
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Validation & Verification of an EDA automated synthesis tool / DI CARLO, Stefano; Gambardella, Giulio; Indaco, Marco;
Rolfo, Daniele; Prinetto, Paolo Ernesto. - STAMPA. - (2011), pp. 48-52. (Intervento presentato al convegno IEEE 6th
International Design and Test Workshop (IDT) tenutosi a Beirut, LI nel 11-14 Dec. 2011) [10.1109/IDT.2011.6123100].

Original

Validation & Verification of an EDA automated synthesis tool

Publisher:

Published
DOI:10.1109/IDT.2011.6123100

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460569 since:

IEEE Computer Society

Validation & Verif ication of an
EDA automated synthesis tool
Authors: Di Carlo S., Gambardella G., Indaco M., Rolfo D., Prinetto P.,

Published in the Proceedings of the IEEE 6th International Design and Test Workshop (IDT), 11-14

Dec. 2011, Beirut, LI.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6123100

DOI: 10.1109/IDT.2011.6123100

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6123100
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6123100
http://dx.doi.org/10.1109/IDT.2011.6123100
http://dx.doi.org/10.1109/IDT.2011.6123100

Validation & Verification of an EDA automated
synthesis tool1

Stefano Di Carlo∗, Giulio Gambardella†, Marco Indaco∗, Daniele Rolfo†, Paolo Prinetto∗
†CINI

Via Ariosto 25, 00185 Roma, Italy

Email: {FirstName.LastName}@consorzio-cini.it
∗Politecnico di Torino

Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {FirstName.LastName}@polito.it

Abstract—Reliability and correctness are two mandatory fea-
tures for automated synthesis tools. To reach the goals several
campaigns of Validation and Verification (V&V) are needed.
The paper presents the extensive efforts set up to prove the
correctness of a newly developed EDA automated synthesis tool.
The target tool, MarciaTesta, is a multi-platform automatic
generator of test programs for microprocessors’ caches. Getting
in input the selected March Test and some architectural details
about the target cache memory, the tool automatically generates
the assembly level program to be run as Software Based Self-
Testing (SBST). The equivalence between the original March
Test, the automatically generated Assembly program, and the
intermediate C/C++ program have been proved resorting to
sophisticated logging mechanisms. A set of proved libraries has
been generated and extensively used during the tool development.
A detailed analysis of the lessons learned is reported.

I. INTRODUCTION

In software engineering, validation and verification (V&V)
methodologies are two sides of the same coin to assess high
quality software. V&V consists of one or more techniques
applied to software artifacts, at different abstraction layers,
during each stage of the software development process (re-
quirements elicitation, architectural design, unit coding and
so on). In fact, validation concerns the evaluation of system
requirements and the fulfilment of users’ real needs. Verifi-
cation checks the consistency of an implementation w.r.t. its
specification. Depending on which V&V stage one is focusing
on, implementation and specification can exchange their roles
for selected artifacts [1].
In literature Myers’ classic book [2] introduces for the first
time the “V” model of verification and validation. The dis-
tinction between validation and verification is introduced by
Boehm [3], who has described validation as "building the right
system" and verification as "building the system right".
Several V&V approaches have been presented in literature,
most based on modelling software artifacts. In particular, con-
trol flaw graph and state machine models are used to describe
interactions between software modules [4] [5]. However, they
capture just one aspect of dependency. Data flow models make

1This projects is partially funded by Ansaldo STS SpA and FinMeccanica
within the "Iniziativa Software" (II ediz) framework

it possible to describe data interactions between parts [6] [7]
[8] [9].
From other perspective, symbolic execution techniques aim at
defining a set of conditions under which each control flow path
is executed, and evaluate their effects on the program state.
This approach is useful for checking properties [10] [11] [12]
[13] [14] [15] [16].
Finite state verification techniques merge principal character-
istics of symbolic execution and formal verification [17] [18]
[19] [20].
In this paper we present a custom approach, based on a sophis-
ticated logging mechanism, for validating and verifying the
MarciaTesta tool [21]. MarciaTesta is an automated synthesis
tool that covers the lack about the generation of ASM test
programs for data and instruction cache memories. The overall
synthesis process goes through different translation stages. For
each one, a different formalism is adopted [22].
The V&V of the entire MarciaTesta is based on verification
steps of each translation level and a global validation step.
In section II we briefly introduce MarciaTesta tool. In section
III we describe the adopted basic V&V methodology. In
section IV, architectural details of modules for V&V and their
tasks are presented, while the correctness of main inputs is
highlighted in section V. In section VI some experimental
results are showed, while section VII draws some conclusions.

