects of the
client-side model are discussed in detail in the next subsections. The complete
protocol specification can be found online (Pironti et al., 2011).

4.3. Algorithm Negotiation

With messages 3 and 4, client and server exchange their lists of supported
algorithms, from which the session-algorithms are negotiated. Client and server
must agree on ten different algorithms. For each algorithm that must be agreed
upon, both client and server propose a list of supported algorithms, ordered by
preference. Each algorithm is finally agreed by choosing the first algorithm in
the corresponding client list that is also available in the corresponding server
list.

In the preliminary version presented by Pironti and Sisto (2007) algorithm
negotiation was neglected. It was modeled instead that the client would accept
the first algorithm proposed by the server, even if this algorithm was not even
supported by the client. Here, algorithm negotiation is modeled, so that the
generated application is fully RFC-compliant.

Modeling negotiation explicitly in spi calculus is possible but leads to models
that are hard to verify, because the lists of supported algorithms are unbounded,
and verification tools like ProVerif fail to terminate when faced with open-ended
data structures. In order to avoid this issue, and to limit the complexity of
the model, the negotiation procedure for each one of the ten algorithms was
abstractly modeled by a one-way function that operates on the relevant pair of

11

algorithm lists (the client list and the server list). For example, negotiation of
the key exchange algorithm based on the corresponding client and server lists
of supported key exchange algorithms is modeled by the following expression:

let agreed_kex_algorithm =

H((c_kex_algorithms, s_kex_algorithms)) in

where c_kex_algorithms and s_kex_algorithms are respectively the client
and server lists of supported key exchange algorithms, and agreed_kex_algorithm

is the negotiated key exchange algorithm. Using a hash function to model the
algorithm decision procedure reflects the fact that negotiation “transforms” the
pair of algorithm lists into the agreed algorithm and from the output of the
procedure no information can be derived about the original pair of algorithm
lists, except they both contained the agreed algorithm. Modeling this with a
hash function may seem too constraining for the attacker’s knowledge, because,
according to this model, the attacker could not infer anything about the origi-
nating pair of lists from the agreed item. However, this is not an issue for the
SSH-TLP, and this also holds for many other protocols, because the full algo-
rithms lists are not secret. Another issue of this simplified modeling approach
is that two different negotiations that should give the same result actually give
different results. The inability to recognize equality of the results of negotiation
may lead in principle to unsound verification, because an equality test that fails
in the model could succeed in reality, leading to real behaviors that are not
considered by formal verification.

In principle, new operators could be added to spi calculus and Spi2Java,
with their semantics formally defined in the ProVerif model, and their imple-
mentation provided as part of the SpiWrapper library. However, on the one
hand this process would be rather complex and delicate for the average user
of Spi2Java, because wrongly specifying or implementing a new operator could
be a source of unsoundness. On the other hand, the granularity at which such
new operators can be formally defined in ProVerif is limited; for instance, it
would be hard to properly model custom properties as was done in the Mondex
case study (Grandy et al., 2008). Indeed, there exists a trade-off between the
generality of the approach, and its applicability to specific protocols.

Even with this slight limitation, the model is closer to reality than the one
presented by Pironti and Sisto (2007).

4.4. Cryptographic Parameters Handling

When a protocol implementation invokes cryptographic operations it must
use proper algorithms and parameters (e.g. 3DES or AES, with specific key
length) for each of them, instead of the symbolic encryption functions. This
kind of information is often abstracted away from Dolev-Yao models but it is
of course relevant for implementation. It is crucial that these algorithms and
parameters can be set independently for each cryptographic operation, and that
they can either be specified at compile-time, or be resolved at run-time. For
instance, there are protocols, like SSH-TLP, where the encryption of incoming

12

and outgoing data is performed independently, each using its own algorithms
and keys. Furthermore, such algorithms and corresponding key lengths are
selected at run-time according to the result of negotiation.

Spi2Java lets the user add this information in the refinement phase by spec-
ifying it in a separate XML document, called the eSpi document. Essentially,
for each spi calculus term representing a cryptographic operation, the user can
specify its algorithm and parameters, either statically (so that they are resolved
at compile-time) or by referring to another spi calculus term that will contain
the value of the algorithm or parameter at run-time.

Run-time resolution of negotiated cryptographic algorithms is straightfor-
ward, because in the model the computation of such negotiation is represented
by a term holding the agreed algorithm. So, in the eSpi document, it is sufficient
for the user to refer to that term in any cryptographic operation that must use
the negotiated algorithm.

Instead, the parameters associated to a negotiated algorithm are not explic-
itly represented in the model by default, nevertheless they might depend on the
negotiated algorithm. For example, the length of a digest may depend on which
digest algorithm is selected. In such cases, a term, which holds the value of the
parameter depending on the negotiated algorithm, must be explicitly included
in the model so that it can be later referenced in the eSpi document.

For example, let us consider the negotiation of the DH key exchange algo-
rithm in SSH-TLP.

The SSH-TLP RFC prescribes that different DH groups must be supported
for key exchange. When a key exchange algorithm is negotiated, in fact the
DH group to be used is negotiated. In turn, agreement on a DH group im-
plies the usage of specific values for the parameters p, a large safe prime, g, a
generator for a subgroup, and q, the order of the subgroup. In the proposed
spi calculus model, such cryptographic parameters are explicitly represented by
computing a function over the term storing the negotiated DH group (called
agreed_kex_algorithm), and a marker identifying the cryptographic parame-
ter to be extracted. Once again this function is modeled as a hash function,
which is safe for secrecy since all the terms involved are not secret (they are
already known by the attacker anyway). An issue similar to the one explained
for algorithm negotiation could arise in principle here too, but in this case it is
less likely to occur, because the parameters for different algorithms are generally
different.

In practice, the spi calculus model where p, g and q are derived from the
agreed DH key exchange algorithm can be written as

let p = H(agreed_kex_algorithm,pParam) in

let g = H(agreed_kex_algorithm,gParam) in

let q = H(agreed_kex_algorithm,qParam) in

where pParam, gParam and qParam are the constant markers identifying which
parameter to extract, and the variables p, g and q store the parameters so de-
rived. During the refinement phase, the latter three variables can be referenced
as run-time resolved parameters for the DH cryptographic operations.

13

This same modeling pattern is equally applied to the parameters that depend
on the other negotiated algorithms.

4.5. Key Store Access

After receiving message 6 from the server, the client should check that the
received server public key PubKey_s matches the trusted one. Note that in
fact more than one trusted public key can be associated with the same server,
namely one key for each supported signature algorithm (e.g. RSA, DSA) and
for each IP address.

In the model, the check on the received public key is done like a typical
implementation would do it, i.e. by first retrieving from a local key store the
trusted key for the negotiated signature algorithm associated with the connected
server, and then by matching the two keys.

