
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Linear Approximation for Graph-based Simultaneous Localization and Mapping / Carlone, Luca; Aragues, R.;
Castellanos, J. A.; Bona, Basilio. - (2011). (Intervento presentato al  convegno Robotics: Science and Systems tenutosi a
Los Angeles nel June 27 - June 30, 2011) [10.15607/RSS.2011.VII.006].

Original

A Linear Approximation for Graph-based Simultaneous Localization and Mapping

Publisher:

Published
DOI:10.15607/RSS.2011.VII.006

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2454375 since:

MIT Press



A Linear Approximation for Graph-based
Simultaneous Localization and Mapping

Luca Carlone∗, Rosario Aragues†, Jośe A. Castellanos† and Basilio Bona‡
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Universidad de Zaragoza, Zaragoza, Spain - Email:{raragues, jacaste}@unizar.es
‡Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy - Email:basilio.bona@polito.it

Abstract—This article investigates the problem of Simultaneous
Localization and Mapping (SLAM) from the perspective of linear
estimation theory. The problem is first formulated in terms of
graph embedding: a graph describing robot poses at subsequent
instants of time needs be embedded in a three-dimensional space,
assuring that the estimated configuration maximizes measure-
ment likelihood. Combining tools belonging to linear estimation
and graph theory, a closed-form approximation to the full
SLAM problem is proposed, under the assumption that the
relative position and the relative orientation measurements are
independent. The approach needs no initial guess for optimization
and is formally proven to admit solution under the SLAM setup.
The resulting estimate can be used as an approximation of the
actual nonlinear solution or can be further refined by using it
as an initial guess for nonlinear optimization techniques. Finally,
the experimental analysis demonstrates that such refinement is
often unnecessary, since the linear estimate is already accurate.

I. I NTRODUCTION

In the landscape of Simultaneous Localization and Mapping
problems it is possible to distinguish betweenonline and
full SLAM approaches [29]. The former methods estimate
the SLAM posterior by recursively including the most recent
measurements in the posterior density. This is typically the
case of a robot that acquires proprioceptive and exterocep-
tive measurements from the environment and, at each time
step, incrementally includes such information in the posterior
describing robot pose and a representation of the surrounding
environment. Full SLAM approaches, instead, tackle the prob-
lem of retrieving the whole posterior, taking into account at the
same time all the available measurements; this batch solution
may occur, for instance, when the data, acquired during
robot operation, have to be processed off-line to produce a
meaningful representation of the scenario.

From the algorithmic point of view, literature on SLAM can
be roughly divided in three mainstream approaches: Gaussian
filter-based, Particle filters-based and graphical approaches.
The first category includes Extended Kalman Filter SLAM
(EKF-SLAM) [26], Sparse Extended Information Filter [28],
delayed-state EKF-SLAM [9] and related approaches. EKF-
like techniques require the linearization of both process and
measurement models; the first-order approximation, however,
often comes at a price of inconsistency and divergence [3].
Moreover the complexity of the filter is quadratic in the
number of landmarks, hence a naive implementation prevents
large scale mapping [29]. Finally, we remark that the effects of

partial observability in standard EKF-SLAM implementation
are not fully understood, this being witnessed by recent
results [15]. The second class of approaches, namely Rao-
Blackwellized particle filters [8], is based on a factorization of
the posterior and was successfully employed for building both
landmark-based and occupancy grid map representations of the
environment [29]. Also in this case, fundamental limitations
are well known to the robotic community [21]: a finite number
of particles may not be able to correctly represent the trajectory
posterior, and this issue becomes critical when the uncertainty
in the posterior increases. The third category encompassesthe
techniques in which measurements acquired during robot mo-
tion are modeled as constraints in a graphical model. The poses
assumed by the robot during its motion correspond to vertices
of a directed graph, whereas the constraints are modeled as
edges in such graph. Hence SLAM can be stated in terms
of maximum likelihood and solved through nonlinear opti-
mization techniques [20]. Although graph-based approaches
are recognized to outperform other SLAM techniques in terms
of accuracy, they present the classical drawbacks of nonlinear
optimization techniques: convergence to a global minimum of
the cost function cannot be guaranteed in general and, if the
initial guess for optimization is outside the basin of attraction
of the global optimum, the iterative process is likely to be
stuck in a local minimum.

In this article we address the full SLAM problem in planar
setups. Combining tools of linear estimation and graph theory,
a closed-form approximation to SLAM is retrieved, under
mild assumptions on the structure of the involved covariance
matrices. The linear approximation requires no initial guess;
moreover, experimental evidence demonstrates that it is accu-
rate in practice, hence it can be used in place of the exact
solution or for bootstrapping nonlinear techniques.

