
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling filtering predicates composition with Finite State Automata / Leogrande, Marco; Ciminiera, Luigi; Risso,
FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2011), pp. 1-2. (Intervento presentato al convegno 7th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS 2011) tenutosi a Brooklyn, NY (USA)
nel October 2011) [10.1109/ANCS.2011.24].

Original

Modeling filtering predicates composition with Finite State Automata

Publisher:

Published
DOI:10.1109/ANCS.2011.24

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460548 since:

IEEE

Modeling Filtering Predicates Composition with Finite
State Automata

Marco Leogrande, Luigi Ciminiera, Fulvio Risso
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi, 24 – 10129, Torino, Italy

{marco.leogrande,luigi.ciminiera,fulvio.risso}@polito.it

ABSTRACT
Network virtualization has gained a lot of attention recently,
because of some new interesting proposals in the field (i.e.
OpenFlow). This trend has had the effect of pushing some
filtering operations up at the software level: i.e. extract a
potentially large number of protocol fields from a packet, or
dynamically combine different filters. The time constraints
of working at line rate force the creation of a packet filter
model that can guarantee the minimum number of packet
checks. This poster proposes mpFSA, a packet filter model
based on the Finite State Automata formalism, that aims at
achieving optimality w.r.t. the number of packet accesses,
without sacrificing efficiency and scalability.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
In the last years, academic researchers and industries spent

a significant portion of their development effort in proposals
related to the network virtualization topic. OpenFlow [1],
the architectural proposal of a network of switches driven
by configurable controllers, is probably the most famous ex-
ample.

To perform virtualization at acceptable performance lev-
els many issues must be solved: how to extract a lot of data
from packets to match them against some signatures, or how
it is possible to quickly update packet filters on the fly to
recognize new flows. Even if it is possible to partially im-
plement such systems at the hardware level, software has
to face stricter computational requirements. The constant
increase of both data traffic and network-enabled devices
forces the filtering systems to always work at line rate.

One possible approach to reach the performance goal is to
focus on the reduction of the number of checks that a packet
filter must perform to recognize a protocol or to extract a
certain field. On the other hand, system flexibility should
be preserved as well, i.e. by keeping filter update costs low.

To the best of our knowledge, the most common filtering
architectures (such as for BPF+ [2] or Swift [3]) aim at
speeding up the execution by applying compiler-oriented op-
timizations to the generated code, or deploying smart mem-

ory strategies to coalesce packet accesses, or using hardware-
efficient assembly instructions. These approaches have the
downside of not guaranteeing the execution of the minimum
number of checks. Filter update flexibility, on the other
hand, is usually overlooked.

2. PROBLEM OVERVIEW
This poster proposes a new model, called mpFSA (stand-

ing for Multilevel Finite State Automata with Predi-
cates), that uses the FSA formalism [4] to achieve the min-
imum number of packet accesses. Optimizations are applied
directly at the filtering graph level, the data structure that
stores information about how the filtered protocols might be
encapsulated1.

Our FSA approach, described later, does not focus only on
the efficient analysis of the filtering predicate, but concen-
trates also on quickly scanning packets to determine the pro-
tocols included within them and, therefore, a timely extrac-
tion of useful protocol fields. Our model checks separately
for: (i) protocol encapsulation and (ii) predicates included
in the provided filter. A preliminary analysis suggests that
this separation might benefit both the goal of reaching the
minimum number of checks and the achievement of keeping
the system flexible w.r.t. filter updates.

3. MULTILEVEL FINITE STATE AUTOM-
ATA WITH PREDICATES

Figure 1: mpFSA for the filter ip.dst == 1 or

ip.src == 2 or ip.src == 3. Refer to Figure 2 for
the transition with predicates.

The proposed mpFSA architecture adapts the Finite State

1If the filtering implementation uses a native code generator,
the filtering graph is most likely the data structure used by
the compiler to emit the desired filtering code.