Interaction of a process P with the key store is modeled in Spi2Java by pairs
of output/input (request/response) message exchanges between P and a process
representing the key store, over a private channel. This model is flexible enough
to allow both formal verification and derivation of an implementation. First, P
sends the key store a request, that is a message of the form (Operand,Data),
where Operand specifies the requested operation, and Data are the application
data specific to the given operand. In turn, the key store emits its response by
sending an outcome back, whose form depends on the requested operation.

Two operands are defined for the key store, namely CHECK_KEY and GET_KEY.
For both operands, application data is a key alias. CHECK_KEY is used to ask the
key store whether a key associated with the given alias exists, while GET_KEY is
used to actually retrieve the key. By distinguishing these two operations, key-
retrieval errors (e.g. key not found in the key store) can be properly handled.

In our SSH-TLP client model, the key alias for a server key is a list made up
of the server identification string, the negotiated signature algorithm and the
public communication channel, which represents the server IP address informa-
tion.

As an example, in the SSH-TLP client model, the server trusted key is
retrieved via the following spi calculus excerpt:

ks<(GET_KEY,(ID_S,signKeyType,cAB))>.

ks(stored_PubKey_s).

where the application data are composed of ID_S (the server identification
string), signKeyType (the agreed signature algorithm), and cAB (the public
communication channel).

On the server side, the same approach is used to let the server retrieve its
own private key from its key store, depending on the agreed signature algorithm.

4.6. Error Handling

In general, error conditions are handled by sending the appropriate SSH-TLP
error message to the other party, through the cAB channel, and by reporting the

14

error to the user via a private channel (the cState channel), which is also used
to report the end of a successful protocol run.

Such error conditions are usually detected because the else branch of a
failed operation is taken. For example, on the client side, if the signature check
fails, the else branch is taken where an “SSH DISCONNECT” message, with
cause “Key Exchange Failed”, is sent to the server over cAB, and then the error
is also reported over cState.

5. Formal Verification of the SSH-TLP Model

The formal model developed as shown in the previous section can be verified
using the ProVerif theorem prover (Blanchet, 2001). Being a theorem prover,
ProVerif can handle an unbounded number of protocol sessions. At the same
time, it offers full automation and can often report counter-examples. In addi-
tion, both ProVerif and Spi2Java accept (variations of) the same input language,
thus making their integration rather straightforward. Actually, Spi2Java comes
with a tool, called Spi2Proverif, that translates specifications from the Spi2Java
syntax to the syntax accepted by ProVerif.

When translating to ProVerif syntax, Spi2Proverif adds selected information
from the eSpi document, in order to make the analysis more precise. For exam-
ple, let us consider the following final hash that appears in the client spi calculus
model:

H((ID_C, ID_S, KEX_C, KEX_S, PubKey_s, DHPub(x), f, DHKey(x,f)))

The eSpi document includes for this term the following element (reported here
with minor modifications to improve readability):

<term id="399"

name="H((ID_C, ID_S, KEX_C, KEX_S,

PubKey_s, DHPub(x), f, DHKey(x,f)))"

type="Cryptographic Hashing">

<codify>CryptoHashingSR</codify>

<parameters>

<param name="algorithm" type="var">DHHash</param>

<param name="provider" type="const">SUN</param>

</parameters>

</term>

The id attribute uniquely identifies the term in the XML document, while name
is its human readable form. The type attribute specifies the Java type assigned
to the term, and the codify element specifies the name of the Java class that
implements the marshaling layer. The parameters element instead is the part
where cryptographic algorithms and parameters are specified. For this term,
the algorithm parameter is of variable (var) type, meaning it will be resolved
at run-time: DHHash is the spi calculus term whose content (e.g. SHA-1, or
SHA-256) will be the negotiated algorithm for the final hash. Conversely, the

15

provider parameter, indicating the Java Cryptographic Architecture (JCA)
provider to be used, is of constant (const) type, meaning its value is assigned
at compile-time. This value is SUN in this example.

Using this information taken from the eSpi document, Spi2Proverif translates
the final hash into the following term:

H((ID_C, ID_S, KEX_C, KEX_S, PubKey_s, DHPub(x), f, DHKey(x,f)

), DHHash)

This is a hash function taking two parameters: the first one is the data to
be hashed, while the second one specifies the hashing algorithm according to
the eSpi document. This model captures the ideal property that hash val-
ues obtained using different algorithms are unrelated. It can be shown that
this model is equivalent to the more common pattern where different hash
functions are used for different algorithms. Indeed, suppose there exist two
hash functions Hsha1(·) and Hsha256(·) that implement the SHA-1 and SHA-
256 algorithms respectively, and that are used to hash terms m and n. Since
they are different symbolic functions (and no equational theories link them),
Hsha1(m) 6= Hsha256(n) for any value of m and n. In the same way, sup-
pose there exist two symbolically different constants Sha1 and Sha256, then
H(m,Sha1) 6= H(n, Sha256) for any value of m and n, because the two hashes
will always differ for their second argument.

Note that this approach allows each cryptographic operation to use indepen-
dent and custom algorithms and parameters, either negotiated at run-time or
known at compile-time. As already remarked, marshaling functions that map
data to/from serial binary streams are not represented in the model that is
analyzed by ProVerif, and correctness of their implementation is assumed.

The algebraic properties of cryptographic operations are included as equa-
tions in the generated ProVerif model. For example, ProVerif supports DH
modular exponentiation by the two functions DHPub and DHKey used in the
spi calculus model. These functions are modeled in ProVerif by the equation
DHKey(x,DHPub(y)) = DHKey(y,DHPub(x)) (Blanchet et al., 2008).

The original spi calculus model only includes protocol instances and actors
specifications, while the intended security properties that should be satisfied
by the model have to be specified separately. In the approach described here,
security properties have been specified as security queries in ProVerif syntax and
added to the ProVerif model generated by Spi2Proverif. An equivalent option
would be to allow the addition of properties in ProVerif style directly in the
spi calculus model file with automatic translation to ProVerif along with the
model.

When automatically translated into the ProVerif syntax by the Spi2Proverif
tool, the SSH-TLP model discussed in the previous section numbers 431 lines. It
was formally verified for secrecy of the DH shared secret and for injective server
authentication by agreement on session data. Verification of all the security
properties took less than 2.5s, on a Linux host with an Intel Core2 Quad Q9450
CPU running at 2.66GHz, with 8GB of RAM.

16

The secrecy-related queries are quite simple. Let x be the client DH secret,
and y be the server DH secret. On the client side, the shared DH secret is
computed as DHKey(x,DHPub(y)) (where the client only knows DHPub(y), and
not y). So, the ProVerif query

query attacker:DHKey(x,DHPub(y)).

asks ProVerif to check whether the shared DH secret, as computed by the client,
remains secret indeed. In order to speed up verification, two secrecy assumptions
are made, namely that both x and y are not known to the attacker. ProVerif
verifies the secrecy assumptions on the model, before proceeding with the formal
verification of the properties.

