
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A unifying formalism to support automated synthesis of SBSTs for embedded caches / DI CARLO, Stefano;
Gambardella, Giulio; Indaco, Marco; Rolfo, Daniele; Prinetto, Paolo Ernesto. - STAMPA. - (2011), pp. 39-42. (Intervento
presentato al convegno IEEE East-West Design & Test Symposium (EWDTS) tenutosi a Sebastopoli, UA nel 9-12 Sept.
2011) [10.1109/EWDTS.2011.6116421].

Original

A unifying formalism to support automated synthesis of SBSTs for embedded caches

Publisher:

Published
DOI:10.1109/EWDTS.2011.6116421

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460388 since:

IEEE Computer Society

A unifying formalism to support
automated synthesis of SBSTs
for embedded caches
Authors: Di Carlo S., Gambardella G., Indaco M., Rolfo D., Prinetto P.,

Published in the Proceedings of the IEEE East-West Design & Test Symposium (EWDTS), 9-12

Sept. 2011, Sebastopoli, UA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6116421

DOI: 10.1109/EWDTS.2011.6116421

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6116421
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6116421
http://dx.doi.org/10.1109/EWDTS.2011.6116421
http://dx.doi.org/10.1109/EWDTS.2011.6116421

A unifying formalism to support automated
synthesis of SBSTs for embedded caches1

Stefano Di Carlo∗, Giulio Gambardella†, Marco Indaco∗, Daniele Rolfo†, Paolo Prinetto∗
†CINI

Via Ariosto 25, 00185 Roma, Italy

Email: {FirstName.LastName}@consorzio-cini.it
∗Politecnico di Torino

Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {FirstName.LastName}@polito.it

Abstract—The paper presents a new unifying formalism intro-
duced to effectively support the automatic generation of assembly
test programs to be used as SBST (Software Based Self-Testing)
for both data and instruction cache memories. In particular, the
new formalism allows the description of the target memory, of
the selected March Test algorithm, and the way this has to be
customize to adapt it to the selected cache.
Since the related synthesis tool is multi-platform, the Instruction
Set Architecture of the target processor must be properly
described, as well. The newly introduced formalism supports such
a description at the different abstraction levels.
Several applications examples are provided.

I. INTRODUCTION

In modern microprocessors, memories have become the
most critical part of the global design. In particular, caches are
the most widely used and their testing has become mandatory,
for both instruction and data, owing to their presence in many
embedded designs [1].
Various types of solutions have been proposed to tackle
this problem. Typical approaches consists of hardware
implementation of testing infrastructures, such as memory
built-in-self-test (MBIST), that may unfortunately occur in
power, timing and area overhead. This kind of overhead is
often not affordable in embedded systems [2], where instead
SBST (Software-Based Self-Testing) plays an important
role as an alternative testing methodology. SBST does
not imply increases in terms of area and it consists of an
algorithm, usually written in assembly language, exploiting
the instruction set of the target processor, thus allowing
at-speed test.
State-of-the-art approaches for memory testing mostly refer to
March Tests, [3], that have been defined for both bit-oriented
and word-oriented memories [4].
Compared to Static Random Access Memories (SRAMs),
cache memories have peculiar characteristics and properties,
including, among the others, the addressing style and the
limited accessibility due to their behaviour within the
microprocessor system. In fact, different write policies can be

1This projects is partially funded by Ansaldo STS SpA and FinMeccanica
within the ”Iniziativa Software” (II ediz) framework

