
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The JavaSPI Framework for Security Protocol Implementation / Avalle, MATTEO CARLO; Pironti, Alfredo; Sisto,
Riccardo; Pozza, Davide. - STAMPA. - (2011), pp. 746-751. (Intervento presentato al convegno Sixth International
Conference on Availability, Reliability and Security (ARES) tenutosi a Vienna (Austria) nel 22-26 Aug. 2011)
[10.1109/ARES.2011.117].

Original

The JavaSPI Framework for Security Protocol Implementation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ARES.2011.117

Terms of use:

Publisher copyright

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460419 since: 2023-09-11T07:40:48Z

IEEE

The JavaSPI Framework for Security Protocol Implementation

Matteo Avalle, Alfredo Pironti, Riccardo Sisto, Davide Pozza
Dip. di Automatica e Informatica

Politecnico di Torino, Torino, Italy
Email: {matteo.avalle, alfredo.pironti, riccardo.sisto, davide.pozza}@polito.it

Abstract—This paper presents JavaSPI, a “model-driven”
development framework that allows the user to reliably de-
velop security protocol implementations in Java, starting from
abstract models that can be verified formally. The main novelty
of this approach stands in the use of Java as both a modeling
language and the implementation language. By using the
SSL handshake protocol as a reference example, this paper
illustrates the JavaSPI framework.

Keywords-Formal methods; Java; Security protocols;
ProVerif; Model-driven development

I. INTRODUCTION

Security protocols are distributed algorithms that run over
untrusted networks with the aim of achieving security goals,
such as mutual authentication of two protocol parties. In
order to achieve such goals, security protocols typically use
cryptography.

It is well known that despite their apparent simplicity it
is quite difficult to design security protocols right, and it
may be quite difficult to find out all the subtle flaws that
affect a given protocol logic. Research on this topic has led
to the development of specialized formal methods that can
be used to rigorously reason about a protocol logic and to
prove that it does really achieve its intended goals under
certain assumptions (e.g. [1]).

One problem that remains with this solution is the gap
that exists between the abstract protocol model that is
formally analyzed and its concrete implementation written in
a programming language. The latter may be quite different
from the former, thus breaking the validity of the formal
verification when the final implementation is considered.

In order to solve this problem two approaches have
been proposed. On one hand, model extraction techniques
(e.g. [2], [3]) automatically extract an abstract protocol
model that can be verified formally, starting from the code
of a protocol implementation. On the other hand, code
generation model-driven techniques (e.g. [4], [5]) automat-
ically generate a protocol implementation, starting from
a formally verified abstract model. In either case, if the
automatic transformation is formally guaranteed to be sound,
it is possible to extend the results of formal verification
done on the abstract protocol model to the corresponding
implementation code.

Model-driven development (MDD) offers the advantage of
hiding the complexity of a full implementation during the

design phase, because the developer needs only focus on a
simplified abstract model. Moreover, since the implementa-
tion code is automatically generated, it is possible to make it
immune from some low-level programming errors, such as
memory leakages, that could make the program vulnerable
in some cases but that are not represented in abstract models.

However, MDD usually requires a high level of expertise,
which limits its adoption, because formal languages used for
abstract protocol models are generally not known by code
developers, and quite different from common programming
languages. For example, the user needs to know the formal
spi calculus language in order to properly work with the
Spi2Java framework [4].

Our motivation is to solve this problem and make MDD
approaches more affordable. To achieve this, our contribu-
tion is the proposal of a new framework, based on Spi2Java,
called JavaSPI1, where the abstract protocol model is itself
an executable Java program.

This little but significant difference grants several different
improvements over frameworks like Spi2Java:

• it is not necessary to learn a new completely different
modeling language anymore (Java is also used as a
modeling language);

• standard Java Integrated Development Environments
(IDEs), to which the programmer is already familiar,
can be used to develop the security protocol model like
it was a plain Java program, making full use of IDE
features such as code completion, or live compilation;

• it is possible to debug the abstract model using the same
debuggers Java programmers are used to;

• thanks to Java annotations, information about low-level
implementation choices and security properties can be
neatly embedded into the abstract model.

The rest of the paper is organized as follows. Section II
analyzes related work and Spi2Java in particular, highlight-
ing its main limitations. Then, section III illustrates the
JavaSPI framework in detail, while section IV reports about
the SSL case study. Finally, section V concludes.