On the server side, the shared DH secret is computed as DHKey(y,DHPub(x))
(again, the server only knows DHPub(x), and not x). Technically, the client-
side query above is enough to prove secrecy because, due to the equational
system, also the server leaking its own copy of the shared DH secret would
be recognized. Nevertheless, it does not require much effort (nor a significant
amount of verification time) to add a server-side secrecy query.

The server authentication property is expressed in ProVerif by means of
injective agreement on relevant session data (Blanchet, 2002). Briefly, injective
agreement means that each time client C believes it has finished a protocol
session with server S agreeing on some data M , server S started a protocol
session with client C, agreeing on the same data M . The work by Lowe (1997)
gives more details on injective agreement.

Two agreement events are defined: beginServerEnd(x), emitted by the
server when it believes it has started a session with the client, agreeing on data
x; and endServerEnd(x), emitted by the client when it believes it has finished
a session with the server, agreeing on some data x. Then, injective agreement
is expressed by the following ProVerif query:

query evinj:endServerEnd(x) ==> evinj:beginServerEnd(x).

In SSH-TLP, the server emits the beginServerEnd event just before sending
message 6 of the typical scenario in figure 2. Since cryptographic algorithms
and parameters are explicitly represented in the model and the negotiation
algorithm is explicitly modeled too, it is sufficient to only use the final hash as
the beginServerEnd event argument. Indeed, the final hash depends on server
and client identities, on all exchanged messages, on the shared DH secret and
on the agreed algorithms (added by Spi2Proverif). The client instead emits
the endServerEnd event on the same final hash after receiving message 6 of the
typical scenario of figure 2, and only if the server signature has been successfully
checked.

6. Model Refinement and Implementation Generation

Starting from a verified protocol model like the one discussed in the previous
section, the Spi2Java tools can be used to semi-automatically derive a Java

17

Figure 3: A significant subset of the default type hierarchy.

implementation of one or more roles of the protocol. Each role implementation
is derived separately, using only that role’s process specification. Auxiliary
processes, such as the ones that model key stores, are implicitly implemented by
a Java library provided by the Spi2Java framework, called SpiWrapper. Then,
no code generation is needed for them.

For each spi calculus term belonging to the abstract model, three kinds of
refinement information must be added in order to derive the Java implementa-
tion: a type; a set of cryptographic algorithms and parameters; and an encoding
layer.

This section explains how the refinement and implementation steps were
undertaken for the client-side of the SSH-TLP protocol, starting from the formal
model discussed in section 4.

6.1. Assigning Types and Cryptographic Algorithms and Parameters

The Spi2Java framework offers an extensible type hierarchy, where “Mes-
sage” is the top type, and subtypes are defined, based on term usage. For
example, the “Pair” type is defined to represent a term used as a pair of data
items in the spi calculus specification. A significant subset of the default type
hierarchy is shown in figure 3. Each type is implemented by a Java class belong-
ing to the SpiWrapper library. For example, the Pair class of the SpiWrapper
library offers the getLeft() and getRight() methods, allowing the spi calculus
pair splitting process to be implemented in Java.

Starting from the spi calculus specification, Spi2Java initially generates a
default eSpi document that assigns default types, cryptographic algorithms,

18

parameters, and encoding layers to each term. Default types are inferred from
term usage. When no useful information can be inferred, the most general type
(Message) is assigned. Default cryptographic algorithms and parameters are
pre-defined and a general default marshaling layer based on Java serialization is
available in the library and assigned by default to each term. This initial eSpi
document can be used for fast preliminary prototyping and early error detection:
using this automatically generated document and the spi calculus specification,
Spi2Java can generate a Java implementation without user interaction, which
can be executed to test the logic of the protocol before proceeding with the final
refinement. Of course, this preliminary prototype is not yet an interoperable
implementation, because the default choices do not match the ones defined by
the SSH standard for the protocol, but protocol roles generated in this way can
interoperate with each other.

In the SSH-TLP client model, most data types were automatically inferred
by Spi2Java and manual type refinement was necessary just for a couple of cases.
The first adjustment required was the downcast to “Nonce” of some fresh names
implicitly used as nonces but not automatically recognized as such by Spi2Java.
The second adjustment required was to downcast channels from the general
“Channel” type to more specific types. For example, cAB was cast to “TCP/IP
Channel”, while the private channel for interaction with the key store ks was
cast to “Key Store Channel”.

Fixed cryptographic algorithms and related parameters were also manually
set according to the SSH-TLP RFC.

In the model, as explained in section 4, the algorithm negotiation procedure
was abstractly modeled by means of one-way functions. Now, a real imple-
mentation of that procedure must be provided. Thanks to the extensible type
system, two sub-types of the “Hashing” type have been defined, namely “Ex-
tract Alg” and “Extract Param”. The former type is the function that computes
the result of negotiation for one algorithm. Its argument is a pair of lists: the
client-preferred list of algorithms, and the server-preferred list of algorithms.
The result of the function is the agreed algorithm.

Likewise, “Extract Param” includes the function that computes the cryp-
tographic parameters from the negotiated algorithms. Its argument is a pair
composed of an (agreed) algorithm and an integer marker. The result of the
function is the value of the cryptographic parameter identified by the marker,
to be used with the given algorithm.

Note that this modeling strategy is generic and modular: provided the al-
gorithm negotiation procedure can be modeled by a one-way function in the
first place (discussed in section 4), switching the algorithm negotiation proce-
dure amounts to only updating the implementation of the “Extract Alg” and
“Extract Param” types, while the abstract model remains unchanged.

6.2. Encoding Layer

The last kind of refinement information that must be provided in order to
get an interoperable implementation concerns the encoding layer, i.e. the layer

19

1: /* check sign_47 of H([...]) with PubKey_s_49 in */

[...] Declaration of required variables [...]

2: if (sign_47.check(final_hash, PubKey_s_49,

3: signKeyType_43.getText(),

4: signHash_41.getText(),

5: "SUN; SunRsaSign")) {

Figure 4: Java code excerpt implementing the spi calculus signature check.

that manages marshaling operations. In the current Spi2Java version, this layer
is not automatically generated, so it must be provided by the user.

For the case study presented here, an encoding layer implementing the con-
versions between Java types and the SSH-TLP binary packet protocol (Ylonen
and Lonvick, 2006b) and SSH-TLP specific types representations (Ylonen and
Lonvick, 2006a) was implemented. The implementation work was quite straight-
forward, although the required development time was not negligible compared
to the modeling or refinement steps.

Once the encoding layer was available, the eSpi document was updated. Each
term that required the custom SSH-TLP encoding layer had the corresponding
codify element modified to point to the proper Java class implementing the
SSH-TLP encoding and decoding for that term. Note that some terms that are
never sent over channels (such as, for example, some constants or the channels
themselves) do not need to use any encoding layer, and the default one can be
safely left.

6.3. Implementation Generation and Execution

When the spi calculus model and the eSpi document containing refinement
information are ready, the Spi2Java code generator can be used to automatically
generate the Java code implementing the protocol logic, and the whole appli-
cation skeleton. The translation function from spi calculus to Java was proved
sound under a Dolev-Yao attacker by Pironti and Sisto (2010).