II. RELATED WORK

The seminal paper [20] paved the way for several results
towards the objective of a sustainable solution to full SLAM.
The setup considered by Lu and Milios was based on scan
matching for retrieving relative constraints between robot
poses, but the use of a Gauss-Newton scheme for optimization
prevented its applicability in large scale scenarios. Thisframe-
work was extended to the general case of a graph containing
both robot poses and landmark positions in [27]. Thrun and



Montemerlo showed that it is possible to marginalize vari-
ables corresponding to landmarks, hence reducing the problem
to the pose estimation setup discussed in [20]. Moreover
they enabled the estimation of large maps (108 landmarks),
applying a conjugate gradient-based optimization. Konolige
investigated a reduction scheme for the purpose of improving
the computational effort of nonlinear optimization [17]: the
optimization process was restricted to poses involved in at
least one loop constraint, providing a remarkable advantage
for graphs with low connectivity. Freseet al. proposed a
multilevel relaxation approach for full SLAM [10], allowing
to considerably reduce the computational time of optimization
by applying a multi-grid algorithm. A further breakthrough
in the literature of graph-based approaches came with the
use of incremental pose parametrization, proposed in [23].
Olsonet al. showed how a clever selection of the optimization
variables can greatly simplify the problem structure, enabling
fast computation. Moreover they proposed not to optimize all
the constraints at the same time, but to sequentially select
each constraint and refine nodes’ configuration so to reduce
the residual error for such constraint. Grisettiet al. extended
such framework, taking advantage of the use of stochastic
gradient descent in planar and three-dimensional scenarios
[11]. Moreover they proposed a parametrization based on a
spanning tree of the graph, for speeding up the correction of
the residual errors over the network. This approach was shown
to be quite resilient to theorientation wraparound problem
(which causes the configuration estimate to be stuck in a local
minimum [11]) and currently constitutes the state-of-the-art.

All the aforementioned techniques are iterative, in the sense
that, at each iteration, they solve a local convex approximation
of the original problem, and use such local solution to update
the configuration. This process is then repeated until the
optimization variable converges to a local minimum of the
cost function. In particular, when a linear approximation of
the residual errors in the cost function is considered, the
problem becomes an unconstrained quadratic problem and
the local correction can be obtained as solution of a system
of linear equations, known asnormal equation[7]. In such
a case the source of complexity stems from the need of
repeatedly solving large scale linear systems. A discussion on
the performances of direct and iterative methods for solving
large scale equations, with application to SLAM, can be found
in [7]. Some original attempts to exploit the mathematical
structure of the optimization problem and the properties of
the underlying graph have been recently proposed [5, 7, 11].

Although the state-of-the-art approaches have been demon-
strated to produce impressive results on real world problems,
their iterative nature requires the availability of an initial
guess for nonlinear optimization, which needs be sufficiently
accurate for the technique to converge to a global solution of
the problem. In this work we provide a linear approximation
of the full SLAM solution that can be used as initial guess for
an iterative nonlinear approach. We remark that the idea of a
linear initialization is not new in the literature. For instance,
in computer vision, linear methods based on algebraic errors

(e.g., [13, 24]) are often employed for bootstrapping nonlinear
techniques (i.e., bundle adjustment [13]). Similar intuitions can
be also found within the SLAM community, see [6].

Notation and preliminaries. In denotes then×n identity matrix,0n

denotes a (column) vector of all zeros of dimensionn. Mn×m denotes
a matrix withn rows andm columns and⊗ denotes the Kronecker
product. The cardinality of a generic setS is written as|S|. A directed
graphG is a pair(V, E), whereV is a finite set of elements, called
verticesor nodes, andE is a set containing ordered pairs of nodes. A
generic elemente ∈ E , referred to asedge, is in the forme = (i, j),
meaning that edgee, incident on nodesi andj, leavesi (tail) and is
directed towards nodej (head) [16]. The number of nodes and edges
are denoted withn+1 (the reason for this choice will be clear later)
and m, respectively, i.e.,|V| = n + 1 and |E| = m. The incidence
matrixA of a directed graph is a matrix inR(n+1)×m in which each
column contains the information of an edge inE ; in particular the
column corresponding to the edgee = (i, j), has thei-th element
equal to−1, the j-th element equal to+1 and all the others equal
to zero. A directed graph isconnected(or weakly connected) if there
exists an undirected path (regardless edges’ orientation) connecting
any pair of nodes. Aspanning treeof G is a subgraph withn edges
that contains all the nodes inG. The edges ofG that do not belong to a
given spanning tree of the graph are usually referred to aschords[4].