II. BACKGROUND AND RELATED WORK

Model-driven development of security protocols based
on formal models has been experimented using various

1Available online at http://staff.polito.it/riccardo.sisto/javaSPI/

user
©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the author's postprint version (i.e. as edited by the author after refereeing but without copy-editing, proofreading and formatting added by IEEE). The final version of this paper can be accessed at http://dx.doi.org/10.1109/ARES.2011.117

languages and tools. One of the most comprehensive ap-
proaches is Spi2Java, which enables semi-automatic devel-
opment of interoperable Java implementations of standard
protocols [4].

This framework models protocols in spi calculus, a formal
process algebraic language. With this language it is possible
to write an abstract model of a protocol which can be
automatically analyzed in order to formally verify that there
are no possible attacks on the protocol under the modeling
assumptions made. Of course, this requires that the protocol
expected goals be formally specified too. The analysis can
be done, for example, by the automatic theorem prover
ProVerif [1], which can work on spi calculus.

Once the abstract model has been successfully analyzed,
and it has been shown that it is free from logical flaws, a
Java implementation can be derived for each protocol role.

During this refinement step, the abstract model must
be enriched with all the missing protocol aspects that are
needed in order to get a concrete and interoperable Java
implementation: (i) concrete Java implementations of cryp-
tographic algorithms with their actual parameters; (ii) Java
types to be used for terms; and (iii) concrete binary represen-
tations of messages and corresponding Java implementations
of marshaling functions.

The Spi2Java framework also requires the user to man-
ually edit and keep in sync the model and an intermediate
XML file containing refinement information, which is error
prone and time consuming. By keeping refinement infor-
mation neatly integrated as Java annotations, JavaSPI also
solves these engineering issues.

In addition to Spi2Java, other approaches based on code
generation are documented in literature (e.g. [5]), but they
present the same or larger limitations.

Other researchers have explored the model extraction ap-
proach (e.g. [2], [3]). These techniques, like JavaSPI, do not
expose the programmer to specialized formal specification
languages, but they lack the model-driven approach, so that
all the code must be written manually by the programmer.

For example, in [2], a full Java implementation must be
provided, before a model can be extracted. In contrast, with
JavaSPI, the programmer only writes a simplified Java model
of the protocol, from which a code generator generates the
full implementation.

In [3], model extraction is performed on full imple-
mentations written in F#. The F# implementation can be
linked either to a concrete or to a symbolic library of
cryptographic and communication primitives, which enables
protocol symbolic simulation, just like when the JavaSPI
abstract Java model is executed. However, in [3] there is
no neat distinction between protocol logic and lower-level
details such as cryptographic algorithms and parameters or
data marshaling. Moreover, in [3] programs are written in
F#, which is far less known than Java, thus making the tool
of lesser impact to common developers.

Figure 1. The complete workflow provided by JavaSPI.

Other researchers have focused on different model-driven
approaches, starting from UML representations of security
protocols (e.g. [6], [7]). While UML modeling is agreed
to be an essential design phase in very large scale software
projects, it is often the case that the UML modeling overhead
is deemed too expensive for the typical application size of
a security protocol, thus being not accepted by the average
security protocol implementer.

III. THE JAVASPI FRAMEWORK

JavaSPI has been developed as a set of tools and utilities
which enables the user to model a cryptographic protocol by
following the workflow shown in Figure 1: basically, the user
is intended to develop abstract models in the form of typical
Java applications, but using a specific library which is part
of the JavaSPI framework, named SpiWrapperSim, which
contains a set of basic data types along with the networking
and cryptographic primitives.

The logical execution of the protocol can be simulated by
simply debugging the abstract code. The protocol security
properties can be formally verified by using the JavaSPI
Java-ProVerif converter that produces an output compatible
with the ProVerif tool.

Once a model has been properly designed, it can be
refined by adding implementation information by means of
Java annotations, as defined in the SpiWrapperSim library.
From the annotated Java model a concrete implementation
of the protocol can be generated by using the JavaSPI Java-
Java converter.

The entire JavaSPI framework described in this paper
has been completely developed from scratch: still, some
architectural choices have been made to allow re-use of parts
of the Spi2Java framework.