II. MARCIATESTA TOOL

MarciaTesta [21] is a sophisticated automated synthesis tool
able to generate assembly programs for both data and instruc-
tion cache testing, customized for specific target architecture.
Cache memory software testing usually requires the adaptation
of a general March Test, according to a selected Software-
Based-Self-Test (SBST) methodology [23] [24] [25]. After
the test algorithm selection, the test engineer is required to
manually code it in assembly code. MarciaTesta has been
developed to automate the overall process, thus speeding-up
test program generation and providing an error-free assembly
code.
To perform the test program generation, different inputs must

be defined by the user, as shown in Figure 1 :

Figure 1. MarciaTesta Architecture

• Memory model: it contains parameters to fully customize
the data cache memory architecture. These parameters
include:

(i) Write policy of the cache.
(ii) Word size (data-width) of the target system.
(iii) Base address of the cacheable memory.

Moreover, the user must also provide the addressing
schema between the main memory and the data cache
memory, setting up three additional parameters: Index,
Tag, and Offset.

• March Test: it contains the selected March Test, denoting
with ’U’ and ’D’ respectively the ⇑ and ⇓ addressing
orders. It also includes Addressing Order (AO) that is
the exact sequence in which the cache lines must be

addressed during the ascending or descending addressing
orders. In addiction the Data Background (DB) List is
provided. It contains the background patterns required for
the implementation of the data and directory array test.

• SBST: it specifies the selected SBST methodology. It
contains the basic rules to translate each March Test
operation into its equivalent for data cache. MarciaTesta
offers a set of libraries useful for users to describe the
selected SBST Methodology (i.e. [22]).

• Memory model: it describes the architecture of the target
data cache.

• Target ISA: it lists the ASM implementation of a mini-
mum set of well defined Meta-ISAs [22] for the target
microprocessor.

Both SBST and Target ISA inputs are initially computed by
MarciaTesta to generate a database of rules (Translation rules
1 and 3 in figure 1).
The outputs of MarciaTesta are:

• March Test_cache: it is the output of the first transla-
tion level. It represents the input March test translated
according to the provided SBST methodology.

• C++ test program: it is the output of the second transla-
tion level. It represents the C intermediate implementation
of the translated March Test. It can be useful to test
engineers for emulating the test execution.

• ASM test program: it is the output of the third translation
level. It is the assembly program ready to be run on the
target microprocessor.

Figure 1 shows the internal architecture of MarciaTesta.
The synthesis process get through three translation levels,
performed by the MT generator, the C++ generator, and the
ASM generator modules, respectively. The output of each step
becomes the input of the next level.
In the first translation stage, the MT generator gets in input
the selected March Test and the SBST translation rules and it
produces a new version of the March Test, compliant with the
SBST approach, but still architecture independent.
In the next step, the C++ generator codes each march element
resorting to a set of C++ methods [22].
Finally, the ASM generator replaces each C++ method, listed
in C++ test program, by a set of assembly instructions.
Implementation details on a first release of the MarciaTesta
tool can be found in [21].

III. BASIC APPROACH

In order to verify the correctness of MarciaTesta and vali-
date its results, a verification and validation strategy must be
adopted.
Firstly, some preliminary key considerations about MarciaTe-
sta’s design are needed:

1) The architecture of the tool has been designed with a
modular approach, assigning each task (i.e., translation
level) to a specific component.

2) Components can be logically isolated.

3) Inputs and outputs of the tool are represented resorting
to different formalisms, but are characterized by a shared
well-defined semantic.

Based on these preliminary assumptions, the correctness of
the tool has been proved by proving, for each module, the
equivalence between its input and its generated output, as
shown in Figure 2.