set-up, depending on design needs. Nevertheless, being the
physical implementation of cache memories mostly based on
SRAMs, the two families of memories are affected by the
same kind of faults [5].
Several march test methodologies for caches were presented
in literature [6] [7] [8] [9].
Notwithstanding the definition of valuable solutions, each
approach is expressed resorting to different formalisms,
thus causing a lack of a consistent scheme for defining the
translation’s approach.
This paper aims at overcoming this problem, introducing a
unifying formalism to support the overall SBST cache testing
methodology.
Despite the significant presence of cache testing methods, at
our best knowledge no automated SBST generation tool have
so far been presented. The assembly program formulation is
left to the test engineer that could introduce errors. To fill the
gap we presented in [10] MarciaTesta, an automatic assembly
generation tool. The formalism presented in this paper has
been used as input to MarciaTesta.
The paper is organized as follows: section II presents the
MarciaTesta tool in which the formalism is used, while section
III introduces the formalism used for the software-based
self-test methodology, the March Test description, and the
memory configuration. Section IV describes the methodology
of the processor instruction set definition, based the nML
formalism [11]. Section V eventually concludes the paper.

II. THE MARCIATESTA TOOL

MarciaTesta is a general purpose multi-platform tool able to
generate assembler programs that implement the chosen March
Test for the target processor data cache.
Three translation levels are set up for the ASM generation
(Figure 1). The first step aims at transforming a generic March
Test into a data cache one, exploiting a predefined SBST

methodology. The description of the SBST methodology allows
to translate a given march test into a new one, suitable for
cache memories. The MT2CACHE program performs this first
step of translation.

The translated March Test is then processed by CACHE2C

program, using the Target memory configuration information,
that transforms it into a C/C++ program. This intermediate
output is particularly suited for the test emulation on the target
cache architecture.

Fig. 1. MarciaTesta tool architecture

The third step translates the C/C++ cache test implementation
into the assembly program. C2ASM script parses the C/C++

program extracting the key parameters (e.g., addresses and
data background patterns) and writes the assembly algorithm,
targeted to the chosen microprocessor.
These levels of translation set up in MarciaTesta tool requires
straightforward definitions of the rules to be applied.
The first translation, performed by MT2CACHE program,
needs an unambiguous definition of both inputs, i.e., (a) the
SBST methodology that lists the rules for the March Test
translation and (b) the March Test to be translated. The second
step requires the Target memory configuration description,
listing the main properties of the target architecture.
Finally a clear description of the processor instruction set
(Target processor ISA description) is needed to write the
assembly program correctly.
In the next sections the new formalisms are described in
details.

III. SBST METHODOLOGY RULES

MarciaTesta is characterized by a very high flexibility and a
remarkable user-friendliness. These include, among the other,

the possibility offered to the user of freely selecting the
preferred SBST Methodology. To fully support such a peculiar
feature, a new formalism had to be introduced.
This new formalism is defined in terms of a set of rules,
grouped into SBST Methodology rules, capable of supporting
the majority of the proposed SBST Methodologies.
Table I summarises the available rules.

TABLE I
SBST METHODOLOGY RULES

Rule Name Rule description

EC Enable cache

DC Disable cache

FC Flushes cache (Invalidates all cache lines)

FCCL Invalidates current cache line

WC (tag,d) Writes data d in cache

RC (tag,d) Reads data from cache and verifies if it is equal to d

WM (tag,d) Writes data d in main memory

U{...} Repeats in-brackets rules with upward addressing

D{...} Repeats in-brackets rules with downward addressing

The last two rules (U and D) are used just when the method-
ology requires one or more initialization march elements,
since otherwise the addressing order is defined by each march
element.
The tag parameter is useful to specify the value written into
the cache memory directory array and it can get three different
values:

• DT: data background associated with the cache directory
array test

• DTn: complemented data background associated with the
cache directory array test

• Any: cache directory array assumes the value given by
the addressing order defined by input

The parameter d specifies the data written in cache and it can
assume five different values:

• DB: data background written in cache
• DBn: complemented data background written in cache
• pDB: last written data background
• pDBn: complemented value of the last written data back-

ground

Table II lists the set of available rules that are necessary to
describe all the proposed March Test.

The third input of MarciaTesta tool is the Target memory

configuration file, which details all the significant features
of the target cache. Thanks to this approach, the tool is able
to customize the test to the target architecture, fulfilling the
properties and the constraints of the cache memory.