III. PROBLEM FORMULATION

Let V = {v0, . . . , vn} be a set ofn+1 nodes (representing
subsequent poses assumed by a mobile robot) and letP =
{p0, . . . , pn} denote a corresponding set of absolute poses in a
planar setup, i.e.,pi = [ρ>i θi]

> ∈ R
3, whereρi = [xi yi]

> ∈
R

2 is the Cartesian position of thei-th node, andθi is its
orientation. We shall callP a configurationof nodes. Suppose
that it is possible to measure the relative pose between some
nodes, say nodes(i, j); in particular nodei can measure the
pose ofj in its local reference frameRi, i.e., ξ̃ij = pj 	 pi,
where	 is a standard pose compounding operator that can be
rewritten in explicit form as:

pj 	 pi
.
=

[

R>
i (ρj − ρi)
θj − θi

]

, (1)

being Ri ∈ R
2×2 a planar rotation matrix of an angleθi.

Since relative pose measurements are affected by noise, the
measured quantities are in the formξij = ξ̃ij + εij , where
εij ∈ R

3 is a zero mean Gaussian noise, i.e.,εij ∼ N (0, Pij),
being Pij a 3 by 3 covariance matrix. In practice, we can
distinguish two kinds of relative pose measurements:

• odometric constraints: relative measurements between
poses assumed by the robot at subsequent instants of time.
These constraints are connected to measurements of the
ego-motion (odometry) of the robot and are provided by
proprioceptive sensors (wheel odometry, IMU, etc.) or by
exteroceptive sensors-based techniques (scan matching,
visual features registration, etc.) [29];

• loop closing constraints: are connected to place revisiting
episodes. This phase clearly requires the use of exterocep-
tive sensors, among which it is worth mentioning vision
sensors and laser range finders.

In this context, we assume the constraints to be given, since
the reliable determination of both odometric constraints and



loop closing constraints is still an active research topic [25],
whose implications are out of the scope of the present article.

The problem can be naturally modeled using graph for-
malism: each node in the setV corresponds to a vertex of a
directed graphG(V, E) (often referred to aspose graph), where
E (graph edges) is the set containing the unordered node pairs
(i, j) such that a relative pose measurement exists betweeni
and j. By convention, if an edge is directed from nodei to
nodej, the corresponding relative measurement is expressed
in the reference frame of nodei. We denote withΞ the set
of all available measurements, i.e.,Ξ = {ξij , (i, j) ∈ E}. The
cardinality of the setΞ is |Ξ| = |E| = m. The relationship
between odometric (and loop closing) constraints and graph
edges is discussed in detail in Section IV-E.

From the knowledge of relative pose measurements and the
corresponding uncertainty, the robot is required to estimate the
configurationP in a given reference frameR0. By convention,
we set the initial pose of the robot to be the origin of such
reference frame, i.e.,p0 = [0 0 0]>. In topological graph
theory the problem is also referred to as graphembedding, re-
alizationor drawing, depending on the context and on problem
constraints [12]. Therefore our objective is to determine an
estimated configurationP∗ = {p∗1, . . . , p

∗
n}, that maximizes

the likelihood of the observations. It is common in literature
to assume independence among observations, hence we can
write the log-likelihood function of a configuration as:

lnL(P|Ξ) =
∑

(i,j)∈E

ln π(ξij |P), (2)

whereπ(ξij |P) is the conditional probability density of the
measurementξij given the node configuration. Since we
assumed that the involved densities are Gaussians, it is easy
to demonstrate that maximizing the likelihood function (2)is
equivalent to minimize the sum of the weighted residual errors:

f(P) =
∑

(i,j)∈E

(pj 	 pi − ξij)
>

P
−1
ij (pj 	 pi − ξij). (3)

The full SLAM problem is hence formulated as a mini-
mization of the nonlinear non-convex cost function (3), i.e.,
the optimal configuration isP∗ = arg min f . The nonlinearity
of the function f(P) is due to the structure of the pose
compounding operator (1) and, in particular, to the nonlinear
terms in the orientations of the robot.

IV. A L INEAR ESTIMATION FRAMEWORK FORSLAM

We first observe that each relative pose measurement is
composed by a two-valued vector (relative position) corre-
sponding to the first two components ofξij , see (1), and a
scalar (relative orientation). Therefore we can rewrite each
measurements asξij = [∆l

ij δij ]
>, where the superscriptl

denotes that the relative position vector is expressed in a local
frame. According to the notation introduced so far the cost
function (3) can be rewritten as:

∑

(i,j)∈E

[

R>
i (ρj − ρi) − ∆l

ij

(θj − θi) − δij

]>

P−1
ij

[

R>
i (ρj − ρi) − ∆l

ij

(θj − θi) − δij

]

.