In order to show what the generated protocol code looks like, the Java ex-
cerpt corresponding to the signature check in the client spi calculus model is
reported in figure 4. Line 1 contains an automatically generated comment that
improves readability of the generated code, by reporting the original translated
spi calculus process (term identifiers are appended a numerical suffix to make
them unique). Note that the Java final_hash identifier appearing at line 2
is a shorthand for a longer variable name actually used by the code generator,
which is obtained by mangling the H([...]) spi calculus term.

The Java sign_47 variable appearing at line 2 stores the server digital sig-
nature and has type “Digital Signature”. This type offers the method

boolean check(Message msg, PublicKey pubK,

String algorithm, String digest, String provider)

20

that returns true if the signature in the object is a valid signature of message
msg under key pubK, and returns false otherwise. The algorithm, digest and
provider formal parameters are Java strings containing the name of the cryp-
tographic algorithms and parameters to be used when performing the signature
check. The first two of them are to be resolved at run-time, so in the actual
parameters the getText() method is invoked, which returns the negotiated al-
gorithm. The last parameter is known at compile time, so its value is directly
set by the code generator.

The generated code is surrounded by some template context code, which
handles exceptions and disposable resources such as channels. The context also
collects into a map the protocol data that should be returned after a successful
protocol execution: for example, the agreed shared secret is to be returned after
a successful run of SSH-TLP. The skeleton of the generated method looks like

Map<String,Message> generatedSpi(@InputParams@) {

Map<String,Message> _return = new TreeMap<String,Message>();

@DisposableResourcesDeclaration@

try { @GeneratedSpiImpl@ }

catch (SpiWrapperException e) { _return = null; }

finally { @CloseDisposableResources@ }

return _return;

}

The @InputParams@ placeholder is substituted by the free variables and free
names of the translated spi calculus process. @DisposableResourcesDeclaration@
is substituted by the Java declaration of the variables holding references to the
disposable objects. @GeneratedSpiImpl@ is substituted by the generated Java
code implementing the core spi calculus process being implemented, and the
@CloseDisposableResources@ placeholder is substituted by the code closing
disposable resources that shall not be returned by the caller, that is whose
reference is not stored within the return map. Alternatively, the disposable
resources could be handled by the try-with-resources Java statement introduced
with Java version 7.

The SpiWrapperException class extends the standard Java Exception class,
and captures all subtypes of exceptions that can be thrown by the SpiWrapper
library. Since the generated code only uses the SpiWrapper library, it is sufficient
to catch this exception to handle execution errors such as failed decryptions or
equality tests (for which no else branch has been specified). Other runtime
exceptions or errors could be thrown: as the applications should not normally
try to catch such exceptions, the skeleton code just lets the Java Virtual Machine
handle them.

Note that the caller of the generated method distinguishes between successful
execution of the protocol and failure by the returned value: null means the
protocol run failed, while a (possibly empty) map of returned values implies
successful execution.

In addition to the generated function that implements a protocol session,
the generated code includes the skeleton of a client or multi-threaded server

21

application (depending on the configuration of the code generator) where the
call to the protocol session function is included. This skeleton may be taken as
the basis for developing the final application or as an example for integrating a
call to the protocol function into an existing application. The input arguments
to pass to the function when it is invoked to start a new protocol session must be
provided by the programmer, and are not included in the skeleton, because they
cannot be automatically inferred from the model. It should be noted that, the
possibility to set these parameters is essential in order to enable the application
to flexibly configure each protocol session. For example, in the SSH-TLP client
that was developed, this is exploited in each session to ask the user the server
address and port to connect to.

7. Considerations about correctness

The MDD approach that has been presented here enhances confidence about
the correctness of the implementation developed, compared to the usual level
that can be obtained by manual development. The abstract model captures
protocol logic thoroughly. Its formal verification, by proving that the desired
security properties are actually fulfilled, rules out the main errors that could be
made when writing protocol logic.

The problem of preserving the correctness properties proved on the model
down to the generated Java implementation was addressed by Pironti and Sisto
(2010). In that work, the translation function from spi calculus to Java used by
Spi2Java was formally defined and a pencil-and-paper proof of its soundness was
provided. Essentially, soundness was shown by proving that the generated Java
program is a refinement of the original spi calculus model. This means that all
possible behaviors of the generated Java program are a subset of the behaviors
described in the spi calculus model. Thus, if the spi calculus model has been
verified as secure (that is, all its behaviors are safe), then the Java program is
implied to be secure too, because it will exhibit a subset of the verified behaviors.
More precisely, a weak simulation relation between the generated Java program
and the original spi calculus model was proved to exist by Pironti and Sisto
(2010), showing that each step that a generated Java program can execute is
mapped to a step that the original spi calculus model can execute, which implies
the aforementioned refinement relation.

Java exceptions are fully handled by this refinement relation, because they
do not break any safety property (such as secrecy or authentication) that holds
on the verified model, and is implied in the generated code. Assume a formally
verified spi calculus model, and its generated Java code. When an exception
is thrown in Java, control possibly passes to the catch block (where the map
of returned values is set to null) and ultimately execution of the protocol run
is stopped at the point where the exception was thrown. Intuitively, since the
generated Java code is a refinement of the spi calculus model, it means that the
Java behavior up to the point before the exception was thrown was mapped onto
a corresponding safe behavior in spi calculus. When the exception is thrown,
essentially Java execution stops (as far as the visible behavior of the security

22

protocol is concerned), which is always a safe behavior. More formal details
about soundness of exception handling can be found in the work by Pironti and
Sisto (2010).

This soundness result relies on the correctness of the SpiWrapper library.
Pironti and Sisto (2010) give a rigorous model of the intended semantics of this
library, and shows preliminary work on how to verify that a possible imple-
mentation of this library fulfills the specified semantics. For example, a paper-
and-pencil proof that the Pair class implementation provided with the Spi2Java
framework is formally correct with respect to its intended semantics is given.

In this library, equality of objects is always tested via the equals method,
and not by reference equivalence. This is required because when a message is
received from a channel, or a plaintext is reconstructed from a ciphertext, a
new SpiWrapper object holding the obtained data must be created, even if the
corresponding spi calculus term is already instantiated in another Java object.
For example, the Java code implementing the spi calculus process c 〈M〉 .c(x).0,
will store one Java object for the M term, and one different Java object for
the received x term. It may be the case, however, that x is assigned the same
value as M (simulating that the spi calculus process receives exactly the M
term back), although they are two different objects. For this reason, equality
of objects cannot be checked by means of reference equality, but the equals

method must check the value is the same in the two objects. Using singleton
instances to represent spi calculus terms, and thus letting the match case check
for reference equivalence, would also be possible, but it would not be better.
Indeed, in the receive (decrypt) method, it would be necessary to check the
content of received (decrypted) data, to discover if their representing singleton
is already instantiated or not.

