POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling filtering predicates composition with Finite State Automata

Original

Modeling filtering predicates composition with Finite State Automata / Leogrande, Marco; Ciminiera, Luigi; Risso,
FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2011), pp. 1-5. (Intervento presentato al convegno 19th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM 2011) tenutosi a Split (Croatia) nel
September 2011).

Availability:
This version is available at: 11583/2460545 since:

Publisher:
IEEE

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Modeling Filtering Predicates Composition with
Finite State Automata

Marco Leogrande, Luigi Ciminiera, Fulvio Risso
Dipartimento di Automatica e Informatica
Politecnico di Torino
10129 Torino, Italy
Email: $first.$last@polito.it

Abstract—Designing an efficient and scalable packet filter for
modern computer networks becomes each day more challenging:
the increased data rate and a much higher number of active
hosts make filtering expressions more complex than in the past,
noticeably stressing the filtering systems. Some architectures
focus on the most used filtering patterns and predicates, but must
use a slower fallback if filtering on “less used” ones; dynamic
code generation systems implement complex optimizations, but
these compiler-oriented algorithms focus only on the final code,
where most of the protocol abstraction is lost. This paper presents
mpFSA, a novel packet filter model based on the Finite State
Automata formalism to guarantee optimality w.r.t. the number
of packet accesses, that aims at allowing powerful optimizations
without sacrificing efficiency and scalability.

I. INTRODUCTION

In the rapidly growing world of network connections, packet
filtering becomes each day more challenging. On one hand,
many more data are moved around, because either the re-
quested service is bandwidth-eager (file sharing, multimedia
content streaming) or it is run in the cloud, therefore requiring
more network interaction with the user client. On the other
hand, the number of handheld (or similar) devices connected to
the Internet is steadily increasing; even if the traffic generated
and requested by them is relatively small, they appear as active
speakers on the network.

This situation puts packet filters under much more stress,
because of the increased data rate and number of flows.
Therefore, the research focuses on developing efficient and
scalable packet filters, that, at the same time, offer good
filtering precision and modularity.

There are many filtering implementations that strive for
efficiency, each one applying its own set of optimizations, both
in hardware and software. All of them, however, implement
ah-hoc optimizations: to the best of our knowledge, there is
no approach that aims at solving the problem with a unified
formalism. In particular, with current systems it is not possible
to satisfy all of these conditions: (i) perform multiple checks
at the same time (as when filtering session traffic); (ii) analyze
less common filtering patterns without a decrease in matching
speed; (iii) combine totally different filters.

Furthermore, in many tools the protocol definition database
is hard-coded and therefore cannot be easily extended or
modified to recognize custom or hand-made protocols.

This paper proposes a new model, called mpFSA (Mul-
tilevel Finite State Automata with Predicates), that aims
at defining a unified approach to the filtering optimizations,
instead of ad hoc multiple optimizations techniques, guaran-
teeing efficiency and scalability both in the common and in
the corner cases. The model is focused on the reduction of
the number of packet accesses, even if the filtering predicate
is complex or is expressed as a function of seldom used
protocol fields. This model is generic enough not to require
a priori protocol definitions; in our implementation, in fact,
we use a flexible protocol database known only at runtime. No
assumptions are made about the context in which the model is
used: optimizations aim at scanning each packet as efficiently
as possible, but no further application-level decisions are taken
(i.e. conflicting firewall rules resolution).

This paper is structured as follows. Section II presents the
state of the art; Section III introduces the proposed model;
Section IV describes our experimental evaluation; Section V
draws the conclusions.

II. RELATED WORK

The CMU/Stanford Packet Filter [1] (or, shortly, CSPF)
implementation was developed around 1987 and has been a
pioneer in the packet filtering field. This system introduced
the concept of a kernel-level virtual machine inside which an
application-provided program runs; if that code returns true,
the packet is forwarded to the application.