In this context we assume that the relative position infor-
mation and the relative orientation measurements are indepen-
dent, i.e.Pij = diag(P∆l

ij
, Pδij

). This hypothesis is a technical
requirement for attacking the problem, see also Remark 2
in Section V. Under this hypothesis the cost functionf(P)
becomes:

∑

(i,j)∈E

[

R>
i (ρj − ρi) − ∆l

ij

]>

P−1

∆l
ij

[

R>
i (ρj − ρi) − ∆l

ij

]

+

+
∑

(i,j)∈E
[(θj − θi) − δij ]

> P−1
δij

[(θj − θi) − δij ].
(4)

In order to put the previous formulation in a more com-
pact form, let us number the nodes pairs, for which a rel-
ative pose measurement is available, from1 to m; let us
stack all the relative position measurements in the vector
∆l = [(∆l

1)
>, (∆l

2)
>, . . . , (∆l

m)>]>, and all the relative
orientation measurements in the vectorδ = [δ1, δ2, . . . , δm]>.
Repeating the same procedure for all the positions and ori-
entations assumed by the robot we get thenodes’ posi-
tion ρ+ = [ρ>0 , ρ>1 , . . . , ρ>n ]> and the nodes’ orientation
θ+ = [θ0, θ1, . . . , θn]>. Therefore it can be easily verified
that equation (4) can be rewritten as:

f(P) =
(

A>
2 ρ+ − R∆l

)> (

RP∆lR>
)−1 (

A>
2 ρ+ − R∆l

)

+

+
(

A>θ+ − δ
)>

P−1
δ

(

A>θ+ − δ
) , (5)

where A is the incidence matrix of the graphG(V, E),
A2 = A ⊗ I2 is an expanded form of the incidence
matrix, see [1],P∆l = diag(P∆l

1

, P∆l
2

, . . . , P∆l
m

), Pδ =
diag(Pδ1

, Pδ2
, . . . , Pδm

), and R = R(θ) is a block diagonal
matrix containing the rotation matrices that transform the
corresponding local measurements in the global frame, i.e., the
non-zero entries ofR are in positions(2k − 1, 2k − 1), (2k −
1, 2k), (2k, 2k − 1), (2k, 2k), k = 1, . . . ,m, and thek-th
diagonal block contains the rotation matrix converting thek-th
relative position measurement in the global frame.

Equation (5) can be further simplified by recalling the
choice of the reference frameρ0 = [0 0]> and θ0 = 0,
leading to the following relation:

f(P) =
(

A>
2 ρ − R∆l

)> (

RP∆lR>
)−1 (

A>
2 ρ − R∆l

)

+

+
(

A>θ − δ
)>

P−1
δ

(

A>θ − δ
) , (6)

whereρ and θ are the vectors obtained fromρ+ and θ+ by
deleting the elementsρ0 andθ0, respectively, whereasA and
A2 are reducedincidence matrices, obtained by deleting the
rows corresponding toθ0 andρ0 from A andA2, respectively.

We observe that the minimization of the cost function (6)
is equivalent to find the solution (in the least-squares sense)
to the following system of equations:

{

A>
2 ρ = R(θ)∆l

A>θ = δ
. (7)

The system (7) includesm vector-valued relations (or con-
straints) on relative positions andm scalar constraints. When
a solution exactly satisfies all the constraints in (7), the
corresponding minimum of the cost function (6) is zero,
otherwise, the searched solution has to minimize the weighted
residual errors on the constraints. The nonlinear nature ofthe
problem at hand is connected with the matrixR(θ), which
contains trigonometrical functions of nodes’ orientation.

A. Solving SLAM with Linear Estimation Theory

We now provide a procedure that allows to retrieve an
approximation of the actual nonlinear solution of (6). The
procedure can be summarized in three phases:

1) Solve the following linear estimation problem:

A>θ = δ, (8)



from which the suboptimal orientation estimateθ̂ and
its covariance matrixP

θ̂
can be obtained.