Problems like pointer aliasing in Java or cyclic pointer structures are avoided
instead by letting each object that belongs to the SpiWrapper library classes
to be initialized exactly once, atomically at object creation time (in practice
they are declared as final, all fields of the classes are final, and no setter meth-
ods are available). This constraint on the SpiWrapper objects does not limit
expressiveness at all, because spi calculus terms obey to the same semantics.

What this approach does not guarantee is the correctness of the encoding
layer, made up of the marshaling functions used to translate data from/to their
serial binary representations. Since these functions are developed manually,
they could be incorrect. However, it has been shown by Pironti and Sisto
(2008); Pironti (2010) that any implementation of such functions that fulfills
some functional correctness properties cannot introduce other security flaws.

These marshaling functions can be divided into two categories: i) the func-
tions encoding data to be sent/received over the network, and ii) the functions
preparing data to be used in cryptographic primitives (e.g. a key derivation
function that builds an AES key out of some raw key material). Pironti (2010)
showed that a difference in criticality exists between functions of the two types.

Functions of type i) only deal with data that are already secured, and ready
to be sent over the network (they just need to be translated into a different
format). These data transformation functions could even be implemented by an

23

untrusted entity, without affecting the protocol security. In fact, no particular
properties are required of these functions, except an information flow stating
that they should not access any protocol secret data item that is not available
to the attacker. In this way, neither can secret data be directly leaked by these
functions, nor can they be wrongly used to decrypt some already encrypted
data.

Functions of type ii) are instead more critical, because they will possibly
handle security relevant data. For example, consider a wrong key derivation
function that always generates the same key, regardless of the key material. For
such function implementations to be safe much stricter conditions are required.
The weakest conditions found by Pironti (2010) state that the mathematical
definition of such functions should be injective, and that the implementations
should correctly implement the mathematical definition. Furthermore, in or-
der to avoid interactions between different functions that might share the same
encodings, it is necessary that all protocol actors agree on the same encoding al-
gorithms. However, this last requirement is often checked as part of the security
protocol formal verification task.

It is important to note that while errors in the encoding layer can likely
be caught by extensive testing, the same is not true for the protocol logic,
because of the huge number of scenarios that concurrent protocol sessions and
unconstrained attacker behavior may introduce.

Another delicate point is the development of further algorithms extending
the SpiWrapper class hierarchy. For example, the SSH-TLP case study required
such an extension to the Hash class to handle algorithm negotiation as hash
functions. A wrong implementation of such algorithms could lead to a Java im-
plementation that is overall unsound. On the positive side, the work by Pironti
and Sisto (2010) rigorously define the behavior that any implementation of such
interface should have. So, any extension to the SpiWrapper library is safe,
as long as it can be proved that it fulfills the given interface. Unfortunately,
although formal verification of sequential, non-networked Java code has been
tackled in the literature (e.g. Beckert et al. (2007); Marché et al. (2004); Barthe
et al. (2007)), the current version of the Spi2Java framework does not offer a
straightforward way to prove correctness of arbitrary implementations of the
SpiWrapper library.

8. Experimental Results

8.1. Interoperability with Third Party Servers and Reliability

The generated SSH-TLP client was tested against seven third party server
implementations; five kinds of sessions were executed with each server, totalizing
35 experiments. Since the negotiation procedure is driven by client-preferred
algorithms, in each kind of session the client lists of preferred algorithms were
properly configured, so that a different algorithm would be agreed.

Table 3 shows, for each kind of session, the significant lists of preferred
algorithms that the client sent to the server.

24

Table 3: Lists of preferred algorithms.

Kind of session Signature DH group Final Hash
1 RSA; DSA 1; 14 SHA-1
2 RSA; DSA 14; 1 SHA-1
3 DSA; RSA 1; 14 SHA-1
4 RSA; DSA 1 SHA-1
5 RSA; DSA 14 SHA-1

Table 4: Tested servers.
Server Name Server ID string OS Comments
dropbear 0.52 dropbear 0.52 Linux No DH G14
freeSSHD 1.2.6 WeOnlyDo 2.1.3 Windows All correct
KpyM 1.18 cryptlib Windows No DH G14

– RSA only
lsh 2.0.4 lshd-2.0.4 lsh - a GNU ssh Linux RSA only
MobaSSH 1.12 OpenSSH 5.1 Windows All correct
OpenSSH 5.5 OpenSSH 5.5p1 Linux All correct
WinSSHD 5.15 1.04 FlowSsh: WinSSHD 5.15 Windows All correct

In sessions of kinds 1, 2, and 3, the client sent to the server a list with all
the algorithms that the SSH-TLP requires to be supported by the actors. If
the server supported at least one of the algorithms proposed by the client, then
the negotiation algorithm was expected to terminate with success. When the
server supported both RSA and DSA keys, sessions of kinds 1, 2 and 3 ended
well. With servers only supporting RSA keys, all the three kinds of sessions
were expected to end correctly, but always with the final agreement on the RSA
signature scheme.

In sessions of kinds 4 and 5, for the “DH group”, the client sent the server a
list with only one group. The negotiation algorithm was expected to fail if the
server did not exactly support the client requested group, otherwise the session
was expected to end well.

The third party servers used for testing are reported, with some comments,
in table 4. The “Server Name” column reports the advertised name of the server
application, while the “Server ID string” column reports the identification string
(ID S) sent by the server. The “OS” column specifies the operating system
which the server ran on.

Under the “Comments” column, servers with the comment “All correct”
support all required algorithms, and all kinds of sessions ended as expected.
In particular, the negotiated algorithms were always the preferred client algo-
rithms.

Servers with the comment “RSA only” only support RSA keys. In this
case, sessions of kind 3 correctly terminated by agreeing on the RSA signature
scheme.

Servers with the comment “No DH G14” only support one of the two re-

25

Table 5: Measures of the generated client application.

Package TLOC MLOC Ca
spiWrapper 3768 2180 102
spiWrapperSSH 2564 1136 5
sshClient 648 565 0

TLOC: Total Lines of Code: non-blank and non-comment lines in a class.
MLOC: Method Lines of Code: non-blank and non-comment lines inside method bodies of a

class.
Ca: Afferent Coupling: number of classes outside a package that depend on classes inside

the package.

quested DH groups, namely group 1. With these servers, sessions of kinds 1, 3
and 4 ended as expected. Sessions of kind 2 ended correctly, being the DH
group 1 agreed. Sessions of kind 5 correctly failed instead, because it was im-
possible to agree on a DH group.

The experiments illustrated here show in fact that the generated client can
execute in real environments, because it correctly interoperates with third party
implementation servers.

Moreover, the client was tested against the SSHredder1 suite, composed of
more than 660 incorrect protocol sessions. Each incorrect session was correctly
rejected by the client, which confirms the reliability of the code developed with
the proposed methodology.