Automata model to packet filtering. In particular, the tran-
sition function is extended, by tuning its behavior according
to a set of Boolean predicates.

The mpFSA optimizes the protocol scan by mapping the
protocol encapsulation on FSA input symbols. Each symbol
consumed by the mpFSA represents a “jump” between two
consecutive protocols in the packet under investigation: so
the symbol Ethernet-to-IP carries the meaning that the IP

protocol was found inside the Ethernet encapsulation. As a
well-defined algebra exists already for FSA, the composition
among different mpFSA is performed with solid guarantees
of optimality.

The Boolean predicates that are used inside transitions
with predicates, on the other hand, are modeled as hypothe-
ses on the fields of the protocols included in the packet itself:
i.e. ip.dst == 1. Their optimized analysis is achieved by
grouping the checks on the fields of the same protocol in-
side the same transition and ordering them in consecutive
steps. According to the kind of checks needed, a hybrid
structure is created, that mixes a tree-like comparison hi-
erarchy (for range operators) with a jump table structure
when testing for equality. It is possible to optimize the field
accesses by keeping the structure balanced and using FSA-
like algorithms to advance through the different steps of the
packet scan.

As an example, the mpFSA in Figure 1 and 2 models the
filter ip.dst == 1 or ip.src == 2 or ip.src == 3.

Figure 2: Transition with predicates internal struc-
ture.

Our model focuses on reducing the execution time, there-
fore pushes towards the latter in the space-time tradeoff;
furthermore, some details of the model have a high degree
of generality. It is still unclear whether these choices are
correct; more testing on real-world scenarios is needed.

4. PRELIMINARY RESULTS
The proposed mpFSA model has been validated by im-

plementing it inside the NetBee framework, which includes
an experimental compiler that creates run-time code for the
NetVM [5] virtual machine. In particular, the mpFSA ab-
straction has been implemented inside the compiler front-
end.

The prototype has been tested against a BPF implementa-
tion, representative of the state of the art. In order to avoid
overheads related to code interpretation, both the mpFSA
and the BPF code were compiled Just-In-Time [6].

A packet trace was prepared, that included 300 packets
generated during an ordinary web browsing session. Five
filtering predicates were chosen and, for each of them, the
number of clock cycles needed to complete the packet anal-
ysis was measured, by using the RDTSC assembly instruction
available on the x86 architecture.

The results are shown in Figure 3. Because of the fewer
packet checks needed, caused by the elimination of some

redundancies that BPF did not take into account, mpFSA
outperforms BPF in all chosen filters. The reduction of the
number of ticks needed to complete the filter, in our tests,
varies between 10 and 35 %.

Even if these results are satisfactory and show already
a slight performance improvement, this evaluation must be
considered a preliminary test: many more comparisons must
be performed to assess the complete validity of our claims.
Our next step is to perform a thorough scalability analysis.

Figure 3: Comparison between BPF and mpFSA
performance.

5. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38:69–74, March 2008.

[2] A. Begel, S. McCanne, and S. L. Graham. Bpf+:
exploiting global data-flow optimization in a
generalized packet filter architecture. SIGCOMM
Comput. Commun. Rev., 29:123–134, August 1999.

[3] Z. Wu, M. Xie, and H. Wang. Swift: a fast dynamic
packet filter. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 279–292, Berkeley,
CA, USA, 2008. USENIX Association.

[4] J. Hopcroft, R. Motwani, and J. Ullman. Automata
theory, languages, and computation. Addison-Wesley,
2006.

[5] O. Morandi, F. Risso, P. Rolando, S. Valenti, and
P. Veglia. Creating portable and efficient packet
processing applications. Design Automation for
Embedded Systems, 15:51–85, 2011.
10.1007/s10617-011-9072-8.

[6] L. Degioanni, M. Baldi, F. Risso, and G. Varenni.
Profiling and optimization of software-based
network-analysis applications. Symposium on Computer
Architecture and High Performance Computing, 0:226,
2003.