The Berkeley Packet Filter [2] (often shortened in BPF),
was created to overcome the limitation of the previous archi-
tectures and it is based on a more powerful virtual machine.
The most important improvement of this architecture is the
adoption of the Control Flow Graph model, that permits
compiler techniques to be used to remove redundant checks
from the generated code.

PathFinder [3] extends the coalescing technique proposed
by BPF, compacting the Control Flow Graphs related to
different filters. It uses a frie as the data structure to hold
the data; each atomic unit of the trie is called cell. Whenever
a user submits a filter to PathFinder, its expression is exploded
in a list of cells, each one describing a step in the construction
of the final check. When a filter is expressed on different
predicates or protocol fields, PathFinder tries hard to maximize
the number of common cells, therefore allowing a better

compaction. On the other hand, filters are optimized only if
they share a common prefix'. DPF [4] (acronym for Dynamic
Packet Filter) improves this approach: instead of emitting
VM code to be interpreted at packet receipt time, it creates
machine-specific code (that can be run natively) each time
a filter is added or removed. Furthermore, memory access
is improved, because byte checks at contiguous offsets are
performed concurrently.

BPF+ [5] improves the BPF model, keeping its VM ap-
proach, but using much more aggressive optimizations and
a JIT compiler; it is considered state-of-the-art with regard
to filter optimization. Some notable optimizations are: (i) Re-
dundant Predicate Elimination, aiming at removing redundant
checks on the same protocol field; (ii) Partial Redundancy
Elimination, that removes multiple loads from memory of
the same packet data; (iii) the Lookup Table Encapsulation,
instead, optimizes multiple checks on the same field in a single
hash table access.

Swift [6] was presented as a “packet filter for high perfor-
mance packet capture on commercial off-the-shelf hardware”.
Actually its designers focused their attention on the filter
update times and on the creation of a new virtual machine.
The Swift VM uses a tree-like structure, like PathFinder did,
and exploits the native hardware possibilities by enriching the
instruction set with SIMD instructions, capable of executing
multiple checks in parallel.

SPAF [7], acronym for Stateless FSA-based Packet Fil-
ters, is a recent proposal that aims at using Finite State Au-
tomata as well. A database containing protocol specifications
(both protocol fields’ format and their encapsulation rules)
is scanned and an automaton is created for each of them,
that reads the bytes that are part the protocol and follows the
encapsulation rules (i.e. the start state of the IP protocol is
linked from the exit state, among those of the Ethernet
protocol, that is reached when the bytes that compose the
EtherType have the proper value). The different automata
are then joined together using the algorithms from the lit-
erature. The major drawback of SPAF is that the protocol
field abstraction is lost very early in the computation, as the
generated automata read directly the packet bytes (differently
from the mpFSA approach, described in Section III); therefore
much more transitions are created than necessary.

Other technologies from the state of the art, as the FFPF [§]
architecture, are not described in detail here, as they aim at
solving practical problems (i.e. how to multiplex incoming
packets between different filtering implementations), but do
not offer any improvement to the filtering model itself.

To the best of our knowledge, the most common filtering
architectures apply their algorithms directly to the code that
has to be run. The approaches presented above, in fact, aim
at speeding up the execution by applying compiler-oriented
optimizations to the generated code (either if it is run inside
a Virtual Machine or if native instructions are compiled

'In the expression (tcp.sport == X and tcp.dport == W) or
(ip.src == K and tcp.sport == Y), for instance, tcp.sport is
always checked twice.

Just In Time); some of them also deploy optimizations to
coalesce packet accesses or use hardware-efficient assembly
instructions. The mpFSA proposal aims instead at defining
a formalism to optimize directly the filtering graph (the data
structure that is later used by the compiler to emit the desired
code), in a scalable and efficient manner, without sacrificing
system modularity and filtering precision.

III. MULTILEVEL FINITE STATE AUTOMATA WITH
PREDICATES

The mpFSA architecture proposed in this paper extends the
Finite State Automata model, adapting it to packet filtering.
The advantage is that a well-defined algebra exists already
for FSA, that allows their composition (union, intersection,
negation) with solid guarantees of optimality.