A. Developing the abstract model

The JavaSPI framework includes a Java library, called
SpiWrapperSim, which can be used to write abstract security
protocol models as Java applications and to simulate them.

Models that can be expressed in this way are instances
of the class of models that can be described by the input
language of ProVerif. Based on this, the framework provides
the Java-ProVerif tool that transforms a Java model into the
corresponding ProVerif model, which can be analyzed by
ProVerif. Note that differently from [3], here the ProVerif
model is not extracted from the Java code, rather the
model, expressed in the Java syntax, is translated into the
ProVerif syntax. A Java model differs from the final Java
implementation because it is as abstract as the ProVerif
model.

Moreover, the Java model can also be executed like any
regular Java application. Its execution in fact simulates the
underlying model that it describes, thus giving the user the
possibility to debug the abstract model. In this execution
messages are represented symbolically, and input/output
operations are implemented by exchanging symbolic expres-
sions over in-memory channels behaving according to the
classical spi calculus semantics.

In order to get a Java program that models a protocol in
this way, the user must use Java according to a particular
programming pattern. Only the SpiWrapperSim library can
be used for cryptographic and input/output operations, and
some restrictions on the Java language constructs that can
be used for the description of each process apply. These
restrictions, documented in the library JavaDoc, naturally
lead the user to develop models in the right way.

A protocol role (a “process”) is represented by a class
that inherits from the library class spiProcess. In this way,
the common code needed for simulation that surrounds the
protocol algorithm is hidden inside the superclass. Moreover,
objects derived from spiProcess are allowed to use some
protected methods that enable common operations, like the
parallel instantiation of sub-processes.

The class that inherits from spiProcess must define the
doRun() method, which is the abstract description of the
protocol role.

Any message, complex at will, can be represented by an
immutable object belonging to a class that inherits from
the Packet library class. The fields of this class are the
fields of the message. The class must be made immutable
by declaring all fields as final. This is necessary as, in
spi calculus, each variable can be bound only once. Using
mutable Java objects would be possible but it would then
entail more complex relationships between the Java code
and the underlying model.

The only class types the user is allowed to instantiate
are the ones provided by the SpiWrapperSim library, plus
the ones used as arguments of methods of such classes
(e.g. String). The primitive type int is also admitted, but only
for loop control flow, with the constraint that each loop must
be bounded and the bound must be known at compile time.

Conditional statements are possible only with equality
tests (via the equals() method) and with tests on the return

Java abstract model
1 Message m = new Identifier("Secret message");
2 Nonce n = new Nonce();
3 SharedKey s = new SharedKey(n);
4 SharedKeyCiphered<Message> mk =

new SharedKeyCiphered<Message>(m,s);

Java concrete implementation
1 Message m =

new IdentifierSR("Secret message");
2 Nonce n = new NonceSR("8");
3 SharedKey s =

new SharedKeySR(n, "DES", "64");
4 SharedKeyCiphered mk =

new SharedKeyCipheredSR(m, s, "DES",
"1234567801g=", "CBC",
"PKCS5Padding", "SunJCE");

ProVerif model
1 new m1;
2 new n2;
3 let s4 = SharedKey(n2) in
4 let mk6 = SymEncrypt(s4, m1) in

Figure 2. An example of how four lines of the abstract model are converted
into the corresponding concrete implementation and ProVerif syntax.

values of certain operations of the library.
SpiWrapperSim is very similar to the SpiWrapper library

that provides the implementations of the spi calculus cryp-
tographic and communication operations in the Spi2Java
framework. This is a precise architectural choice that greatly
facilitates the last development step, i.e. the refinement of
the abstract model into a concrete implementation. Indeed,
the implementation code is based on the SpiWrapper library.

As it is possible to notice in Figure 2, thanks to this choice
even the syntax used in the two codes is very similar; the
main difference is just that the abstract model lacks many
implementation details, like the encryption algorithms of
each cryptographic function call, or the marshaling functions
(whose implementation is included in the “SR” suffixed
classes in the example shown).

The SpiWrapperSim library also provides a set of anno-
tations which can be used during refinement to assign, for
each object, its implementation details. As annotations do
not affect the simulation phase, they can be specified later
on, just before generating the concrete implementation.

