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Abstract—The 2-D Convolution is an algorithm widely used in

image and video processing. Although its computation is simple,

its implementation requires a high computational power and

an intensive use of memory. Field Programmable Gate Arrays

(FPGA) architectures were proposed to accelerate calculations

of 2-D Convolution and the use of buffers implemented on

FPGAs are used to avoid direct memory access. In this paper we

present an implementation of the 2-D Convolution algorithm on

a FPGA architecture designed to support this operation in space

applications. This proposed solution dramatically decreases the

area needed keeping good performance, making it appropriate

for embedded systems in critical space applications.

I. INTRODUCTION

Image analysis is a fundamental task in remote sensing
applications and makes it possible to enhance raw images
acquired from camera sensors. Several techniques have been
developed in image processing for enhancing images obtained
from space probes during missions with critical requirements.
In space applications, remote sensing satellites and spacecrafts
modules have limited onboard computing capacity due to the
external environment conditions.
Several image processing systems for space applications take
effort of one or more filtering algorithms implemented se-
quentially in a filtering chain. One of the main steps of the
filtering chain is the 2-D discrete convolution algorithm [1]
[2]. This is conceptually a simple process performing a sum of
products of constant values (kernel matrix) by variable values
(image matrix). However, its software implementation requires
a huge amount of resources in terms of computational power,
latency and power consumption. This can result in significant
drawbacks when targeting embedded systems for real-time
space applications. Therefore, its hardware implementation
(e.g., with reconfigurable devices as FPGA) must aim at
increasing performances exploiting the natural parallelism of
2D convolution algorithms. Although there are many examples
in literature of 2D convolution implementations, few of them
take into account the area occupation constraint as the main
requirement.
Proposed solutions for 2D convolution on FPGA mainly focus
on different buffering models for performance optimization
in terms of bandwidth and data transfer to/from the memory

[3] [4] [5] [6] [7]. They also focus on strategies to increase
the throughput in terms of frequency. The adopted buffering
technique has an impact on the number of memory accesses
required to read the same pixel. This relies on the need of
using the same pixel to perform several convolution operations
on contiguous pixels. The Full Buffering technique has been
implemented in [8]. When computing an image of MxN pixel,
this approach requires the buffering of a whole row of M-1
pixels. The data buffers are used as delay lines to shift the
rows until the number of loaded pixels is enough to perform
the convolution. This strategy is inefficient when the area is
a constraint, since it requires a high number of buffers that
dramatically increase when a high size image processing is
required [8] [9] [4].
More efficient solutions are the Partial Buffering (PB) [9],
which decreases the number of required buffers by increasing
the bandwidth required for the memory storage. In this solu-
tion each pixel is read M times.
The hybrid schemes called MultiWindow Partial Buffering
(MWPB) [3] aims at implementing area-efficient solutions
and at keeping the memory bandwidth lower with respect to
previous solutions. MWPB is based on the implementation of
a shift register matrix of size greater than the kernel matrix.
In this way it is possible to share the same pixel with the
different convolution windows and thus keeping the memory
access frequency lower. In [4], three solutions are described,
that take effort of a PB approach. This PB approach has been
modified in order to be area efficient but with a high memory
bandwidth. In [10] an implementation of a module for 2-D
Convolution based on a logarithmic approach is described.
This approach aims at minimizing the power consumption.
The main drawback of logarithmic approach is the introduction
of approximation errors. The architecture presented in [5]
exploits symmetric kernels and performs the computation in
the logarithmic domain, to avoid the use of multipliers. [7]
presents a systolic configurable architecture for image filtering.
The core of the architecture is a 2D systolic array based on
particular processing elements called Configurable Window
Processor. These elements can be configured on the basis of
the type of the required filtering.



Fig. 1. Right to left moving window

Fig. 2. Top to down moving window

In this paper we propose the implementation of a bidimen-
sional convolver on FPGA. Our implementation is based on
a novel approach that is, at the same time, area-efficient and
keeps low memory bandwidth. It is one key stage of the filter
chain that will support the Entry Descending and Landing
(EDL) vision based approach.
The paper is organized as follows: Section 2 describes the
specific application and the proposed approach. Section 3
details our approach. Section 4 describes the architecture of
our system. Section 5 shows experimental results. Section 6
concludes the paper and depicts the future work.