8.2. Code Metrics

Some measures of the client code generated with Spi2Java are reported in
table 5. The spiWrapper package contains the SpiWrapper library, implement-
ing the low-level cryptographic and network operations. The spiWrapperSSH
package contains the manual implementation of the SSH-TLP specific encoding
layer, and the sshClient package contains the automatically generated protocol
logic, a default main application class and some customizable stub code to be
run after a successful protocol run. It can be argued that TLOC and MLOC
metrics highly depend on coding style. This is true; however, all the packages
were written with the same coding style and rules. Because of this, it can be
assumed that, in this particular context, both TLOC and MLOC are significant.

The automatically generated code (sshClient package), which mainly con-
sists of the protocol logic implementation, is small compared to the rest of the
application. Note, however, that the protocol logic is the most security critical
part because it coordinates cryptographic and input/output operations, algo-
rithm negotiation, key store interactions and handling of error conditions.

The library reusable code (spiWrapper package) accounts for more than half
of the application, and the manually written code implementing the encod-
ing layer (spiWrapperSSH package) completes the application. In practice this
means that when designing and developing a real application with the proposed

1http://www.rapid7.com/sshredder.zip

26

Table 6: Qualitative aspects of SSH-TLP client applications.

Application Multi Message loop/
Name Threaded Imperative
Spi2Java Client No Imperative
Jsch No Imperative
J2SSH Yes Mixed
Jaramiko Yes Message loop

methodology, a significant amount of time is required to develop the encod-
ing layer. Nevertheless, the implementation work is quite straightforward for
this layer, and the developers need only concentrate on the specific aspect of
encoding, which can make development more efficient.

The Ca metric (afferent coupling) measures code dependencies. It is de-
fined as the number of classes outside a package that depend on classes inside
the package. As expected, the “top-level” package sshClient is not required
by any other package, because it only contains the protocol logic, coordinating
the functions offered by the underlying libraries. The encoding layer package
(spiWrapperSSH) is used by the classes within the sshClient package, and the
spiWrapper library package is required by all other packages, since the protocol
logic requires it to perform the cryptographic and network operations, and the
encoding layer requires it to compute the internal representation of data. The
analysis of this metric leads to the conclusion that the proposed methodology
also helps to create structured applications, improving application maintainabil-
ity and code reuse. In particular, since most of the code is a reusable library, this
library can be extensively tested and verified in order to increase the assurance
level of the code developed by this methodology.

8.3. Comparison with Third Party Clients

The Spi2Java generated client implementation was compared with three
third party SSH-TLP clients manually developed in Java, namely Jsch, J2SSH
and Jaramiko. The comparison was made considering qualitative and quantita-
tive aspects of the code, and performance.

The qualitative aspects that were compared are shown in table 6: whether
the implementation is multi-threaded or not; and whether the protocol logic
implementation is written using a message-loop or imperative paradigm.

As it will be shown when presenting the results about performance, a multi-
threaded approach does not improve execution performance (and it would make
formal verification harder). Indeed, threading is mostly used as an overall time-
out feature, to mitigate denial of service (DoS) attacks: if the protocol logic
thread does not join within the specified timeout, it gets killed and an error
is reported. The Spi2Java framework does not offer the same overall timeout
feature, however each channel input/output operation can have a timeout.

Using an imperative paradigm to handle the SSH-TLP logic is viable, be-
cause the protocol consists of few message exchanges with few branching, and

27

error handling is completed by sending one error message. Furthermore, the
imperative paradigm has the advantage of implicitly defining the protocol state
machine, so reducing the possibility of accepting an otherwise valid message
in the wrong state. Conversely, a message loop paradigm is more flexible and
scales up better for more complex protocol logics. However, it requires careful
design and implementation of the protocol state machine. Although manual
code inspection of the Jaramiko application did not reveal any security flaw,
the state machine implementation is not evident in the code, which increases
the risk of security flaws.

A quantitative analysis of the implementation codes under comparison was
also performed, in order to evaluate the impact of the Spi2Java development
method on code length. Regarding this analysis, it is important to note that
accuracy cannot be very high, because each application has different code struc-
ture and style, which may impact on code length. However, for the final aim of
this analysis, which was just to show that the code developed with Spi2Java is
not very different in length than the manually written codes, high accuracy is
not needed and the noise introduced by different code styles is acceptable.

Gathering uniform and significant quantitative metrics for all the implemen-
tation codes turned out to be non-trivial: on the one hand, the manually de-
veloped applications contain the implementation of the full SSH protocol stack
(which includes the SSH-TLP), so it was necessary to identify and exclude the
unrelated code; on the other hand, none of the third party implementations
supports the RFC-required DH group 14 key exchange method, which instead
is included in the code developed with Spi2Java.

Because of the difficulty to identify relevant code in a uniform way in the
applications, the following procedure has been used for each implementation
(the one developed with Spi2Java and the third party ones): (i) profiling of a
typical SSH-TLP session (with the OpenSSL server, using group 1 and RSA)
to obtain the set of Java classes actually used in that session; (ii) gathering of
the selected metrics (TLOC and MLOC) for these Java classes. This procedure
slightly underestimates overall code length because Java interfaces, exception
classes and error message handling classes are not counted, but this is done
uniformly on all the implementations.

The gathered measures are reported in table 7. As the marshalling code is
not easy to distinguish from the rest of the code in the third party implementa-
tions, the table just distinguishes the whole code and the code that implements
the protocol logic.

All the applications share a comparable overall size. Jsch is slightly smaller
in terms of TLOC, but comparable in terms of MLOC, which is justified by
different coding styles. Although in the Spi2Java generated application only
half of the code was manually developed (the remainder being either a reusable
library or automatically generated), it does not follow that development time
with Spi2Java was half of a typical manually developed application. Indeed,
spi calculus model design, refinement and formal verification compensate the
effort, but also give stronger security guarantees with respect to manual devel-
opment.

28

Table 7: Measures of third party client applications.

Application TLOC MLOC TLOC of MLOC of
Name protocol logic protocol logic
Spi2Java Client 5883 3221 382 342
Jsch 4220 3224 1543 1324
J2SSH 5843 3397 2571 1526
Jaramiko 5333 3183 1381 921

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Jsch J2SSH Spi2Java_Client Jaramiko_short Jaramiko

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[s
]

Client

Measured data

Figure 5: Average execution times of different SSH-TLP clients.

The analysis of the TLOC and MLOC metrics for the parts of code that
were identified as protocol logic shows that, compared to the Spi2Java generated
implementation, the manually developed ones are larger, and so possibly more
complex to analyze for their security properties. It is worth to note that this
difference is partly due to the fact that the separation between protocol logic
and rest of the application is not as strict in third party implementations as it
is in code developed with Spi2Java. For example, code inspection revealed that
some aspects related to data encoding are mixed with protocol logic in third
party implementations.

