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Contemporary Mathematics

Congruence curves of the Goldstein-Petrich flows

E. Musso

ABSTRACT. We study the existence of contours which evolve retaining their
shapes under the second Goldstein-Petrich flow. We present a proof of the
existence, for each integer n > 2, of a 1-parameter family of non-congruent
Goldstein-Petrich contours of R? with symmetry group of order n. Explicit
algorithms to compute and visualize the contours and their evolution are given.

1. Introduction

In ref. [GP1], R.E. Goldstein and D.M. Petrich showed that the mKdV equation
3
(1) Kt + 5’“‘-‘2%8 + Kgss = 0

is associated to the flow on the space of unit-speed plane curves z : R — C defined
by
2

K . .
(2) Zy = f(? +iks)Zs, |2s| =1, K= —iZssZs

A simple closed curve which evolves retaining its shape under (2) is said to be
a GP contour. The existence of GP contours was considered in [GP2, NSW]
and examples of closed, non-simple congruence curves of the flow (2) have been
examined by Chou and Qu in ref. [CQ)]. In [Mu], we exhibited explicit numerical
examples of GP contours. Based on these results we wish to prove the following
theorem :

Theorem 1. For every integer n > 2 there exist g, € (0,1) and a 1-parameter
family {Vig,n] }qe[0.q,) Of non-congruent GP contours with symmetry group of order
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9 E. MUSSO

n. The evolution of y4n) under the second Goldstein-Petrich flow is given by
(3) Zlg,n] (s,t) ERXR — EXp(t/,L[q’n]) . ’y[q,n](s - ’U[q’n]t) € RQ,

where piq n) € ¢(2) and viy ) € R are the momentum and the wave velocity of ¥iq n)-
Moreover, there exist a countable set T,, C [0, qy) such that z(, . is periodic in time,
for each q € T,,.

The material is organized as follows. Section 2 recalls the basic definitions and
collects the preliminary results from the existing literature. Section 3 analyzes the
explicit integration of GP contours and proves the Theorem. Section 4 develops the
numerical algorithms for the construction and the visualization of the 1-parameter
families of GP contours with assigned symmetry group.

2. Preliminaries

2.1. Local motions. Denote by J(R, R) the total jet space of smooth R-valued
functions of one independent variable, endowed with its standard coordinates

(S,U,(O),U(l), v ,u(h), “ee )
If u: R — R is a smooth function, its prolongation is defined by
d d"
j(u):s €R (s,u|s,dls‘|s,...,d;f|s,...> € J(R,R).

A map o : J(R,R) — R is said a polynomial differential function if there exists
w € Rlzg,...,z,] such that

o(u) = w(u), u(), - - - Un)),

for each u = (s,u(0),u),---» Uy, -.) € J(R,R). The algebra of polynomial
differential functions, J[u], is endowed with the total derivative, defined by

. dw
pz:;) a’LL(p) (p+1)

A differential function w € J[u] is a total divergence if there exists p € J[u] such
that ro = D (p). The primitive p is unique up to an additive constant. By D~!(rv)
we denote the unique primitive of to which vanishes at u = 0. There is another
natural differential operator, known as the Fuler operator, defined by

= oo
5(m) = 3 (~1) D" () |
;) Fuce
We now recall three elementary properties :

e 1w € J[u] is a total divergence if and only if §(to) = 0;

e for each tv € J[u|, u(;)d(w) is a total divergence;

e for each rv € J[u|, u()D (6()) is a total divergence.

We let M be the space of unit-speed curves v : R — R? = C. The arc-length
parameter and the curvature are denoted by s and k respectively. Tangent vectors
to M at v are vector fields V = (vy + iv2)y’ along ~ satisfying v] = kvy. For each
v € J[u] such that ¢(u(g)v) = 0, we define a cross section of T'(M) by

V: S M — (Dil(U(O)U) + iU) |j(k)7/ S T»Y(M).
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DEFINITION 1. We call V the local vector field associated to v € J[u]. If
v = D(6(w)), then uv is a total divergence and the corresponding local vector
field is said to be the Hamiltonian vector field with energy to. By a local motion of
plane curves is meant an integral curve of a local vector field.