II. REAL TIME FPGA FOR SPACE APPLICATIONS

In this section we detail the constraints and goals of the
project. The Entry Descending and Landing (EDL) vision
based approach is a technique that allows to automatically
drive a space module for landing on planet surface. This
operation is performed without any remote user interaction.
The major constraints imposed by our EDL target application
are:

• Input image constraints:
– Size of the image: 1024x1024 bits
– Fixed number of bits per pixel: 8 bits

– Boundary Condition: Zero padding.
• Kernel Matrix constraints:

– Size: 7 x 7 pixel with 8 bit for pixel, weighted for
the sharpening filter

– Data representation: 2’s complement notation
– Input matrix stored in external memory.

• System constraints:
– Memory size: 32 bit
– Bus length: 32 bit.

Therefore we need to minimize area utilization since we plan
to implement the whole filter chain on the FPGA.

The image processing algorithms have been deeply analyzed
to identify the task to be allocated to the processor and the
co-processor. Considering that the processor is in charge of
several different tasks over the image processing (sensor ac-
quisition, actuator control, data handling), the most demanding
image processing computational functions will be assigned to
the co-processor respectively.
The analysis of different algorithms shows that the most
common and demanding operation of the image processing
chain is the image filtering. Filters like Sobel [11], Prewitt
[12], Gaussian [13], median [14] and other simple filtering
operations make a strong use of the 2D convolution operation



on a square window. The different coefficients of the window
can also be arranged for the different filter implementations.

This makes the 2D convolution the best candidate as a main
co-processor function. Further analysis of the different image
filtering functions showed that the best compromise between
required processing performances and quality filtered image
can be obtained by means of 2D convolution on a maximal
kernel window size of 7x7.

III. THE PROPOSED APPROACH

The 2-D convolution on an input image I is expressed by
the well known expression:

I

0 =
P
i

P
j
wi,j ⇥ Im+i,n+j8(i, j) 2 R⇥ S

Where I

0 is the output image and wi,j is the convolution
kernel weight. A window RxS centred on a pixel (m, n) is
extracted from the input image and each pixel is multiplied
by the corresponding kernel weight. The products are then
added to produce the output pixel value [3]. Shift registers
and FIFO are used to implement the moving window. The use
of these devices has a strong impact on the area utilization.

Fig. 3. System’s Top Level View Architecture

In our approach we use a KxK moving window with
the same size of the kernel matrix. To minimize the area
utilization, it is necessary to implement an array of shift
registers of width equal to the KxK window size.

When we compute the pixel Pi,j where i and j are the row
and the column of the image, respectively, the shift registers
contain the pixels from i-3 to i+3 and from j-3 to j+3. The
pixel computation is performed by rows, from left to right for
the even index row and from right to left for odd index rows.
Summarizing we move the window in a winding line fashion.
Let window(|i|  b

�
K
2

�
c, |j|  b

�
K
2

�
c) be the needed portion

of data for computing the convolution of a single pixel. K

is the size of symmetric kernel matrix and new col and
new row are column vector and a row vector respectively,
containing K new pixels.
In order to compute the Pi,j+1 pixel, the one to the right with
respect to the Pi,j previously computed, the procedure is the
following:

1: procedure LOADCOLUMN(j, K, new col)
2: for x (j + b

�
K
2

�
c), (j � b

�
K
2

�
c) + 1 do

3: window(⇤, x) window(⇤, x� 1) . ⇤: all rows
4: end for

5: window(⇤, x� 1) new col

6: end procedure

7: procedure COMPUTEPIXEL(window)
8: ...
9: end procedure

The above steps are shown in Figure 1.
In the case of the Pi+1,j computation we proceed as follows:

1: procedure LOADROW(i, K, new row)
2: for x (i� b

�
K
2

�
c), (i+ b

�
K
2

�
c)� 1 do

3: window(x, ⇤) window(x+ 1, ⇤) . ⇤: all
columns

4: end for

5: window(x+ 1, ⇤) new row

6: end procedure

7: procedure COMPUTEPIXEL(window)
8: ...
9: end procedure

The above steps are shown in Figure 2.