A. mpFSA definition

A Multilevel Finite State Automata with Predicates (or,
briefly, mpFSA) is described succinctly in the “five-tuple”
notation, very similar to the classic one for FSA [14]:

A:(Q, 2; 6pa 4o, F)

where:
Q is a finite set of states.
3 is the set of input symbols.
Op is a transition function augmented with predicates,

described below.

do is the start state, among those in Q.

F is a set of accepting states, among those in Q.

A transition function augmented with predicates mimics
the meaning of “classic” transitions, but adds the possibility
to tune the transition behavior according to a set of Boolean
predicates, whose semantic is orthogonal to the one of input
symbols. It is defined as a function:

6P(q1a a, P) = QQ
where:

qdi is the state from which the transition takes place.

a is the input symbol on the reception of which the
transition fires, or the special value € (epsilon) if no
input symbol should be consumed.

P is a set of Boolean predicates that drive, internally,
the transition. According to the actual Boolean value
of these predicates, the transition might behave dif-
ferently. If P is empty, the transition is in fact
equivalent to a “classic” transition.
is the set of states reached by the current transi-
tion. The actual states reached depend on the actual
Boolean values of the predicates in P.

Q2

Figure 1 depicts an example of a very simple mpFSA. When
the control is in the start state, if the symbol 2 is received,
then the transition with predicates is activated and, according
to the Boolean value of some predicates (not shown in the
picture), control goes either to state A or to state C.

The whole model is called multilevel because, from the
mpFSA point of view, each transition is a “black box”,

transition
with
predicates

.‘@

Figure 1. mpFSA example.

whose internal behavior cannot be analyzed; it is necessary
to “descend” into it (Section III-D), at the “predicate level”,
to understand how each transition works exactly.

It is also worth noting that, while input symbols belong to
the input alphabet 3 and are a well-known list of characters
that are consumed sequentially by the mpFSA (as it is for
classic FSA), the predicates live in a completely different
space: they can be seen as a set of hypotheses that can be
either true or false (a Boolean value). Note that no assumptions
are made on the predicates: in particular, their values are not
guaranteed to be constant over time.

The model described so far has no evident relationship with
packet filtering; this is indeed true, as the “bare” mpFSA
model can be used in any context where it may be useful.
In the following subsections the usage for packet filtering will
be detailed, by describing the meaning of the input symbols
and predicates with regards to packet filtering. An overview
of the system is given in Figure 2.

incoming packets queue

'
packets le=mmmmmmeeeeeeeeeeeeeee e

protocol scanner

'
'
Ethernet, :
then IP, H
then TCP H
'
H input :
VSymbols '
dicat '
packet filtering automaton L. PR H
A 4 \ 4

predicates evaluation

ip.src == 10.0.0.1
tcp.dport == 80

Boolean value of predicates

result

Figure 2. Overview of the system in which the mpFSA model runs.

B. Input symbols

The mpFSA model optimizes the protocol scan by mapping
the protocol encapsulation on FSA input symbols. Each symbol
consumed by a mpFSA represents a “jump” between two
consecutive protocols in the packet under investigation: so the
symbol Ethernet-to—-IP carries the meaning that the IP
protocol was found inside the Et hernet encapsulation. Input
symbols are generated by an upstream module, that is called
protocol scanner in Figure 2.

As a consequence, each state of the mpFSA represents the
protocol that has been reached while scanning the current
packet. As an example, consider the mpFSA in Figure 3,
that models the filter ip.dst == 1 or ip.src ==
or ip.src == 3. Control begins in the begin state; if
the first scanned protocol is Ethernet, control moves to
the associated state, otherwise the failure state is reached?.
Then, if an Ethernet-to-IP symbol is received while in
the Ethernet state, control descends into the transition with
predicates (described in Section III-D). From the mpFSA point
of view, that transition is a black box with two exit paths:
exit_1 and exit_2. Which exit paths are enabled or not

depends on the predicates that the transition accesses’.