In other words, a local motion associated to v is a smooth map

z=x+iy: (s,t) €R x (a,b) —» C=R>

such that

(4) Zy = (D_l(ub) js(k) + 10 js(ﬁ))zs, |ZS| =1,
where

(5) K= —1Zs5Zg

is the curvature function. The Frenet frame along z is the map A : Rx (a,b) — E(2)
defined by

1 0 0
A= x x -y
y y/ X/
If we set
(6) u= Dil(U(O)U), p=Dv+ Uyt
then
(7) ©:=AtdA= K‘js(n)ds + P(U)|js(ﬁ)d8,
where K and P(v) are the e(2)-valued differential functions
0 0 0 0 0 O
(8) K= 1 0 —U(0) s P(U) = u 0 —p
0 U(0) 0 v p O
The Maurer-Cartan equation d®© + © A © = 0 yields
(9) ke =D (DU + u(O)D_l(u(O)U)) |js(f£)'
If the local vector field is Hamiltonian with energy w, then (9) takes the form
(10) Ky = 5(5(m))\j5(n)
where

£ = (DS +D- U(O)D71 . U(O)D)
is the canonical Hamiltonian structure of the mKdV hierarchy (cf. chapter 7 of ref.
[01]).

2.2. The Goldstein-Petrich flows and the mKdV hierarchy. According
to [GP1] we consider the sequence {v,, }nen of polynomial differential functions

(11) b1 = —u@y Yy = D(D(0,-1) + uy D (u@)on-1)), n>2.
Then, the mKdV hierarchy is given by

(12) up = Oplj, ), n=1

Setting

1
o, = / D_l(nnJrl)‘eu’Udea n >0,
0
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we obtain another sequence {1, },en of polynomial differential functions such that

(13) o1 = D(d(o)), bn = D(0(-1)) = E(B(wn-2)), n=2.
This leads to the bi-Hamiltonian representations of the mKdV hierarchy, namely
(14) up = D(0(tn—1))lj, () = E(6(0n—2))lj. (), 1 =2

The first three equations of the mKdV hierarchy are
U +us =0
Ut + %U2us + Usss = 07
Ut + Ugssss + %uQUSSS + 1002 ustgs + %ug’ + %u‘lus =0.

DEFINITION 2. The local vector field V,, associated to b,, is called the n-th flow
of Goldstein-Petrich.

REMARK 1. The Goldstein-Petrich flow V,, is Hamiltonian with energy 1, _o,
for each n > 2. Moreover, the curvature function of a local motion of V,, evolves
accordingly to the n-th member of the mKdV hierarchy.

3. Goldstein-Petrich contours

3.1. Congruence curves. A unit-speed curve v which moves without chang-
ing its shape under the Goldstein-Petrich flow V,, is said to be a congruence curve
of class n. From now we consider curves with non-constant curvature. Then,
is a congruence curve of order n if and only if there exist B : (a,b) — E(2) and
v : (a,b) — R such that

(15) z: (s,t) € R x (a,b) — B(t)y(s — v(t))
is a local motion of V.
LEMMA 2. The function v is linear.
Proor. Equation (15) implies that the curvature function of z is given by
k(s,t) = k(s +v(t)),

where k is the curvature of . From x; = v,

js(x) we find

dv
(16) kl|s+v(t)%|t = (Un|js(k))|s+v(t)'
Taking s € R such that &'|s, # 0 and setting s = —v(t) + sg in (16) we obtain
d Un|j s
dit}‘t = jk’(i)g)o = constant.

As a consequence, we assume that the evolution of a congruence curve is
(17) z(s,t) = B(t) - v(s — vt),

where the constant v € R is the wave velocity. The curvature of a congruence curve
of class n and wave velocity v is a solution of the stationary mKdV equation

(18) Un|j(k) + vk’ =0.
In analogy with (6) we put
U, = D_l(u(O)Un)7 Pn = D(Un) + U0)Un
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and we consider the ¢(2)-valued polynomial differential function
(19) H(v,) = P(v,) + vk,

where K and P(b,,) are defined as in (8). An easy inspection shows that k satisfies
(18) if and only if

(20) (H (o))" = [H(0n), K[k
This implies that there exists m € ¢(2) such that
(21) A-H(0n) i) - A7 =m,

where A : R — [E(2) is the Frenet frame along v. We call m the momentum of ~.