Fig. 4. Detailed system architecture



Fig. 5. The Mul-Adder Tree

IV. THE SYSTEM ARCHITECTURE

The architecture has been designed jointly with the Thales
Alenia Space and it’s a candidate to be a possible solution.
Based on the specific implemented filtering chain, we designed
a moving window architecture for 2D convolution shift-based
on FPGA under well-defined requirements. Figure 3 shows
the system’s top level view. When the start signal is asserted,
the DMA module loads 4 pixel into the convolver. Strobe
In validates input data. When the unit is ready to provide
4 convolved pixel, it asserts Strobe Out signal. Asserting
EoS signals to the microprocessor the end of the convolution
process.

As underlined in section 2, we focused on optimizing the
area occupation. This has an impact on the performance.
Nevertheless the number of images processed by the system
per second is kept sufficiently high.
The internal structure is composed of 4 blocks (Figure 4):

• Multi-Shift Register Array (MSRA), for implementing
moving window,

• Mul-Adder Tree, that performs multiplications and sums,
• Output Unit, that groups the computed pixels and triggers

external logic for data storing.
• Control Unit, that manages modules’ synchronization.
The MSRA is implemented using a 49 registers array, each

register is 8 bit wide, to be able to store a pixel. The MSRA
is designed to perform the left/right shifting as described
in Section III to simulate the moving window scan along
the horizontal direction. Moreover it allows for the up/down
shifting along the vertical direction. The output signals of each
registry are connected to the Mul-Addder Tree to perform the

TABLE I
CPU ARCHITECTURES AND EXPECTED PERFORMANCES

Performance (MIPS) Processor Co-Processor
[200;300] LEON3 DSP (on FPGA)
[300;400] LEON3 LEON3 + DSP (on FPGA)
>400 LEON3 PPC

products with the weights of the kernel matrix.
To optimize the clock frequency we introduced 6 pipeline

stages in it. It is worth to point out that the introduction of the
pipelined datapath increases the area utilization, nevertheless
it is affordable if we take into account the significant improve-
ment in terms of efficiency.

The output unit includes an output buffer to store 4 pixels,
and a data normalization unit. The normalization unit is
required to normalize the size of the convolved pixel to 8
bit.
The Control Unit coordinates the data stream within the system
architecture. Mainly, it drives the control signals needed to
shift the MSRA and to acquire a new row/column. Another
important functionality is the management of the boundary
effects, as specified in Section 3.

We implemented the convolution of the pixels within the
frame of the image (first 3 rows and last 3 rows, first 3 columns
and last 3 columns) with the zero padding technique.

V. EXPERIMENTAL RESULTS

The FPGA target board is a Virtex 4 xc4vlx25 10sf363 [15]
[16] [17].



TABLE II
AMOUNT OF LOGIC USED

Logic Utilization Used Available % of Utilization
Slices 1356 10752 12%

Slice Flip Flop 1804 24192 7%
4 input LUTs 2568 24192 10%

TABLE III
HARDWARE RESOURCES UTILIZATION

Architecture Slices Kernel Matrix Size Area Utilization
Proposed 1356 7x7 12%

MWPB [3] 2290 5x5 21%

Table II shows the area occupation on the target FPGA
in terms of slices, flip-flops and LUT’s. Table III shows a
comparison between our approach and the MWPB proposed
in [3]. To the best of our knowledge MWPB is the only
approach comparable with our approach from the buffer unit
point of view. It worth to point out that our approach provides
better results in terms of area even if our kernel matrix size
is 7x7 against the 5x5 size in [3] . Therefore our architecture
significantly improves area occupation.

VI. CONCLUSION

This paper presented the implementation of a 2-D Convo-
lution algorithm on FPGA for space application. The results
show an efficient area overhead compared to previously pro-
posed solutions. Future work will aim at further improving the
design and the trade-off between latency and area occupation.
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