To describe the SBST Methodology we implement an inter-
face with a set of methods, named March element operations.
In his/her SBST Methodology description, the user can define
each method (Init, w0, w1, r0 and r1) resorting to a set of

TABLE II
MARCH TEST DESCRIPTION RULES

Rule Name Rule description

W0 Write of 0 (DBn)

W1 Write of 1 (DB)

R0 Read and verify to have 0 (DBn)

R1 Read and verify to have 1 (DB)

U(...) Execution of march elements with ascending addressing order

D(...) Execution of march elements with descending addressing order

A(...) Execution of march elements with any addressing order

TABLE III
TARGET MEMORY DESCRIPTION RULES

Rule Name Rule description

O LSBs that identify a specific word into the cache line

I Middle bits that identify the cache line

T MSBs that identify the content of the directory array

Policy Specify if the cache is Write-Back or Write-Through

Word size Data-width inside the target system

Base Address Base address for memory

available rules, in order to implement correctly the methodol-
ogy.
For a better comprehension, Table IV shows two examples
based on different SBST methodologies, presented in [6] and
[9].

TABLE IV
EXAMPLE OF SBST METHODOLOGY DESCRIPTIONS FOR TESTING

DIRECTORY ARRAY OF WRITE-BACK DATA CACHE

March element SBST-Methodology

operation [6] [9]

init

U{

None

WC (DT,DB)

}

U{

WC (DTn,DB)

}

w0

WC (DTn,DB)

FCL DC

WC (DTn,pDBn) WM (DTn,DBn)

EC

w1
WC (DT,DB)

FCL DC

WC (DT,pDBn) WM (DT,DBn)

EC

r0 RC (DTn,pDB) RC (DTn,DB)

r1 RC (DT,pDB) RC (DT,DB)

IV. META-ISA FORMALISM

The main output of the MarciaTesta tool is the generated
assembly program (Target test program ASM). In order to au-
tomatically generate this program, a standard input is required
for the tool. This input has to list the ASM instructions of the
target processor.
The first idea for this multi-platform tool was to make a library
for each microprocessor with the assembly implementation of
each operands. Nevertheless, the library composing would be
very difficult, and request a big effort whenever a new proces-
sor library is described. Therefore a new approach had to be
studied, in order to reduce the effort for the library description.
For this purpose a set of Meta ISA have been outlined. This
list include all the required and sufficient instructions for the
translation of the operations required during a cache test. Each
of them are then described using a nML description [12], as
in Table V.
Thanks to this new technique, that moves the intelligence of
the assembly algorithm generation to the tool, MarciaTesta
users can easily compose libraries for their target processors.
The identified Meta ISAs are:

• Register32write: write operation in a register of a 32 bit
immediate.

• Register16write: write operation in a register of a 16 bit
immediate.

• MemoryWrite: write operation in central memory.
• MemoryRead: read operation from central memory.
• LoopInstruction: instruction for a loop operation.
• AddInstruction: addition operation on a register of a 16

bit immediate.
• SubInstruction: subtract instruction on a register of a 16

bit immediate.
• Enable Cache: instruction that enables the cache.
• Disable Cache: instruction that disables the cache.
• Invalidate Cache Line: instruction that invalidates a cache

line.

TABLE V
EXAMPLES OF META ISAS NML DESCRIPTION

MetaISA nML description

Register32write

opRegister32write(data : value32, i : index, reg : R)
action = {

reg[i] = data;
}

MemoryWrite

opMemoryWrite(reg : R, i : index, a : addr,mem : M)
action = {

mem[a] = reg[i];
}

MemoryRead

opMemoryRead(mem : M, i : index, a : addr, reg : R)
action = {

reg[i] = mem[a];
}

Enable Cache

opEnableCache()
action = {

MSR = ENABLE CACHE;
}

Invalidate Cache Line

opInvalidateCacheLine(j : index, i : index, reg : R)
action = {

DCache Tag = reg[i];
DCache Data = reg[j];
}

In Target processor ISA description all the Meta ISA are
described using the assembly instruction of the processor.