PROPOSITION 3. Let v be a congruence curve of class n, with wave velocity
v € R and momentum m, then its evolution under V,, is given by

(22) z(s,t) = Exp(tm) - v(s — vt).
PROOF. Let z(s,t) = B(t)y(s—wvt) be the evolution of v under V,,. The Frenet

frame of z is
(23) A(s,t) = B(t)Ay (s — vt),
where A is the Frenet frame along the curve . From (7) we have
(24) ATHA = K,y ds + P(0n) 5, ()t
Then, (21), (23) and (24) imply
dB

Bilhﬁ‘t = A’y(s —vt) - (H(Un)|j(k))|8—vt : A’y(s + U'yt)71 = m.

This yields the required result. O

3.2. Congruence curves of class 2. The curvature of a congruence curve

of class two satisfies

3
k" e
+ (2

where v is the wave velocity. From this we get

k2 —v)k' =0,

1
(k) = =7 (K +eok® + erk = <o)

where co = —4v and ¢y, ¢y are constants of integration. Solutions with ¢; = 0 are
plane elastic curves. Since closed planar elasticae are not simple [BG], we suppose
c1 # 0. Eventually scaling v by a similarity factor, we normalize the curve by
c¢1 = 1 and we assume that the curvature is a periodic solution of

1
(25) (K2 = -3 (k* + cok® + k + o) -
In addition, we require that the polynomial
P(t|ea,co) = t* + cat® +t + o

has two distinct real roots 1 > r9 and two complex conjugate roots r3 and ry, with
Im(rs) > 0. The coefficients ¢o and ¢y can be written in terms of the parameters
p<O0andgqe(—1,1) by

(1+4p°¢*)(1 + 4p*(¢* — 1))

(26) Coipiq = 16p4

1
» C2pq = _ﬁ +p(2q2 -1).
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We set

(27)
1 1/4 1 —1+p°(1 - 2¢%)
gpvq:_? (1+p6+p3(4q2_2)) 9 mp7q:§+ 2 1/2?
P 2(1+p®+p3(4¢% - 2))

and we define

At pg = g2 V1 =P+ 2q(=p)*2 (1 = 29(—p)*/?),
A2,p7q = ﬁ\/l —p3 — 2q(_p)3/2(1 + 2q(—p)3/2),
Bipq=;V1=0" +2(-p)",
B2,p,q = %\/1 - p3 — 2q(fp)3/2

We denote by cn(—|m) the Jacobi elliptic cn-function with parameter m € (0, 1)
and we put

(28) ,p,q = A1p,g — A2,pg; @2,p.g = —(A1,p,q + A2pq)s
617117«1 = Bipq — Bapg: ﬂQ,p,q = _(Bl,p,q + BQ,p,q)'

Then,

1,p,qC0(Gp,g8|Mp,g) + X2,p g
(29) kpq(s) =
P B1,p,ac(9p,q8Mp.q) + B2,p.q

is a periodic solution® of (25), with coefficients cg , , and ¢z, , and period

4 /“/ 2 do
wp,q = — .
Ip.a Jo 1 —my,, ,sin?(9)

For each p < 0 and ¢ € (—1,1) we let 7, , : R — R? be the unit-speed curve with
curvature k, , such that

V.q(0) = (=2p +4q(—p)~1/%,0), ) ,(0) = (0,—1)".

Since kp,—q(s) = kp,q(s +wp 4), the curves v, , and 7, _, are congruent each to the
other. If ¢ = 0, the curvature is constant and 7, o is a circle with signed radius 2p.
The angular function

(30)

bpals) = [ Byt

can be computed in terms of elliptic integrals of the third kind?. As a result we
obtain

(31) Op.a(8) = h1,p.qS + P2,p.gP2pq(s) + 13.p,gP3,p.4(5);
the coefficients h;, , and the functions ®;, , are defined by

— “.pgq

hl,p,q ~ Bipg’
h2 — @2.p.qB1,p,a—%.p.qB2.p.q
(32) P gp,q\/(32&,1_ﬂlyp,q)(ﬁl,p,q"'@Z,p,q)(ﬁf,p,q(1_mp,q)_ﬂ§,p,qmpyq)’
h3 — @2,p,¢B1,p,a—%1,p,a82,p,q
P gp,qﬁl,p,qﬁlp,q\/l*mmq

1See ref. [BF], pg. 133
2See ref. [La], pg. 67-69.
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and by
(33)

o (1*mp,q)ﬁ%,p,q+mp,qﬁ2,p,q
P3,p,q(s) = arctanh \/(gfm’q_gz‘pyl)(51%()_,_52%1)Sd(gp,q$|mp7q) )