Finally, execution times of the generated SSH-TLP client and of the selected
third party SSH-TLP clients were measured. For each client, 1000 runs of the
protocol were executed with the OpenSSH 5.1p1 server. Average execution
times and average deviations are reported in figure 5. All the runs were executed

29

on the aforementioned Linux machine under constant system load and over the
localhost, in order to avoid random network delays; the same cryptographic
algorithms were always negotiated, namely DH group 1 with RSA server key.
In order to eliminate the latency introduced by the Java class loader, for each
client the first run was not considered, and all subsequent runs were all executed
in the same virtual machine instance. For all clients, the measured time starts
at the beginning of the protocol, including TCP handshake and parsing of the
key store file, and stops after checking the digital signature over the final hash
and the server key.

All the clients, including the one developed in this paper, exhibited compa-
rable execution times, with the exception of the Jaramiko one. In fact, it turned
out that the DH modular exponentiation operation is the most computationally
intensive one, making all other operations (including other cryptographic oper-
ations such as signature check) negligible. In particular, execution time depends
on the size, in bits, of the chosen DH secret (x in the spi calculus model). Since
all clients except the Jaramiko one use the standard JCA implementation to
choose the DH secret, it follows that they all executed in comparable time. The
Jaramiko client instead uses a larger DH secret on average, making it slower
than other clients. This is further confirmed by the fact that after patching the
Jaramiko client to generate DH secrets similar in length to the ones generated
by the standard JCA implementation (the Jaramiko short client in the chart),
it executed in times comparable to the ones of the other clients.

It is then possible to conclude that the semi-automatically generated SSH-TLP
client presented in this paper can in fact replace other manually developed im-
plementations without significant performance penalties.

9. Conclusion

The case study illustrated in this paper gives evidence of the viability of the
Spi2Java-based MDD approach for security protocols, with a real and widely
used open protocol at hand. By following the MDD methodology implied by
the Spi2Java framework, an abstract model of the SSH-TLP was first developed.
This model was then automatically proved to fulfill the expected secrecy and
server authentication properties by means of the ProVerif tool. Finally, the
client-side part of the model was semi-automatically and soundly refined by
means of Spi2Java into a Java application.

This development chain leads to an implementation that is formally guar-
anteed to follow a protocol logic that fulfills the expected security properties
under the Dolev-Yao assumptions. This yields an overall higher assurance that
the protocol logic has been implemented without errors, in comparison to what
can be obtained by traditional manual development.

In this paper it was shown experimentally that this added value does not
come with the cost of compromising other relevant implementation features.

The interoperability of the client-side application that was semi-automatically
derived from the model was experimentally verified by performing interoperabil-
ity testing against several third party server implementations.

30

The reliability and robustness of the generated application were confirmed
by the correct handling and rejection of over 660 maliciously crafted protocol
sessions.

The execution time of the model-driven implementation is comparable with
that of other third party Java SSH-TLP clients implemented manually. Indeed,
most of the implementation complexity lies in the computation of cryptographic
primitives, rather than in the protocol logic. This means that the derived ap-
plication can practically replace other implementations.

Finally, the measures on the size and coupling of the implementation code
show that the generated application is quite modular. The protocol logic, the
low-level cryptographic and network operations, and the encoding layer are en-
capsulated in different packages, each containing automatically generated code,
library code, and manually developed code respectively. Although the manually
developed code accounts for almost half of the whole application code, it only
deals with the encoding layer, while the most critical code (the protocol logic
implementation) is either automatically generated or part of the SpiWrapper
library, shipped with the Spi2Java framework.

In order to achieve an interoperable Java implementation, the developed ab-
stract model takes all the mandatory protocol features into account, including
algorithm negotiation and error handling. Moreover, the abstract model ex-
plicitly represents implementation-related aspects such as the interaction with
a local key store, which are generally left out when formal security protocol
models are just used to verify the main protocol logic. To our knowledge, this
is the first verified formal specification of SSH-TLP fully modeling all these fea-
tures. Nevertheless, the model was still left abstract enough, allowing different
implementation choices. For example, the key store interaction is generically
modeled by a request/response paradigm, allowing applications to be backed
by different key store implementations. It is plausible that the same modeling
strategies can be reused in other protocol models too.

As far as concerns the development effort required, our experience was that,
for an experienced user, writing the formal abstract model in spi calculus has
development costs similar to writing the protocol logic in a programming lan-
guage. Nevertheless, we expect that this step would require more effort for an
average developer not already familiar with spi calculus.

In all cases, an extra cost is accrued in the Spi2Java MDD approach for
formally verifying the model using ProVerif. The time taken by this verification
step was relevant in our experience, because ProVerif seems to be rather sensitive
to how the model is written, especially when local channels are extensively used.
Because of this problem, several variants of the model were tried out before
finding one that could be automatically verified by ProVerif.

A current limitation of the Spi2Java MDD approach is that the encoding
layer has to be manually developed. This takes a significant amount of time in
the whole application development, and the manually written code is currently
assumed, and not verified, to correctly implement the specified encoding layer.
Moreover, this code is potentially subject to code vulnerabilities, which could
be avoided by automatically generating this code too.

31

Hence, as a future work, automatic generation of the encoding layer, starting
from a mathematical model of encoding and decoding functions, could both re-
duce development effort and increase the overall assurance level of the generated
application, by providing a fully verified implementation. To some extent, this
is already possible: some security protocols, such as Kerberos, use ASN.1 encod-
ings, for which automatic code generation for encoding and decoding functions
already exists.

Another limitation of the Spi2Java MDD approach is the need for the devel-
oper to know the spi calculus modeling language. This problem could be alle-
viated by adopting either a graphical modeling language, or textual languages
more similar to the programming languages commonly adopted by program-
mers.

Acknowledgments

We would like to thank Bruno Blanchet for his valuable support in the
verification phase of our case study.

References

B. Blanchet, An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules, in: Computer Security Foundations Workshop, IEEE Computer Soci-
ety, 82–96, 2001.

B. Blanchet, D. Pointcheval, Automated Security Proofs with Sequences of
Games, in: International Cryptology Conference, LNCS 4117, Springer, 537–
554, 2006.

L. Durante, R. Sisto, A. Valenzano, Automatic testing equivalence verification
of spi calculus specifications, ACM Transactions on Software Engineering and
Methodology 12 (2) (2003) 222–284.

S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties, in: Foundations of Security Analysis
and Design, LNCS 5705, Springer, 1–50, 2009.

G. Lowe, Casper: A Compiler for the Analysis of Security Protocols, Journal of
Computer Security 6 (1-2) (1998) 53–84.

S. Mödersheim, L. Viganò, The Open-Source Fixed-Point Model Checker for
Symbolic Analysis of Security Protocols, in: Foundations of Security Analysis
and Design, LNCS 5705, Springer, 166–194, 2009.

T. Ylonen, C. Lonvick, The Secure Shell (SSH) Protocol Architecture, RFC
4251 (Proposed Standard), URL http://www.ietf.org/rfc/rfc4251.txt,
2006a.