By using this technique the implementation details and the
code both reside on the same file: this means that JavaSPI
is not affected by the sync problems described previously
for Spi2Java. Moreover, each annotation has a scope and
a default value, so that it is not necessary to specify each
implementation detail for each object used in the code, but
it is possible to specify just the implementation details that
differ from the default values.

By following the intended workflow, the Java model can
be converted to a ProVerif compatible model, or a concrete
Java implementation can be derived from the Java model.
The next two subsections will cover these two cases.

Table I
A SIGNIFICANT PORTION OF THE CONVERSION MAPPING BETWEEN THE

JAVA MODEL AND PROVERIF MODEL.

Statement Java ProVerif
Fresh Type a = new Type (); new a;
Assign Type a = b; let a = b in
Hashing Hashing a = let a =

new Hashing(b); H(b) in
Send cAB.send(a); out(cAB, a);
Receive Type a = in(cAB, a);

cAB.receive(
Type.class);

SharedKey SharedKey key = let key =
new SharedKey(a); SharedKey(a) in

Encrypt SharedKeyCiphered let a =
< Type > a = new SymEncrypt
SharedKeyCiphered (key, b) in
< Type > (b, key);

Decrypt Type a = let a =
b.decrypt(key); SymDecrypt

(key, b) in
Error ResultContainer let b =
handled <Type > c = SymDecrypt
Decipher a.decrypt w(key); (key, a) in (

if(c.isV alid()){ ...
Type b =)else(
c.getResult(); ...
...}else{...})

Packet PacketType m = new let m =
Comp. PacketType(a, b, ...) (a, b, ...) in
Packet Type a = let a =
Split b.getField(); b getField in (∗)
Match case if(a.equals(b)){ if a = b then(

...}else{...} ...)else(...)
Start SpiProcess a = (Client(c, d, ...)|

new Client(c, d, ...); Server(e, f, ...))
SpiProcess b =
new Server(e, f, ...);
start(a, b);

Type stands for any class name, PacketType stands for any user-
defined Packet class name, Field stands for any field name in a
Packet class, while a,... f and key stand for variable names.
(*) Variable b getField is created in ProVerif code during a Packet
splitting phase which is automatically generated after any Decrypt
or Receive statement that produces a Packet object.

B. Java-ProVerif conversion and formal verification

The mapping from Java to ProVerif syntax is based
on simple rules, developed in this work along with the
corresponding converter, that are informally exemplified in
Table I. Each Java statement that may occur in a doRun
method is mapped to a corresponding ProVerif equivalent
piece of code. For simplicity, the figure does not consider
the addition of the numeric suffix in ProVerif, needed in
order to disambiguate variable names, as shown in Figure 2.

Conversion of loops requires special handling. ProVerif
does not support unbounded loops natively, but they can be
easily encoded as recursive processes. However, ProVerif of-
ten experiences termination problems when loops encoded as

recursive processes are used. Because of this limitation of the
verification engine, the restriction of having only bounded
loops was introduced in the Java modeling language, so that
the conversion tool can perform loop unrolling in order to
eliminate loops.

The fields of a Java Packet object are translated into nested
pairs. In order to facilitate code translation and readability,
a new variable is introduced in ProVerif for each field. For
example, let us consider a class called MyPacket with three
fields called a, b and c, all of type Nonce. The Java code
MyPacket p = channel.receive(MyPacket.class);
Nonce a = p.getA();
Nonce b = p.getB();
Nonce c = p.getC();

that receives a message of type MyPacket and extracts its
three fields is converted into the following ProVerif code:
in(channel1, p2);
(* Packet expansion *)
let p2_getA3 = GetLeft(p2);
let tmp4 = GetRight(p2);
let p2_getB5 = GetLeft(tmp4);
let p2_getC6 = GetRight(tmp4);

(* Variable assignment *)
let a7 = p2_getA3;
let b8 = p2_getB5;
let c9 = p2_getC6;

By using this technique the converter is forced to write,
in ProVerif, more code lines than with the Java syntax,
but this disadvantage is overcome by the fact that this
technique totally hides to ProVerif the additional complexity
that custom packet types could cause, thus avoiding the risk
to generate diverging code.

Translating plain Java models into ProVerif is not enough
to enable automatic verification of security properties. In-
deed, the formal specification of the security properties to
be proved must be given to ProVerif.

The JavaSPI library provides a specific annotation set
for expressing security properties in the Java model. These
annotations are then processed during conversion to ProVerif
and translated into corresponding queries in the output
ProVerif code.