*

W

exit_1

Ethernet- [aga transition
tolP - ‘@j Z"the
7 predicates eXl'f72
.

begin-to-
Ethernet

Figure 3. Example of a mpFSA for the filter ip.dst == 1 or
ip.src == 2 or ip.src == 3. The internal structure of the transition
with predicates is detailed later, in Figure 4.

C. Enhancing the transitions: predicates

While filtering packets, predicates are modeled as hypothe-
ses on the fields of the protocols included in the packet
itself. The actual Boolean value of the predicates is evaluated
by a dedicated module (predicates evaluation in Figure 2).
This module is logically separated from the protocol scan-
ner, because of the different meaning of input symbols and
predicates. Whenever the matching algorithm encounters a
predicate, the evaluator is invoked; the current Boolean value
of that predicate is returned.

It is worth underlining why no further assumptions are
made on the predicates: for instance, the Boolean value

2Note that, in Figure 3, the star symbol is used on the transitions with the
meaning: “any input symbol that is not handled by other transitions exiting
from the same state”.

31t is worth noting that, in the general case, no assumption is made about
the determinism of the mpFSA: there might be a combination of predicates
for which both exit_1 and exit_2 are enabled.

of ip.src == 10.0.0.1 is not guaranteed to be con-
stant over time because, if filtering a packet that contains a
IP-in-IP tunnel, the predicate might have a Boolean value
for the external IP protocol occurrence and another for the
internal one.

D. Going multilevel

We will now focus on the inner workings of the transitions
with predicates. It was previously stated that it is necessary
to “descend” into the predicate level: the formalism used
inside the transitions is, indeed, slightly different from the
FSA. There is a similarity, though, because there are concepts
similar to “states” and “transitions”.

The formalism might be explained better with an example:
refer to Figure 4, that shows a transition with predicates
taken from a mpFSA modeling the filter ip.dst == 1 or
ip.src == 2 or ip.src == 3. The control “enters”
the predicate level from the input circle on the left: on the
other end, the control can exit from the circles on the right.
Moving from the start circle, a field is read from the packet: in
this case ip.dst. Its value is checked by an operand against
some values; in this case, it is checked if it is equal to 1. If
this is the case, the upper path is followed and the transition
terminates already; otherwise, the default arrow is followed
and another check is eventually made. In this case, no more
checks are needed on ip.dst, so the control goes by reading
ip.src:if itis equal to 2 or 3, the same exit state as before
is taken, otherwise the bottom one is reached.

As soon as the transition with predicates exits from the
“predicate level”, it maps, through the associated exit label, the
internal exit state that has been reached with the appropriate
state in the external mpFSA. The control, then, jumps to that
state.

Figure 4. Internal representation of a transition with predicates, part
of the mpFSA in Figure 3, that models the filter ip.dst == 1 or
ip.src == 2 or ip.src == 3. Note the shortcut if the first predicate

matches already.

E. Algorithms

One of the main advantages of reusing the FSA formalism
is that many definitions, algorithms and optimizations from the
literature (for example described in [14]) can be reused with
little effort. We were able to concentrate on: (i) the efficient
mapping on the filters on the FSA model; (ii) some small
changes in the algorithms, needed because of the finer details
of the model, to make them work. For instance, while in the
FSA abstraction each transition reaches only a single target
state, in the mpFSA formalism transitions with predicates

might reach multiple states: this difference required some
changes in the composition (union, intersection, negation) and
determinization algorithms.

Even if their thorough description is out of the scope of this
paper, it is worth noting that only a small amount of time was
needed to adapt those algorithms.

IV. IMPLEMENTATION AND VALIDATION

We wrote a mpFSA prototype implementation to validate
our claims.

The external portion of the model, the one that resembles
a Finite State Automaton, was easy to implement, as its
characteristics are well-known from the literature already.