Figure 2. Verification and Validation methodology

Since the output descriptions of each module are expressed
in terms of different formalism [22], the equivalence is proved
extracting the semantic for each description and proving the
equivalence between the two semantics.
The semantic is expressed through a list of C operators that
represent the operations performed by a generic March Test for
caches during its execution. We highlighted that during cache
testing we don’t have a direct access to the cache memory,
therefore, to write/read a word from the cache a read operation
from main memory is needed. The selected operators are :

• Write memory cell(word, address): it writes a word into
the main memory at specified address

• Read memory cell(address): it reads the cache line cor-
responding to address

• Read and verify for Data(address): it reads the data
corresponding to address from the cache memory and
verifies its correctness

• Read and verify for Directory(DB TAG,DB OK): it reads
the data corresponding to DB_TAG+addressing order

from cache and verifies that it equals DB_OK

• Invalidate cache line(index): it invalidates the cache line
pointed by index

• Enable_cache: it enables read and write operations from
the cache

• Disable_cache: it disables read and write operations from
the cache

Based on these considerations, the actual check consists of
the following steps performed for each module:

FOR i = 1 to n DO

Extract the semantic from Inpi and Outi
Perform a verification between Inpi and Outi

ENDFOR

Perform the validation between Inp1 and Outn

Both the validation and verification steps are performed re-
sorting to an equivalence check on an automatically generated
formal representation of the semantic. Following, the n-version
programming paradigm [26] the semantic extractors have been
developed by a team different from the implementation team.

IV. V&V MODULES

The checker has been implemented as shown in Figure 3.
The semantic extractors compute partial outcomes to extract

Figure 3. V&V implementation: Modular Checker

the well-defined semantic and create the log files. The V&V
modules only require to check the equivalence between log
files.
In particular, the checker is composed of two different
types of modules. The first implements the Verification

task, comparing two Log files extracted by the neighbour
translation levels. The second one compares the first and the
last Log files, generated from the main input and output of
the tool, in order to Validate MarciaTesta.

V. INPUTS VERIFICATION

A portion of the data contained into Log files are extracted
from the aforementioned inputs of MarciaTesta. For this
reason, correctness of the inputs is a crucial task to guarantee
the V&V of overall tool. Therefore, in this section, we present
an overview of the main inputs and adopted approaches for
their validation. For a more detailed description of inputs the

reader may refer to [21].
The main inputs are:

• March Test: it had been checked with a visual inspection,
verifying if March Test is properly written using YAUF

[22].
• SBST: it had been verified by a cache memory test

specialist. He verifies the translation rules correctness.
• Memory model: it had been verified by a designer of the

target system. He had to ensure the coherency between
specified parameters in Memory configuration input and
their real corresponding with the target system.

• Target ISA: it had been verified by an expert on the
target processor ISA. He has to verify the correctness of
the assembly instructions compounding each Meta-ISA
[22].

• Translation rules: are a set of libraries that describes
the correspondence between two subsequent translation
levels. The three translation rules were verified
by an expert on SBST methodology, an expert on
C++ algorithms and a qualified ASM programmer,
respectively.

VI. EXPERIMENTAL RESULTS

MarciaTesta has been validated using several campaigns of
Validation and Verifications (V&V).
To reach the goal, we choose different input combinations
to verify any MarciaTesta operating modes. In particular we
selected different March Tests, including: MATS+ [27], March

C-, March U [28], PMOVI, March SR, [29], March LR, March

B [30], March MSS [31], March SS [32], March G and
Abraham-Thatte [33].
Moreover, we considered two Target processor ISA descrip-
tions for MicroBlaze [34] and NiosII [35], in order to verify
MarciaTesta correctness when test program is generated for
both write-back and write-through policies.
Microblaze is a soft core processor designed for Xilinx FPGAs,
with a Harvard memory architecture, a RISC-like instruction
set and a data cache with write-through policy.
NiosII is a 32-bit RISC embedded-processor designed for
the Altera FPGAs with a data cache with write-back policy.
The actual boards on which we deployed the automatically
generated tests are a Virtex4 ML-403 Embedded Platform [36]
and a Nios Development Board Cyclone II Edition [37].
The parameters of Target memory configuration have been
set, for both microprocessors, to target a system with 2kB

instruction and data cache, with four words per cache line,
and 128kB of on-chip memory.
Table I shows, for each analyzed March Test, the test length
and the number of ASM rows for both the target architectures.
For each V&V campaign, the Checker module has successfully
verified the equivalence between the corresponding Log files.
For completeness an extensive simulation is done to debug
each test program.