A variable can be marked as @Secret in order to specify
that ProVerif should verify its secrecy, in this way:
@Secret SharedKey DHx = new SharedKey(pl);

The corresponding ProVerif generated code will look like
this:
(* Secrecy queries *)
query attacker:DHx53.

Authentication can be expressed instead as correspondence
assertions on the order of events. In JavaSPI, a process can
rise an event by calling the event(String name, Message
data) method provided by the SpiProcess class, where name
specifies the name of the event, and data the data associated
to that event. This method has no effect in the code, but it
is translated to a corresponding event in ProVerif. Finally,
correspondence between events, such as “if event(n1, x)
happened, then event(n2, x) must have happened before”

Figure 3. SSL message exchange in the selected scenario.

can be specified by a specific annotation associated with the
instantiation process class.

C. Implementation generation

The last development stage is the automatic generation
of the protocol implementation code from the model. As
SpiWrapperSim is similar to the library used for the concrete
implementation, there is a strict correspondence between
the abstract code (the model) and the concrete code (the
implementation). The implementation aspects that are miss-
ing in the abstract model can all be specified by means of
annotations.

One of such aspects is the choice of the marshaling
functions to be used for each object. A default marshaling
mechanism based on Java serialization is provided by a li-
brary called spiWrapperSR, which extends spiWrapper. The
user can provide custom implementations of the marshaling
functions. This is a key factor enabling development of
interoperable implementations of standard protocols, where
the specific marshaling functions to be used are specified by
the protocol standard.

Another key feature of JavaSPI enabling interoperability
is the ability of resolving Java annotations values either
statically at compile time, or dynamically at run time. For
example, this enables implementations of protocols featuring
algorithm negotiation.

IV. THE SSL CASE STUDY

In order to provide a validation example of the proposed
JavaSPI approach, a simplified but interoperable imple-
mentation of both the client and server sides of the SSL
handshake protocol has been developed.

The considered scenario, depicted in Figure 3, can be
logically divided into four different phases:

Server.java
class Server extends SpiProcess { ...
@Override void doRun(final Channel c,
final Identifier SSL_VERSION_3_0,...)

{ ...
final Pair<Identifier, DHHashing>

c_key_exch = c.receive(Pair.class);
final DHHashing c_DHy = c_key_exch.getRight();
final Triplet PMSp =

new Triplet(c_DHy, DH_x, DH_P);
final DHHashing common_key =

new DHHashing(PMSp);
}
}

Master.java
class Master extends SpiProcess {
@Override void doRun()
{ ...
final Client c = new Client(...);
final Server s = new Server(...);
start(c,s);

}
}

Figure 4. An excerpt of the SSL protocol abstract model.

1) Client and server exchange two “hello” messages
which are used to negotiate protocol version and
ciphersuites.

2) The server authenticates itself to the client by sending
its certificate s_cert.

3) Diffie-Hellman (DH) key exchange is performed; note
that the server DH parameters are signed by the server.

4) Finally, the session is completed by the exchange of
encrypted “Finished” messages.

For simplicity, in the considered scenario both the de-
veloped client and server only support version 3.0 of the
protocol with DSA server certificate. Other ciphersuites or
other protocol features such as session resumption or client
authentication are not considered. Indeed, the goal is to
validate the methodology with a minimal, yet significant
example, rather than provide a full reference implementation
of the SSL protocol.

The SpiWrapperSim library has been used to develop
the abstract model of the SSL protocol. This includes
eight new Packet classes representing the structures of the
different types of exchanged messages and a client and a
server SpiProcess classes. In addition, an “instancer” process
called Master that just runs an instance of client and server
in parallel has been added in order to simulate protocol
execution. Figure 4 provides a code excerpt of the Java SSL
model.

After defining the model the following properties have
been expressed and successfully verified:

• Secrecy of the client and server DH secret values.
• Server authentication, expressed as an injective corre-

spondence between the correct termination of the two
processes: each time a client correctly terminates a

@SharedKeyA(Algo="3DES", Strength="168")
@SharedKeyCipheredA(Algo="3DES", Mode="CBC")
public class Server extends spiProcess {
...
final Hashing c_write_iv = new Hashing(PA3);
...
@Iv(type=Types.varName, value="c_write_iv")
final SharedKeyCiphered
<Pair<Pair<Hashing, Hashing>, Hashing>>
c_encrypted_Finish =

c.receive(SharedKeyCiphered.class);

Figure 5. An excerpt of the Java model with annotations on it.

session, agreeing on all relevant session data and the
server identity, a server must have started a session,
agreeing on the same session data and the server
identity.