The most interesting and challenging part was the imple-
mentation of the transitions with predicates and, in particular,
the data structure needed inside the predicate level. To better
decouple the filtering use case from the optimizations that
can be made on the predicates, most of the predicate level
algorithms were split from the main code and implemented in a
separate library, that has been called 1ibrange*. This library
allows the programmer to define mappings between ranges
of arbitrary data keys and values and providing facilities to
operate on them (i.e. intersection, traversal). 1ibrange was
then used to manage the mappings between the predicates (as
keys) and the exit nodes of the mpFSA predicate layer (as
values).

The proposed mpFSA model have been validated by im-
plementing it inside the NetBee® framework, which includes
an experimental compiler that creates run-time code for the
NetVM [9] virtual machine. The system architecture is de-
scribed in [10]: the filtering expression, coupled with a pro-
tocol database, is given as input to a high-level compiler that
generates NetIL code, a NetVM-specific assembly-like lan-
guage. The generated code can be interpreted by the NetVM
itself, for maximum compatibility, or compiled Just-In-Time
if a backend compiler is available for the target architecture
(Intel x86, Cavium Octeon [11] and Xelerated X11 [12] are
currently supported).

In particular, the mpFSA abstraction has been implemented
inside the front-end of the aforementioned high-level compiler.

A. Experimental evaluation

In order to validate the mpFSA approach, the prototype has
been tested against a BPF implementation, representative of
the state of the art. In order to avoid overheads related to the
code interpretation, both the mpFSA and the BPF code were
compiled Just-In-Time [13].

A packet trace was prepared, that included 300 packets
generated during an ordinary web browsing session. Most
packets carry HTTP or DNS information, but also packets
frequently encountered in small networks were included, like
Spanning Tree, ICMP or proprietary L7 protocols.

The following five filtering predicates were chosen:

4Code available at: https://github.com/dark/librange
SMore information at: http://nbee.org/

1) ip
2) ip src 10.1.1.1
3) ip and tcp
4) ip src 10.1.1.1 and ip dst 10.2.2.2
and tcp src port 20 and tcp dst port
30
5) ip src 10.4.4.4 or ip src 10.3.3.3 or
ip src 10.2.2.2 or ip src 10.1.1.1
All the tests were performed on a single-core machine, a
Intel Centrino CPU running at 1.60 GHz, provided with 1 GiB
or RAM, booting a Linux OS based on the 2.6.38 kernel,
in which the toolchain and the applications were compiled
with the version 4.4.5 of gcc. A benchmark script was
deployed and the number of clock cycles (or ticks) needed
to complete the packet analysis was measured, by using the
RDTSC assembly instruction available on the x86 architecture.
To avoid transient issues, the code repeated the filter 100
times for each packet: each packet sample was measured by
taking the aggregate run time and dividing it by 100. Further-
more, to eliminate issues related to the profiling algorithm,
10000 runs were executed for each packet, then averaged, by
excluding those that were substantially different. These results,
computed for each of 300 packets included in the trace, are
shown in Figure 5.

50 T T T

TBPF ==
mhFSA =

40 |

N

20

10

Ticks per packet (average, min, max)

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

Filtering ewxpression

Figure 5. Comparison between BPF and mpFSA performance.

Because of the fewer packet checks needed, caused by the
elimination of some redundancies that BPF did not take into
account, mpFSA clearly outperforms BPF in all chosen filters.
The reduction of the number of ticks needed to complete the
filter ranges, in our tests, between 10 and 35 %.

V. CONCLUSION

This paper presented mpFSA, a unified model for the repre-
sentation and optimization of packet filter complex predicates:
the aim is to reduce the number of packet accesses, by using
techniques in addition to common compiler optimizations.

A model based on Finite State Automata has been designed,
by augmenting the transition function with Boolean predicates.

This improvement enables a fine degree of optimizations and
an easy filter code generation, because of the model simplicity.
A complete system was designed along with the model and
implemented as a prototype inside the NetBee framework.