2) Estimate the relative position measurements in the global
reference frame:

z =

[

R̂ 02m×n

0>2m×n In

] [

∆l

θ̂

]

=

[

g1(∆l, θ)
g2(θ)

]

θ=θ̂

, (9)

with R̂ = R(θ̂); compute the corresponding uncertainty
(preserving the correlation with the orientation estimate):

Pz = H

[

P∆l 02m×n

0>2m×n P
θ̂

]

H>, (10)

whereH is the Jacobian of the transformation in (9):

H
.
=

[

∂g1

∂∆l

∂g1

∂θ
∂g2

∂∆l

∂g2

∂θ

]

=

[

R̂ J

0>2m×n In

]

. (11)

3) Solve the linear estimation problem in the unknownp =
[ρ> θ>]>, given z (9) andPz (10):

z =

[

A>
2 02m×n

0>2m×n In

] [

ρ
θ

]

= B>p, (12)

from which the solutionp∗ = [(ρ∗)>(θ∗)>]> and the
corresponding uncertainty can be retrieved.

In the rest of this section we will show how the proposed
procedure provides an approximate solution to SLAM with
graphical models. For sake of readability each phase of the
procedure will be discussed in detail, hence the proof of the
result will be clear at the end of Section IV-D.

B. Phase 1: Linear Orientation Estimation
Observing the structure of problem (7) it can be seen that

the second part of the system, including the relative orientation
measurements, is linear in the unknown variableθ. The first
phase of the procedure requires the solution of such subset
of constraints; this is a standard linear estimation problem:
given the matrixA, the measurementsδ and the corresponding
covariance matrixPδ, the objective is to provide an estimateθ̂
of the unknownθ. According to well known results in linear
estimation theory [22], the Best Linear Unbiased Estimator
(BLUE) for θ in (8) and the corresponding covariance are:

θ̂ = (AP
−1
δ A

>)−1
AP

−1
δ δ, Pθ̂ = (AP

−1
δ A

>)−1
. (13)

The following results establish existence and uniqueness of
the solution of problem (8). We recall that similar results can
be found in literature, see [1] and the references therein.

Lemma 1 (Connectivity of pose graph):The pose graphG
modeling robot poses, including odometric and loop closing
constraints is connected.

Proof. The proof is trivial since the path connecting all the
nodes is actually the trajectory traveled by the robot; in this
sense the edges corresponding to the odometric constraints
assure graph connectivity. �

Proposition 1 (Existence of the solution for phase 1):The
solution of the first step in the procedure IV-A is unique ifG
is connected and a node orientation is supposed to be known.

Proof. The incidence matrixA of a connected graphG
has rankn (with |V| = n + 1) and becomes full rank
as soon as one row is deleted, see [4]. As we have just
shown in (6), assuming a node to have known orientation
(e.g., the first node is assumed to be the absolute reference
frame) allows to reduce the incidence matrix by deleting

the corresponding row. Therefore,A is full rank and P−1

δ

is positive definite by definition, thenAP−1

δ A> is positive
definite, hence invertible, see [14]. If the matrix is invertible,
the solution of the linear problem can be uniquely determined
as θ̂ = (AP−1

δ A>)−1AP−1

δ δ. �

It is worth observing that once the absolute orientation of
the robot is known, also the first equation in (7) becomes
linear in the unknownρ. Therefore, usingθ̂ as the actual
nodes’ orientation, we can also compute an estimate for nodes’
position ρ̂, using linear estimation framework:

ρ̂ =

[

A2

(

R̂P∆lR̂>

)−1

A>
2

]−1

A2

(

R̂P∆lR̂>

)−1

R̂∆l, (14)

where R̂ = R(θ̂). Also in this case, the proof of existence
and uniqueness of the solution directly stems from Proposi-
tion 1. However, the first equation in (7) also constraints the
orientations of the robot, thus the estimatep̂ = [ρ̂> θ̂>]>

constitutes a suboptimal solution, in which the influence of
the first equation on the estimated orientations is neglected.

C. Phase 2: First-order Error Propagation

The second phase simply provides an estimate of the relative
position measurements in the global reference frame: the
vector z will be in the form z = [(∆g)> θ̂>]> where
∆g = R̂∆l is the vector containing the relative node position
expressed in the absolute reference frameR0. The corre-
sponding covariance matrix can be obtained by a first-order
propagation of the uncertainty, hence we can rewrite (10) in
explicit form as:

Pz =

[

P∆g + JPθ̂J
> JPθ̂

Pθ̂J
> Pθ̂

]

,

whereP∆g
.
= R̂P∆lR̂>, andJ andP

θ̂
are defined as in (11)

and (13). The trick of including the orientation estimates in
z is useful for preserving the correlation between the relative
position measurements (expressed in the global frame) and
the corresponding angular information. As we will see in the
following section, such correlation terms play a fundamental
role in the outcome of the procedure.

D. Phase 3: Linear Position Estimation

We now want to show that the last phase allows to correct
the sub-optimal configuration estimatep̂, leading it towards a
minimum of the cost function, i.e.