32

T. Ylonen, C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol, RFC
4253 (Proposed Standard), URL http://www.ietf.org/rfc/rfc4253.txt,
2006b.

D. Dolev, A. C.-C. Yao, On the security of public key protocols, IEEE Trans-
actions on Information Theory 29 (2) (1983) 198–207.

D. Pozza, R. Sisto, L. Durante, Spi2Java: Automatic Cryptographic Protocol
Java Code Generation from spi calculus, in: International Conference on Ad-
vanced Information Networking and Applications, IEEE Computer Society,
400–405, 2004.

B. Blanchet, A Computationally Sound Mechanized Prover for Security Proto-
cols, IEEE Transactions on Dependable and Secure Computing 5 (4) (2008)
193–207.

A. Pironti, R. Sisto, An Experiment in Interoperable Cryptographic Protocol
Implementation Using Automatic Code Generation, in: IEEE Symposium on
Computers and Communications, IEEE Computer Society, 839–844, 2007.

A. Pironti, D. Pozza, R. Sisto, Resources about Spi2Java and the SSH-TLP
Case Study., Online, URL http://spi2java.polito.it, 2011.

K. Bhargavan, C. Fournet, A. D. Gordon, S. Tse, Verified Interoperable Imple-
mentations of Security Protocols, in: Computer Security Foundations Work-
shop, IEEE Computer Society, 139–152, 2006a.

J. Jürjens, Automated Security Verification for Crypto Protocol Implementa-
tions: Verifying the Jessie Project, Electron. Notes Theor. Comput. Sci. 250
(2009) 123–136, ISSN 1571-0661, doi:10.1016/j.entcs.2009.08.009.

N. O’Shea, Using Elyjah to Analyse Java Implementations of Cryptographic
Protocols, in: Foundations of Computer Security, Automated Reasoning for
Security Protocol Analysis and Issues in the Theory of Security, 2008.

K. Bhargavan, C. Fournet, A. D. Gordon, Verified Reference Implementations of
WS-Security Protocols, in: Web Services and Formal Methods, LNCS 4184,
Springer, 88–106, 2006b.

K. Bhargavan, R. Corin, C. Fournet, E. Zălinescu, Cryptographically verified
implementations for TLS, in: Computer and Communications Security, ACM,
459–468, 2008.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, S. Maffeis, Refinement
types for secure implementations, ACM Transactions on Programming Lan-
guages and Systems 33 (2011) 1–45.

K. Bhargavan, C. Fournet, A. D. Gordon, Modular verification of security proto-
col code by typing, in: Symposium on Principles of Programming Languages,
ACM, 445–456, 2010.

33

E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, T. Schneider, Automatic
Generation of Sound Zero-Knowledge Protocols, Cryptology ePrint Archive,
Report 2008/471, 2008.

K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, J. J. Leifer, Cryptographic
Protocol Synthesis and Verification for Multiparty Sessions, in: Computer
Security Foundations Symposium, IEEE Computer Society, 124–140, 2009.

E. Hubbers, M. Oostdijk, E. Poll, Implementing a Formally Verifiable Security
Protocol in Java Card, in: Security in Pervasive Computing, LNCS 2802,
Springer, 213–226, 2003.

C.-W. Jeon, I.-G. Kim, J.-Y. Choi, Automatic Generation of the C# Code for
Security Protocols Verified with Casper/FDR, in: International Conference
on Advanced Information Networking and Applications, IEEE Computer So-
ciety, 507–510, 2005.

S. Kiyomoto, H. Ota, T. Tanaka, A Security Protocol Compiler Generating
C Source Codes, in: International Conference on Information Security and
Assurance, IEEE Computer Society, 20–25, 2008.

D. X. Song, A. Perrig, D. Phan, AGVI - Automatic Generation, Verification,
and Implementation of Security Protocols, in: International Conference on
Computer Aided Verification, Springer, 241–245, 2001.

B. Tobler, A. Hutchison, Generating Network Security Protocol Implementa-
tions from Formal Specifications, in: Certification and Security in Inter-
Organizational E-Services, Springer, Toulouse, France, 2004.

H. Grandy, M. Bischof, K. Stenzel, G. Schellhorn, W. Reif, Verification of Mon-
dex Electronic Purses with KIV: From a Security Protocol to Verified Code,
in: Formal Methods, LNCS 5014, Springer, 165–180, 2008.

N. Moebius, K. Stenzel, H. Grandy, W. Reif, SecureMDD: A Model-Driven
Development Method for Secure Smart Card Applications, in: International
Conference on Availability, Reliability and Security, IEEE Computer Society,
841–846, 2009.

D. Basin, J. Doser, T. Lodderstedt, Model Driven Security: from UML Models
to Access Control Infrastructures, ACM Transactions on Software Engineer-
ing and Methodology 15 (1) (2006) 39–91.

J. Jürjens, Secure Systems Development with UML, Springer, 2005.

J. McDermott, Visual security protocol modeling, in: Workshop on New Secu-
rity Paradigms, ACM, 97–109, 2005.

A. Pironti, R. Sisto, Provably correct Java implementations of Spi Calculus
security protocols specifications, Computers & Security 29 (3) (2010) 302–
314.

34

M. Abadi, A. D. Gordon, A Calculus for Cryptographic Protocols: The Spi
Calculus, Research Report 149, 1998.

B. Blanchet, M. Abadi, C. Fournet, Automated Verification of Selected Equiv-
alences for Security Protocols, Journal of Logic and Algebraic Programming
75 (1) (2008) 3–51.

A. Pironti, R. Sisto, Soundness Conditions for Message Encoding Abstractions
in Formal Security Protocol Models, in: Availability, Reliability and Security,
IEEE Computer Society, 72–79, 2008.

A. Pironti, Sound Automatic Implementation Generation and Mon-
itoring of Security Protocol Implementations from Verified For-
mal Specifications, Ph.D. thesis, Politecnico di Torino (Italy), URL
http://alfredo.pironti.eu/research/sites/default/files/Pironti Dissertation.pdf,
2010.

B. Blanchet, From Secrecy to Authenticity in Security Protocols, in: Interna-
tional Static Analysis Symposium, LNCS 2477, Springer, 342–359, 2002.

G. Lowe, A Hierarchy of Authentication Specifications, in: Computer Security
Foundations Workshop, IEEE Computer Society, 31–43, 1997.

B. Beckert, R. Hähnle, P. H. Schmitt (Eds.), Verification of Object-Oriented
Software: The KeY Approach, LNCS 4334, Springer, 2007.

C. Marché, C. Paulin-Mohring, X. Urbain, The Krakatoa tool for certification of
Java/Java Card programs annotated in JML, Journal of Logic and Algebraic
Programming 58 (1-2) (2004) 89 – 106.

G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, A. Requet, JACK: a tool for validation of security and behaviour
of Java applications, in: International Symposium on Formal Methods for
Components and Objects, LNCS 5382, Springer, 152–174, 2007.

35