Our preliminary tests show that the performance improve-
ment goal has been achieved. Model optimality is guaranteed
by the application of theorems and algorithms already studied
in the FSA literature. Our implementation is still far from
perfect, but it already performs better than other classic
filtering systems. The refinement and formal validation of the
implementation, along with a thorough scalability verification,
are a challenging task for the future work.

ACKNOWLEDGMENTS

The authors would like to thank Olivier Morandi, Lorenzo
De Carli and Pierluigi Rolando, who took part in the early
stages of this project.

REFERENCES

[1] J.C. Mogul, R.F. Rashid, M.J. Accetta, The packet filter: An efficient
mechanism for user-level network code. In Proceedings of 11th ACM
Symposium on Operating Systems Principles, Austin, TX, pp. 39-51,
Nov. 1987.

[2] S. McCanne, V. Jacobson, The BSD Packet Filter: A new architecture
for user-level packet capture. In Proceedings of the 1993 Winter USENIX
Technical Conference, San Diego, CA, pp. 259-269, Jan. 1993.

[3] M.L. Bayley, B. Gopal, M.A. Pagels, L.L. Peterson, PATHFINDER:
A pattern-based packet classifier. In Proceedings of the First USENIX
Symposium in Operating System Design and Implementation, Monterey,
CA, pp. 115-123, Nov. 1994.

[4] D.R. Engler, M.F. Kaashoek, DPF: Fast, flexible message demultiplexing
using dynamic code generation. In Proceedings of ACM SIGCOMM °96,
Stanford, CA, pp. 53-59, Aug. 1996.

[5] A. Begel, S. McCanne, S.L. Graham, BPF+: exploiting global data-flow
optimization in a generalized packet filter architecture. In SIGCOMM
Computer Communication Review, Vol. 29(4), pp. 123-134, Oct. 1999.

[6] Z. Wu, M. Xie, H. Wang, Swift: a fast dynamic packet filter. In
Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, San Francisco, CA, pp. 279-292, Apr. 2008.

[7]1 P. Rolando, R. Sisto, F. Risso, SPAF: stateless FSA-based packet filters.
In IEEE/ACM Transactions on Networking (TON), Volume 19 Issue 1,
Feb. 2011.

[8] H. Bos, M. Cristea, T. Nguyen, G. Portokalidis, FFPF: Fairly Fast Packet
Filters. In Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation (OSDIO4), San Francisco, CA, pp.
347-363, Dec. 2004.

[9] O. Morandi, F. Risso, P. Rolando, S. Valenti, P. Veglia, Creating Portable
and Efficient Packet Processing Applications. In Springer Design Au-
tomation for Embedded Systems, Vol. 15, No. 1, pp. 51-85, March 2011.

[10] O. Morandi, F. Risso, M. Baldi, A. Baldini, Enabling Flexible Packet
Filtering Through Dynamic Code Generation. In Proceedings of IEEE
International Conference on Communications (ICC 2008), Beijing,
China, pp. 5849-5856, May 2008.

[11] O. Morandi, F. Risso, S. Valenti, P. Veglia, Design and Implementation
of a Framework for Creating Portable and Efficient Packet Processing
Applications. In Proceedings of the 7th ACM International Conference
on Embedded Software (EMSOFT 2008), Atlanta, GA, pp. 237-244, Oct.
2008.

[12] O. Morandi, F. Risso, P. Rolando, O. Hagsand, P. Ekdahl, Mapping
Packet Processing Applications on a Systolic Array Network Processor.
In IEEE International Workshop on High Performance Switching and
Routing (HPSR 2008), Shanghai, China, pp. 213-220, May 2008.

[13] L. Degioanni, M. Baldi, F. Risso, G. Varenni, Profiling and optimization
of software-based network-analysis applications. In Proceedings of the
15th Symposium on Computer Architecture and High Performance
Computing, Washington, DC, USA, p. 226, 2003.

[14] J.E. Hopcroft, R. Motwani, J.D. Ullman. Automata Theory, Languages,
and Computation. Addison-Wesley, 3rd Edition, 2006.