Some programming bugs are detected by the test program
as functional faults and they led to an error detection in the

Table I
EXPERIMENTAL RESULTS ON NIOSII AND MICROBLAZE PROCESSORS

March test Test Length(Xn)
Number of ASM rows

NiosII MicroBlaze

MATS+ 5n 50289 42079

March C- 10n 99453 87147

March U 13n 128121 111719

PMOVI 13n 130169 117863

March LR 14n 138365 121963

March SR 14n 140413 128107

March B 17n 164985 140391

March MSS 18n 177277 156779

March SS 22n 218237 197739

March G 23n 226433 201839

Abraham, Thatte 30n 296109 267419

system.

(a) Correct code (b) Wrong code

Figure 4. Programming bugs detected as functional faults

Figure 4 shows an example of programming bugs that behave
as functional fault. This kind of bugs can be fixed by running
the test on a golden environment (e.g., an emulator).
During the V&V campaign some bugs were find in the
generated test programs. This kind of bugs don’t show up as
functional faults, so the test program ends successfully also in
presence of faults.

(a) Correct code (b) Wrong code

Figure 5. Programming bugs detected by V&V

Figure 5 shows an example of this kind of bugs, founded
during V&V. Figure 5 (a) lists an example of the correct code,
while Figure 5 (b) lists the bugged one. As we can notice, a
changing in the jump label can led to a correct results from
the test program, also in presence of a fault.

VII. CONCLUSION

In this paper the V&V for MarciaTesta tool has been pre-
sented. Thanks to the modular implementation of the tool, that
consists in different translation levels, a peculiar methodology
has been implemented.

For each level of translation, a semantic extractor has been
implemented, that allow to validate each module by comparing
the log file generated by its input and its output.
The logging mechanism generation is designed on four differ-
ent abstraction levels:

• March Test input level
• March Test for cache level
• C++ test program level
• ASM test program level

Finally, the verification has been setup comparing the log
file generated by the main input of MarciaTesta and its main
output. The correctness of the generated test program has
been checked on two target architectures.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to
the whole design team of Ansaldo STS for their helpful hints
and guidelines.

REFERENCES

[1] M. Young and M. Pezze, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[2] G. J. Myers, Art of Software Testing. John Wiley & Sons, Inc., 1979.
[3] B. W. Boehm, Software engineering economics. Prentice-Hall, 1981.
[4] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,

B. Sostawa, R. Zölch, and T. Stauner, “One evaluation of model-based
testing and its automation,” in Proc. of the 27th International Conference
on Software Engineering, pp. 392–401, 2005.

[5] M. Pezzè, R. N. Taylor, and M. Young, “Graph models for reachability
analysis of concurrent programs,” ACM Trans. Softw. Eng. Methodol.,
vol. 4, pp. 171–213, 1995.

[6] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

[7] K. M. Olender and L. J. Osterweil, “Interprocedural static analysis
of sequencing constraints,” ACM Trans. Softw. Eng. Methodol., vol. 1,
pp. 21–52, 1992.

[8] A. Rountev, B. G. Ryder, and W. Landi, “Data-flow analysis of program
fragments,” in Proc. of the 7th European Software Engineering Confer-
ence held jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of software engineering, pp. 235–252, 1999.

[9] M. Hind, “Pointer analysis: haven’t we solved this problem yet?,” in
Proc. of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pp. 54–61, 2001.

[10] R. W. Floyd, “Assigning meanings to programs,” in Proc. of the 20th
Symposium on Applied Mathematics, vol. 19, pp. 19–32, 1967.

[11] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[12] R. A. Kemmerer and S. T. Eckman, “Unisex: A unix-based symbolic
executor for pascal,” Softw. Pract. Ex. Trans., vol. 15, no. 5, pp. 439–
458, 1985.