B B
P3pq(s) =11 (5;2: , 5 (m — 2am(gy,q8/myp,q), 1:”m%z,q )) —1I (gé’p’q '3 1:nmp’:q )) )

where

_ 1o do
) - f() (1—nsin2(9))\/1—msin2(9)’

am(s,m) = [; dn(ulm)du

I(n, ¢, m

are the integral of the third kind and the Jacobi amplitude respectively.
PROPOSITION 4. The curve v, 4 15 given by
(34) Vg = 2e0ra ((2/@12)7,1 +C2p.q) + 41';‘6;},(1) )

PRrROOF. We set
1 1

(35) M,p,q = _§kp7q - 10271741’ M2,p,q = _kz/)7q'
Then,

0 0 0
(36) H(UQ)‘j(kp,q) - 771,p,q O _1/8

M2pg 1/8 0

The Frenet frame field of a unit-speed curve v with curvature &, ; and initial con-
dition 7/(0) = (1,0)" is

1 0 0
(37) A= 1| m cos(bpq) —sin(fp,)
Y2 sin(0pq)  cos(0pq)
Denote by
0 0 0
m = my 0 —mg

mo M3 0

the momentum of v. From (21) we have
(38) AL H<02)‘j(kpyq) -A=m.
Combining (36), (37) and (38) we obtain

v = 8i(6i0p’q (7]1,p7q + 2'7727;,;7(1) + (my + ima)).
Then,

7 = 81 (1 pq + 112,p,q)
is a unit-speed curve with curvature k, , and initial conditions
7(0) = (=2p +44(=p)7"/%,0)", 5(0) = (0,-1)",

This implies the required result. O

Since 11,p,q + iM1,p,q is periodic, with period w, 4, we deduce :
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COROLLARY 5. The curve v, 4 s closed if and only if

1 [era ¢

(39) Apg = kpq(u)du = - € Q,

2m Jo
where £,n € Z are relatively prime integers, with £ > 0.

REMARK 6. The integer ¢ is the turning number, |n| is the order of the symme-
try group. In particular, for a simple curve the integer ¢ is 1. If ¢ # 0, the elliptic

curve parameterized by k, , and k;, , intersects the Ox-axis in two points. Then,

the four vertex theorem implies |n| > 1.

3.3. Proof of Theorem 1. We fix a positive integer n > 1. We define the
characteristic curve

S ={(p,q) eR™' x (=1,1): Ap g = —1/n},
and we let 37 be the set of all (p,q) € ¥, such that ¢ > 0. Since the function
A:(p,g) eR™ x(-1,1) = A, €R
satisfies
2

(40) Apg="RDp—g Apo= _\/1171)37 OpAlpo = _2(13)%
then there exist a maximal €, € (0,1] and a unique real-analytic even function
(41) On : (—€n,€n) = R™

such that

<0,

Gn(0) = (L =02, (¢u(q),q) € Zn, Vg € (—€n,€n).
We define

(42) Va.nl = Von(a).a>

and we consider the one-parameter family {7q.n]}qe(=c,,c,) Of closed curves with

curvature functions kjg n) = kg, (q),q- We let wlg,n] be the period of ki, ,,). Then,
ﬁ[n] : (S, Q) ER X (—Gn, en) - k[q,n](s) eR

is a real-analytic function, periodic in s, satisfying

It follows that there exists €;, € (0, €,] such that 714 ) is strictly convex and satisfies

1 pelan] 1

k‘[q’n] (u)du = -,

2 0 n

for each ¢ € (—e),,¢,). This implies (cf. [MN]) that 7;,,) is a simple curve, for

n’-n

every q € (—el,€),) . We set
¢n = Sup{q € (0,€,) : Vg, is a simple curve, Vg € (0,q)}.

Then, {7(g.n]}q€[0,q,) 18 @ One-parameter family of simple congruence curves of class
2, with symmetry group of order n. Since the curves of the family have different
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lengths, they are not congruent each to the other. The momentum mj,,; and the
wave velocity vig ) of v[q,n) are given by

0 0O O 1q
(43) mign) = g Hig,n] 0 -1 y Mg = _Q(bn(Q) + .