θ∗ = θ̂ + θ̃, ρ∗ = ρ̂ + ρ̃,

in which θ̃ and ρ̃ are first-order correction terms. In order
to proceed in the demonstration we need to computep∗ =
[(ρ∗)>(θ∗)>]> as solution of the linear system (12):

p∗ =

[

ρ∗

θ∗

]

= (BP−1
z B>)−1BP−1

z z. (15)

Also in this case, the demonstration of uniqueness of the
solution (15) can be easily deduced from Proposition 1.
To write in explicit form ρ∗ and θ∗, we first compute the
information matrixP−1

z :

P
−1
z =

[

P−1
∆g −P−1

∆g J

−J>P−1
∆g P−1

θ̂
+ J>P−1

∆g J

]

.



The previous inverse can be performed using blockwise matrix
inversion, see [14]. We can now compute the information
matrix Ip∗ = (BP−1

z B>):

Ip∗ =

[

P−1
ρ̂

−A2P−1
∆g J

−J>P−1
∆g A>

2 P−1

θ̂
+ J>P−1

∆g J

]

,

wherePρ̂
.
= (A2P

−1
∆g A>

2 )−1. The inverse ofIp∗ , namelyPp∗ ,
is actually the covariance matrix of our estimated configura-
tion, and it is in the form:

Pp∗ =

[

Pρ∗ Pρ∗,θ∗

P>

ρ∗,θ∗ Pθ∗

]

,

where:

Pθ∗

.
=

(

P−1

θ̂
+ J>P−1

∆g J − J>P−1
∆g A>

2 Pρ̂A2P−1
∆g J

)−1

Pρ∗ = Pρ̂ + Pρ̂A2P−1
∆g JPθ∗J>P−1

∆g A>
2 Pρ̂

Pρ∗,θ∗ = Pρ̂A2P−1
∆g JPθ∗ .

From the expression ofPp∗ and P−1
z it is straightforward

to compute the estimates (15) as:

θ∗ = (AP−1

δ A>)−1AP−1

δ δ+

+Pθ∗J>P−1
∆g

(

A>
2 Pρ̂A2P

−1
∆g − I2m

)

R̂∆l,
(16)

and:

ρ∗ =

[

A2

(

R̂P∆lR̂>

)−1

A>
2

]−1

A2

(

R̂P∆lR̂>

)−1

R̂∆l+

+Pρ̂A2P
−1
∆g JPθ∗J>P−1

∆g

(

A>
2 Pρ̂A2P

−1
∆g − I2m

)

R̂∆l.

By simple inspection it is possible to verify that the obtained
estimateθ∗ is already in the formθ∗ = θ̂ + θ̃, since the first
summand in (16) coincides with (13). The same consideration
holds forρ∗ with respect to equation (14). Therefore we can
write θ̃ and ρ̃ as:

θ̃ = Pθ∗J>P−1
∆g

(

A>
2 Pρ̂A2P−1

∆g − I2m

)

R̂∆l

ρ̃ = Pρ̂A2P−1
∆g JPθ∗J>P−1

∆g

(

A>
2 Pρ̂A2P−1

∆g − I2m

)

R̂∆l.
(17)

We are now ready to state the following key result.
Theorem 1:The outcome of the three-phases procedure ap-

proximates the solution of the nonlinear optimization problem
(6). In particular, the third phase produces a local correction
of a sub-optimal configuration estimate computed in the first
phase, leading it towards a minimum of the cost function.

Proof. We have already shown that the final solution is
composed by the suboptimal solution plus a correction term.
Now the demonstration reduces to verify thatp̃ = [ρ̃> θ̃>]>

is a local solution of our optimization problem aroundp̂ =
[ρ̂> θ̂>]>. In order to prove this point we compute a first-
order approximation of the residual errors in (6) around the
suboptimal solution̂p:

f(P) ≈
(

A>
2 ρ̂ + A>

2 δρ − R̂∆l − Jδθ

)>

(

R̂P∆l R̂>

)−1 (

A>
2 ρ̂ + A>

2 δρ − R̂∆l − Jδθ

)

+

+
(

A>θ̂ + A>δθ − δ
)>

P−1
δ

(

A>θ̂ + A>δθ − δ
)

,

(18)

where δθ and δρ are the displacements from the lineariza-
tion point. This convex approximation can now be easily
minimized by taking the first derivative with respect to the

optimization variablesδθ and δρ and imposing it to be zero.
The minimum of (18) corresponds to:

δθ = Pθ∗J>P−1
∆g

(

A>
2 Pρ̂A2P−1

∆g − I2m

)

R̂∆l

δρ = Pρ̂A2P−1
∆g JPθ∗J>P−1

∆g

(

A>
2 Pρ̂A2P−1

∆g − I2m

)

R̂∆l,

which can be easily seen to coincide, respectively, withθ̃ and
ρ̃, see (17), thus proving our thesis. �

Remark 1:A direct (iterative) method (see [7] and the
references therein) would require solvingN linear problems
of size3n (in which the iterationsN may increase arbitrarily,
depending on the initial guess); our approach solves a smaller
problem (on robot orientations - sizen) and a problem of the
same size of a single step of the direct method. The advantage,
now, is that the first-order correction provided by the last phase
of the proposed approach, refines a sub-optimal solution which
in practice is already close to a global minimum. Therefore
the approach is expected to be accurate, while reducing the
risk of being trapped in a local minimum. Furthermore, the
sub-optimal solution needs not be computed explicitly: forthe
purpose of proving Theorem 1 we reportedρ̂, but it is not
actually computed in the three-phases procedure.

E. Regularization and Existence of the Correction Factors

We now discuss a crucial point of the proposed approach,
which is connected with the periodic nature of the angu-
lar information, i.e., robot orientations are defined up to
2kπ, k ∈ Z. Let us introduce the discussion with an example:
consider a simple scenario, in which a robot travels along
a circumference (in anticlockwise direction) coming back to
the starting point. In a noiseless case, summing up all the
relative orientation measurements from the one taken with
respect to the first node, to the loop closing constraint, referred
to the last node, we obtain2π. This is because we sum small
angular measurements which are defined in(−π, π]. However,
the loop closing constraint is expected to link the last pose
with the initial pose, whose orientation was set by convention
to zero. The linear estimation framework presented so far
cannot recognize that the angles0 and2π actually correspond
to the same orientation, hence tries to impose contrasting
constraints, producing meaningless results. An easy solution
to the previous problem consists in adding a correction factor,
in the form 2kπ, k ∈ Z, to some orientation measurements.
These correction factors do not alter measurement content,
because of the periodicity of the angular information, but let
the relative orientation measurements sum up to zero (this
property will be lately referred to aszero-sumproperty). Hence
the input data provided to the problem solver are consistent
and the estimated configuration is correct.

In the rest of this section we will prove the existence of
suitable correction factors for any connected graph and we will
describe a methodology for retrieving such correction terms.
Before presenting the main result (Theorem 3) let us introduce
some specific concepts from graph theory.

A cycleis a subgraph in which every node appears in a even
number of edges. Acircuit is a cycle in which every node
appears exactly in two edges. We can represent a (directed)
circuit as a vectorci of m elements in which thek-th element
is +1 or −1 if edgek belongs to the circuit and it is traversed
respectively forwards (from tail to head) or backwards, and0
if it does not appear in the circuit (notice that the orderingof
the edges inci is arbitrary).

Definition 1: Given a directed graphG and a spanning tree
T of G, a fundamental circuitis a circuit composed by a



chord (i, j) of G with respect toT and the unique path in
T connectingi and j.

A cycle basisof G is the smallest set of circuits such that
any cycle in the graph can be written as a combination of the
circuits in the basis. The space spanned by the vectors in the
basis is calledcycle space.

Theorem 2:The set of the fundamental circuits of a di-
rected graph constitutes a cycle basis forG.

The proof of the previous theorem can be found in several
books of graph theory, see [4]. We already mentioned that a
spanning treeT of a connected graphG contains exactlyn
edges. Accordingly, the number of chords, hence of funda-
mental circuits inG, is m − n.

Corollary 1: The dimension of the cycle space of a con-
nected graph G isd = m − n, and it is usually called
cyclomaticnumber of the graph [16].

Corollary 2: Ordering the edges of a connected directed
graphG from 1 to m, so that the firstm−n elements are the
chords ofG with respect to a given spanning treeT and the
last n elements are the edges ofT , the matrix containing all
the vectorsci corresponding to the fundamental circuits can
be written as:

C = [c1 c2 . . . cd]
>

= [Id B] , (19)

where Id is the identity matrix of dimensiond and B is a
matrix with elements in{−1, 0, 1}. C is usually referred to as
cycle basis matrix.

The previous result is a direct consequence of the structure
of the fundamental circuits, each one containing a single chord
and a collection of edges in the spanning tree [4]. With slight
abuse of notation, in the following,C will denote both the
cycle basis and the cycle basis matrix.