Finally, in order to grant interoperability, a custom mar-
shaling library compliant with the SSL standard has been
developed.

Besides setting the marshaling layer, it was also necessary
to specify by annotations the needed cryptographic details,
such as algorithms and related parameters. In the sample
SSL protocol both compile time and run time resolution
features of JavaSPI have been exploited. Even if this protocol
implementation uses many “hardcoded” parameters, like the
ciphersuites and the key strengths, other information is only
known at run time: for example, the initialization vectors
used for shared key encryption are calculated from the
shared secret, thus they change at each run.

As shown by the code excerpt in Figure 5, any static detail
can be specified once, on the head of the class, while the
dynamic details and the special cases are specified in front
of each variable that needs them. In the sample code, the
initialization vector is computed by applying a hash function
and is stored in variable c_write_iv. Then, an annota-
tion specifies that the initialization vector for the ciphered
message received in variable c_encrypted_Finish is
the value in variable c_write_iv.

The amount of required annotations does not burden the
code: the SSL example required about 60 annotations in total
(client + server), which amounts to about 10% of the whole
model size. To make this measure significant, few default
values have been used; in other words, default values where
not crafted to suite the SSL example.

The generated client and server implementation have been
successfully tested for interoperability against OpenSSL
0.9.8o.

V. CONCLUSION

The JavaSPI framework enables model-driven develop-
ment of security protocols based on formal methods without
the need to know specialized formal languages. Knowledge
of a formal language is replaced by knowledge of a Java
library and of a set of language restrictions, which is easier to

learn for Java experienced programmers. Moreover, standard
IDEs can be used to develop the Java model, with the benefit
of having access to all the development features offered by
such IDEs.

The proposed approach, along with the provided toolchain
and libraries, enables (i) interactive simulation and de-
bugging of the Java model, via standard Java debuggers
available in all common IDEs; (ii) automatic verification
of the protocol security properties, via the de-facto standard
ProVerif tool; and (iii) automatic generation of interoperable
implementation code, via a custom tool, driven by Java
annotations embedded into the model files.

Compared to similar frameworks, like Spi2Java, JavaSPI
is easier to use, while retaining the nice feature of enabling
fast development of protocol implementations with high
integrity assurance given by the linkage between Java code
and verified formal models. Future work includes focusing
on the formalization of the relationship between Java and
spi calculus semantics, in order to get a soundness proof
for the Java code, once the ProVerif model is verified.
From an engineering point of view, porting the ProVerif
verification results directly to the Java model could further
improve usability and accessibility of the proposed frame-
work. Moreover, further tests could be performed in order to
demonstrate that quite every Java developer is able to design
and validate a communication protocol by just reading the
framework documentation.

REFERENCES

[1] B. Blanchet, “Automatic verification of correspondences for
security protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 363–434, 2009.

[2] N. O’Shea, “Using Elyjah to analyse Java implementations of
cryptographic protocols,” in Foundations of Computer Security,
Automated Reasoning for Security Protocol Analysis and Issues
in the Theory of Security, 2008, pp. 221–226.

[3] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified
interoperable implementations of security protocols,” ACM
Transactions on Programming Languages and Systems, vol. 31,
no. 1, pp. 1–61, 2008.

[4] A. Pironti and R. Sisto, “An experiment in interoperable
cryptographic protocol implementation using automatic code
generation,” in IEEE Symposium on Computers and Commu-
nications, 2007, pp. 839–844.

[5] S. Kiyomoto, H. Ota, and T. Tanaka, “A security protocol
compiler generating C source codes,” in Information Security
and Assurance, 2008, pp. 20–25.

[6] J. Jürjens, Secure Systems Development with UML. Springer,
2005.

[7] D. Basin, J. Doser, and T. Lodderstedt, “Model driven se-
curity: from UML models to access control infrastructures,”
ACM Transactions on Software Engineering and Methodology,
vol. 15, no. 1, pp. 39–91, 2006.