TABLE VI
META ISAS TRANSLATION FOR NIOSII PROCESSOR

Meta ISA NiosII

Register32write
movhi < regA >,%hi(< value >);

ori < regA >,< regA >,%lo(< value >);

MemoryWrite stw < regA >,< IMM > (< regB >);

MemoryRead ldw < regA >,< IMM > (< regB >);

Enable Cache None

Invalidate Cache Line flushd < IMM > (< regA >);

TABLE VII
META ISAS TRANSLATION FOR MICROBLAZE PROCESSOR

Meta ISA MicroBlaze

Register32write ori < regA >,< regB >,< value >;

MemoryWrite sw < regA >,< regB >,< regC >;

MemoryRead lw < regA >,< regB >,< regC >;

Enable Cache msrclr < regA >,< IMM >;

Invalidate Cache Line wdc < regA >,< regB >;

V. CONCLUSION

During the MarciaTesta tool design, many inputs has been
described. An intelligent approach is to isolate each of them
and study a flexible solution that allows their description.
In order to create a general purpose tool, the inputs description
of MarciaTesta has been fully described during preliminary
analysis. Each of them has been accurately described using
formalisms that gives flexibility to the user.
First of all, in section III the software-based self-test descrip-
tion gives leave to use the tool with different cache testing
approaches, and frees the user to select the best for his purpose.
Then the formalism explain how to define the March Test op-
eration in the SBST methodology and how to define correctly
the memory configuration.
Finally the straightforward description of meta-ISAs given in
section IV, is really essential for the Target processor ISA

library establishment.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to
the whole design team of Ansaldo STS SpA for their helpful
hints and guidelines.

REFERENCES

[1] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” in Proc. 30th Annual Internation
Symposium on Computer Architecture, no. 7, pp. 136–146, 2003.

[2] S. Hamdioui, G. Gaydadjiev, and A. Van de Goor, “The state-of-art and
future trends in testing embedded memories,” in Proc. Records of the
IEEE International Memory Technology, Design and Testing Workshop,
no. 7, pp. 54–59, 2004.

[3] A. Van De Goor, “Using march tests to test srams,” IEEE Design &
Test of Computers, vol. 10, no. 1, pp. 8–14, 1993.

[4] A. Van De Goor, I. Tlili, and S. Hamdioui, “Converting march tests
for bit-oriented memories into tests for word-oriented memories,” in
Proc. Records of the IEEE International Memory Technology, Design
and Testing Workshop, pp. 46–52, 1998.

[5] S. Di Carlo and P. Prinetto, Models in Hardware Testing, ch. Models in
Memory Testing, From functional testing to defect-based testing, pp. pp.
157–185. Springer, 2010.

[6] S. Di Carlo, P. Prinetto, and A. Savino, “Software-based self-test of
set-associative cache memories,” vol. 60, no. 7, pp. 1030–1044, 2011.

[7] S. M. Al-Harbi and S. K. Gupta, “A methodology for transforming
memory tests for in-system testing of direct mapped cache tags,” in
Proc. 16th IEEE VLSI Test Symposium, pp. 394–400, 1998.

[8] J. Sosnowski, “In-system testing of cache memories,” in Proc. IEEE
International Test Conference, pp. 384–393, 1995.

[9] J. Sosnowski, “Improving software based self - testing for cache memo-
ries,” in Proc. 2nd International Design and Test Workshop, pp. 49–54,
2007.

[10] S. D. Carlo, G. Gambardella, M. Indaco, P. Prinetto, and D. Rolfo,
“Marciatesta: an automatic generator of test programs for microproces-
sors data caches,” in Submitted to 20th Asian Test Symposium, 2011.

[11] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set
processors using nml,” in Proc. European Design and Test Conference,
pp. 503–507, 1995.

[12] TestGroup, “Meta-isa description using nml formalism.” Internal Report.