0 1 0 —¢n(q)
and by
(44) (g — o120

Vgm = 7 ( 5775 — Pn(@)(=1+2¢°%) ).
lg,n] 4 2¢n(q)2

From (22), (43) and (44) we see that the evolution of 74 ) is
(45) z[q,n](sv t) = 6it/87[q,n](s - U[q,n]t) + :u'[q,n]p(t)v
where

p(t) =sin(t/8) +i(1 — cos(t/8)).
Therefore, z[, (s, ) is periodic in time if and only if

471'1)[

q,n] c
NWig,n)
Since the function
47vr, n
(46) To i q € 0,qn) — —r)
NWig,n]

is non-constant and real-analytic, then there exists a countable set 7,, C [0, g,,) such
that the evolution of v, ,, is periodic, for all ¢ € 7,.

3.4. Example. Consider the family {7(q,7)}4e[0,1)- The function ¢7 is defined
forall ¢ € (—1, 1) and the upper part Z? of the characteristic curve is parameterized

q €[0,1) — (¢7(g),q) € 7. The approximate value of g is 0.8013658294677735.
The behavior of the family is illustrated in the Figures 1, 2, 3 and 4.

REMARK 7. Numerical experiments show that the characteristic curve ¥, is
always the graph of the function ¢,, : (—1,1) — R. Furthermore, there exists a well
defined separating value q,, € (0, 1) such that 7, ) is simple if and only if |g| < gy.
The experimental evidence also suggest that each GP-contour is equivalent, up to
a similarity of R?, to a curve of the form Vig,n]> With n > 2 and ¢q € (0,¢y).

FIGURE 1. The curves ")/[0’7], 7[0.06,7] and 7[(]177]'
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FiGURE 2. The curves Y[0.4,7]> Vig2,7] and Y[0.75,7]

The numerical value of ¢, can be found by the mean of the following procedure
(see also Step 6 of Section 4) :

e compute ¢/, such that ca(dn(q,),q,) = 0;
e compute ¢!/ € (¢f,1) such that

“layn]
M6 (a7)).a7, ( 5 ) =0,

where 11 p 4 is defined as in (35).

o for each ¢ € (¢1, ¢{] compute s, ) € [0, w["g‘"]] such that

2,6,.(2).a ~ P2,6,(2).a\/ ~C2.6n(a)a

g¢7L(Q)vqcn(s[Qvn] |m¢n(‘1)7q) =

- )
16,(0).a ~ BLon(@.ay/~C20u ()0
® ¢, is the unique zero of the function

q & (qllaqy} - |7[q,n](3[q,n]) - V[q,n](_s[q,n]”'

FIGURE 3. The curves Vg*, 7> V[0.845,7] and Vigs,7]-

REMARK 8. Congruence curves which evolve periodically in time can be com-
puted as follows: consider the function 7, and set I, = Im(7,,). For each ¢/h €
I, NQ there exists a unique ¢, (¢, h) € [0, g,) such that T,,(§, (¢, h)) = £/h. The ex-
plicit evaluation of g, (¢, h) can be made via numerical routines (see Steps 9 and 10
of Section 4). Thus, the family of simple, closed congruence curves with symmetry
group of order n and periodic evolution in time is {74, (u),n] }uel,nQ-
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FIGURE 4. The curves v(0.86,7)5 Vqs,7] @a0d Y]0.9,7]-

FIGURE 5. The functions T%(q) — ¢/h, with ¢/h = —2/9,—-1/15, 0.

FIGURE 6. The curves Vg7 (=2/9),7] V(g7 (=1/15),7] and Y[47(0),7] -

4. Numerical computations and visualization

In this section we show how to translate the results and the computations of
Section 2 into numerical and graphical routines implemented the software Mathe-
matica 7.0.

e Step 1. Define the coefficients cop ¢, €2,p.q5 Xjp.gs Bipgr J = 1,2, gp,q and my 4
as in (26), (28) and (27) :

. (1449°¢) (1+4p° (-14¢%))
i 16pT )

Co[p-,q]
C2[p-,q]:=— ﬁ; +p(-1+2¢%);
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FIGURE 7. Trajectories of the points Vidr(~2),7] (0), Viar (= 2).7] (0)
and (g (0),7)(0)-

FIGURE 8. Evolution of the curve v (_z) 7.

allp,q]: Ve P_ﬁ(lm(_” )*"*a) \/m(uw_pm)
o2[p-,q:= \/1-10—"_!_;(“2(-” ) \/m(um/_pm)
ﬂl[p-,ql—\/ﬁ Y CT

B2lp-,al=/3z —p~ _@;

G 24’)+¢W

m[p-,q:= 2\/14p°+p° (—2+4g?)