[13] S. L. Hantler and J. C. King, “An introduction to proving the correctness
of programs,” ACM Trans. Comput. Surveys, vol. 8, pp. 331–353, 1976.

[14] W. E. Howden, “Symbolic testing and the dissect symbolic evaluation
system,” IEEE Trans. Softw. Eng., vol. 3, pp. 266–278, 1977.

[15] W. E. Howden, “An evaluation of the effectiveness of symbolic testing,”
Softw. Pract. Ex. Trans., vol. 8, pp. 381–397, 1978.

[16] L. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Trans. Softw. Eng., vol. SE-2, no. 3, pp. 215–222,
1976.

[17] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich, “Flow
analysis for verifying properties of concurrent software systems,” ACM
Trans. Softw. Eng. Methodol., vol. 13, pp. 359–430, 2004.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with blast,” in Proc. of the 10th International Conference
on Model checking software, pp. 235–239, 2003.

[19] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, pp. 256–290, 2002.

[20] G. Holzmann, Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, first ed., 2003.

[21] S. D. Carlo, G. Gambardella, M. Indaco, P. Prinetto, and D. Rolfo, “Mar-
ciatesta: an automatic generator of test programs for microprocessors’
data caches,” in Submitted to 20th Asian Test Symposium, 2011.

[22] S. D. Carlo, G. Gambardella, M. Indaco, P. Prinetto, and D. Rolfo, “A
unifying formalism to support automated synthesis of sbsts for embed-
ded caches,” in Proc. of the 9th East-West Design & Test Symposium,
pp. 39–42, 2011.

[23] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” vol. 54, no. 4, pp. 461–475,
2005.

[24] S. Di Carlo and P. Prinetto, Models in Hardware Testing, ch. Models
in Memory Testing, From functional testing to defect-based testing,
pp. 157–185. Springer, 2010.

[25] Y.-C. Lin, Y.-Y. Tsai, K.-J. Lee, C.-W. Yen, and C.-H. Chen, “A
software-based test methodology for direct-mapped data cache,” in Proc.
of the 17th Asian Test Symposium, pp. 363–368, 2008.

[26] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Trans. Softw. Eng., vol. SE-11, no. 12, pp. 1491 – 1501, 1985.

[27] I. Mrozek and V. N. Yarmolik, “Mats+ transparent memory test for
pattern sensitive fault detection,” in Proc. of the 15th International Con-
ference on Mixed Design of Integrated Circuits and Systems, pp. 493–
498, 2008.

[28] A. J. van de Goor and G. G.N., “March u: a test for unlinked memory
faults,” in Proc. of the IEEE Circuits, Devices and Systems, pp. 155–160,
1997.

[29] A. van de Goor, G. Gaydadjiev, V. Mikitjuk, and V. Yarmolik, “March
lr: a test for realistic linked faults,” in Proc. of the 14th VLSI Test
Symposium, pp. 272–280, 1996.

[30] A. Van De Goor, “Using march tests to test srams,” IEEE Trans. Design
Test of Comput., vol. 10, no. 1, pp. 8–14, 1993.

[31] G. Harutunvan, V. Vardanian, and Y. Zorian, “Minimal march tests for
unlinked static faults in random access memories,” in Proc. of the 23rd
VLSI Test Symposium, pp. 53–59, 2005.

[32] S. Hamdioui, A. J. van de Goor, and M. Rodgers, “March ss: A test for
all static simple ram faults,” in Proc. of the 2002 IEEE International
Workshop on Memory Technology, Design and Testing, pp. 95–100,
2002.

[33] R. Nair, S. Thatte, and J. Abraham, “Efficient algorithms for testing
semiconductor random-access memories,” IEEE Trans. Comput., vol. C-
27, no. 6, pp. 572–576, 1978.

[34] Xilinx, MicroBlaze Processor Reference Guide, 2004.
[35] Altera, Nios II Processor Reference Handbook, v7.2 ed., 2007.
[36] Xilinx, ML403 Evaluation Platform, v2.5 ed., 2006.
[37] Altera, Nios Development Board Cyclone II Edition Reference Manual,

v1.3 ed., 2007.