1+p°+p% (—2+44%)) "/
g[p—1 q_]: ( (2*p ))
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e Step 2. Define the curvature k, , and its period wp 4 (cf. (29) and (30)) :

k[ ]._ al %,q *JacobiCN glg,q *s,ml%,q |+a2|§,q .

8-, P- q-|:= B1[p,q]*JacobiCN|g[p,q]*s,m[p,q]]+82[p,q] ’

Dk[s, p-, q-]:=Evaluate[D[k[s, p, q], s];

wlp-, q.]:=gp g EllipticK[m[p, q]l;

e Step 3. Compute the angular function 6, , (cf. (31),(32)) and (33)) :
hifp., q :=53{2;

h2[p q ]:= (02[1’1‘1]31[p1Q]—al[p1Q]ﬂ2[p1Q]) .
73 glp.al*+/(—B1lp.q]+B2[p.q]) (B1[p.q]+B2[p.a]) ((—1+m[p.q]) B1[p.a]2—m[p.q) B2[p.q]?)’

—— 1 a2[p,q]B1[p,q]—al[p,q]B82[p.q]) .
h3[p-,q]:=~ \ Tombod * glp.alB1Ip.alB2lp.d] ;

®2[s_, p_, q]:=ArcTanh JacobiSD([sg[p,q].m[p.q]] :
(B1[p.q]—B2[p.q])(B1[p.a]+B2[p.q])
—(—1+m(p,a])B1[p,q]2+m[p,qa] B2[p.qa]%

2 m
®3[s_, p-, q]:= — EllipticPi [Z—;[ﬁ%y, T_'_[,fl’q}ﬁj] +
EllipticPi [%[[%}:, %(ﬂ' — 2JacobiAmplitude[sg(p, q], m[p, q]]), %] ;

6[s_, p-,q]:=hl[p, q] * s + h2[p, q] * 2[s, p, q] + h3[p, q] * ®3[s, p, q;

e Step 4. Compute the function ¢,, and the one-parameter family of closed curves
{ Vi tee,ny (cf. (35),(34),(41) and (42)) :

Alp-, ¢ J:=510lwlp, q], p, a];

nls-,p-, q)i= { Cpd 4 Mepdl™ 4 pils,p,q]};

Rls_,p-, q]:={{Cos[f[s, p, ql], —Sin[f]s, p, q]|}, {Sin[0][s, p, g]], Cos[f][s, p, q]] }};

¢la-,n]:=Evaluate [FindRoot [A[p,q] + £ == 0, {p, —V/—1 + n"2,—0.1} ,Method — "Brent"]] [[1]][
2|f;

7][18-, q-,n.]:=8 x R[s, g, n], g]-n[s, vlg, 7], q;

e Step 5. Visualize X, and the curve 7[q . :

2[n]:=ContourPlot [A[p, q] == —1/n, {p, —¥/—1 + n"2,-0.01} , {g,0.00001,0.99},
ContourStyle — {GrayLevel[0.3], Thickness[0.008]}, Background — GrayLevel[0.8],
PlotPoints — 50];

CURVE|q-, n_]:=ParametricPlot[Evaluate[y[s, ¢, n]], {3, 0, n * w[p[g, n], q]},
PlotStyle — {GrayLevel[0.3], Thickness[0.008] }, Background — GrayLevel|0.8],
PlotRange — All];

e Step 6. Specify the order of the symmetry group and compute ¢, :

nn:=5§
f1[q.]:=Abs[C2[p[g, nn], g]];
F1:=Plot[f1[g], {g,0,0.99}];

nn k[L*w ,nn],q],[qg,nn],q|*2
£2[q]:=Abs C2[<p[(i, Lal 4 [3*wlelq ]2q] ¢lg,nn]q] ]

?

F2:=Plot[f2[g], {g,0,0.99}];

Q1l:=Evaluate[First[Sort([InputForm[F1][[1, 1]][[1, 3]][[2]][1]}, #1[[2]] < #2[[2]}&]]];
Q12[:=]Evaluate[First[Sort[InputFOI‘m[F2] [(1, 1102, 3N [[201[[L]], #1[[2]] < #2[[21]&]];
sliq-|:=
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FIGURE 9. Y17 and the curves Y[0.5,17]» Y[0.8,17]-

1 . a2[p[g,nn],q]—B2[p[g;nn],q]4/—C2[plg,nn],q] /2
lelamal.q verseJacobiCN [_ allplg,nnl.q]—B1lela.nnl.aly/—C2lplg.nnla)/2’
m[¢p[g, nn], g]];
f3[q-]:=N0rm[’Y[Sl[Q]) q, nn] - ’Y[-SI[Q]a q, nn]]a
steps:=7; initialpoint:=1(Q1[[1]] + Q2[[1]]); internalparameter[1]:=1/30;
internalparameter|2]:=20;
QQ[y-, 8-, k]:=First[Sort[Table[{f3[q], ¢}, {¢, ¥ — 6,y + 6, 1/k}]];
S[la ¥-0-, k-]=QQ[ya 5, k]s
Sy, 6_,k]:=S [m—1,Sm —1,y,6,k][[2]],6 /(2™) ,k* (2™~ 1)];
Qn:=Evaluate[S[steps, initialpoint, internalparameter(1], internalparameter[2]]];

FIGURE 10. The "separating” curves v(q, 3], Vgs,5] a0d V]g,7,17]-

e Step 7. Compute the evolution of the congruence curves :
pllg,n]:=— 2 plg,n] + 22—,

V-ela.nl’
lj'[q—’ n—]:=%{{0a 0, 0}: {:u']-[q, n]7 0, —1}1 {Oa 1, 0}},

v[q,n]:=% (m[ql,—n]A—z - ¢lg,n](2¢"2 - 1)) ;

2[s-, by q_,.n_]:= {{Cos [£],—Sin[£]},{Sin[£],Cos[£]}} v[s — vlg,n] *t,q,n]+
ul[g,n]{Sin[t/8], —Cos|t/8] + 1};

e Step 9. Compute the function T}, :

Tlq. nJ=d Dirtlanl .
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e Step 10. Specify the order of the symmetry group, take u/w € I N Q and
compute Gy, (u,w) :

nnn:=7; u:= — 2; w:=9;

T1:=Plot [Abs [T[g,nnn] — %] ,{q,0,0.99}] ;
QPA:=Evaluate[First[Sort[InputForm[T1][[1, 1]][[1, 3]][[21][[1]], #1[[2]] < #2([2]]&]]];
steps:=6

initialpoint:=QPA[[1]];

internalparameter[1]:=1/30;

internalparameter[2]:=20;

QP1[y.,8_,k]:=First [Sort [Table [{ Abs [T[g,nnn] — %] ,q},{q,y — &,y + 6,1/k}]]] ;
SQP1[L,y-, -, kJ:=QP1[y, , Kl;

SQP1[m_,y-,é_,k]:=SQP1 [m — 1,SQP1[m — 1,4, 6,k][[2]],6 /(2™1) ,k* (2™ 1)];
QPA2:=Evaluate[SQP1|steps, initialpoint, internalparameter[1], internalparameter|2]]];
QP:=QPA2[[2]];

References

[BF] P.F.Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists,
Springer-Verlag, New York, 1971.

[BG] R. Bryant and P. Griffiths, Reduction for constrained variational problems and ff-c2ds,
Amer. J. Math. 108 (1986), 525-570.

[CQ] K. S. Chou and C. Qu, Integrable equations arising from motions of plane curves, Phys.
D 163 (2002), 9-33.

[GP1] R.E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed
curves in the plane, Phys. Rev. Lett. (23) 67 (1991), 3203-3206.

[GP2] R. E. Goldstein and D. M. Petrich, Solitons, Euler’s equation and vortex patch dynamics,
Phys. Rev. Lett. (4) 69 (1992), 555-558.

[La] D. F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, 80,
Springer-Verlag, New York, 1989.

[Mu] E. Musso, An experimental study of Goldstein-Petrich curves, Rend. Sem. Mat. Univ. Pol.
Torino (2009), to appear.

[MN] E. Musso and L. Nicolodi, Invariant signatures of closed planar curves, J. Math. Imaging
Vison. 35 (2009), 68-85.

[NSW] K. Nakayama, H. Segur and M. Wadati, Integrability and the motion of curves, Phys. Rev.
Lett. (18) 69 (1992), 2603—-3606.

[0]] P. J. Olver, Applications of Lie group to differential equations, Graduate Texts in Math-
ematics, 107, Springer-Verlag, New York, 1993.

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24,
1-10100, ToriNO, ITALY
E-mail address: emilio.musso@polito.it