According to the machinery introduced so far, we notice
that the zero-sum property essentially requires that the sum
of the relative orientation measurements along every cyclein
the graph is zero, instead of2kπ, k ∈ Z\{0}. Hence we can
state the following theorem that holds under the assumption
of noiseless angular measurements.

Theorem 3 (Existence of correction factors):Given the
relative orientation measurementsδ = [δ1, δ2, . . . , δm]> there
exists a correction vectorν = [ν1, ν2, . . . , νm]> so that the
corrected measurementsδ̄ = [δ1 + ν1, δ2 + ν2, . . . , δm + νm]>

satisfy the zero-sum property.
The elements of̄δ are referred to asregularized relative

orientation measurements. The process of compensating the
relative orientation measurements is namedregularization.

Proof. Let us start by formulating the zero-sum property in
a more familiar way. A necessary and sufficient condition for
the zero-sum property to be satisfied for all the cycles in the
graph is that it is satisfied for the cycles in the cycle basis,
see [16]. Let us consider the cycle basis composed by the
fundamental circuits; for the zero-sum property to hold true,
the corrected measurementsδ̄ have to satisfy:

c>i δ̄ = 0 ∀ci ∈ C. (20)

Roughly speaking, if the sum of the relative orientation
measurements is zero for the edges in the fundamental circuits,
this property is true for every cycle in the graph. Equation (20)
can be written in compact form using the cycle basis matrix:

Cδ̄ = 0d. (21)

According to the definition of regularized measurements we
can rewrite (21) as:

C(δ + ν) = 0d =⇒ Cν = −Cδ. (22)

The right hand side will contain the sum of the original
measurements for each fundamental circuit. In a noiseless
case, the vectorCδ contains terms in the form2kπ, k ∈ Z.
Since the cycle basis matrixC can be computed from the graph
and δ is a given of the problem, the only unknown of (22)
is ν and the existence of a proper regularization is reduced
the demonstration of existence of a solution to system (22).
Recalling (19), it is easy to show that a solution to system
(22), is ν = [−(Cδ)> 0

>
n ]>:

Cν = [Id B] [−(Cδ)> 0
>

n ]> = −Cδ, (23)

hence proving our thesis. �

We notice that the aforementioned solution only requires to
correct the angular measurements corresponding to the chords,
without any modification to the edges in the spanning tree. We
remark that the correction terms are in the form2kπ, k ∈ Z,
hence the regulation procedure does not alter the information
content of the orientation measurement. It is now evident
that, in the case of noisy relative measurements, condition
(20) cannot be met exactly: our approach, in fact, will be in
charge of compensating the measurement errors by minimizing
a suitable cost function. Accordingly, the termCδ in (22) will
not contain exact multiples of2π. However, a simple rounding
to the closest multiple of2π allows to retrieve the desired
correction factors. One may argue that, if the noise is large,
it is not possible to discern the desired correction factors,
since the rounding cannot compensate measurement errors;
however this issues was not found to be relevant in common
applications (see experimental section): as it will be clear in
a while, the impossibility to determine the correct multiple of
2π means that the amount of noise is so high that the robot,
revisiting a past pose, is not able to discern how many times
the robot turned around itself (i.e., completed2π turns) since
the previous visit. Note that this result also sheds some light
on the so calledorientation wraparoundproblem [11], which
is known to prevent convergence in iterative approaches.

We now tailor the previous formulation to the SLAM setup.
We state the following facts, whose demonstration is omitted,
since it can be easily inferred from the basic definitions.

Proposition 2: The edges corresponding to odometric con-
straints in the pose graph constitute a spanning tree,T , for the
connected graphG, describing the SLAM problem.

Corollary 3: The edges corresponding to loop closing con-
straints are chords of the pose graphG, with respect to the
spanning treeT .

Therefore, according to Corollary 3 and Theorem 3, we can
regularize the orientation measurements by simply correcting
loop closing constraints; in particular, a loop closing relation,
constraining two robot poses, has to be corrected taking into
account the number of complete turns (2π turns) the robot did
when traveling from the first to the second pose.

V. EXPERIMENTAL VALIDATION

In this section we will show an application of the proposed
methodology to the Intel Research Lab dataset [18]. The
solution of the full SLAM problem from real data requires
three steps:

1) Odometric and loop closing constraints are extracted
from real sensor data;

2) Regularization is performed for making the orientation
measurements consistent;

3) The three-phases procedure is applied to solve the graph
embedding problem.



Number Number of Number of Number of
of odometric loop closing chords needing

nodes constraints constraints regularization

1228 1227 278 198

TABLE I
NUMBER OF ODOMETRIC CONSTRAINTS, LOOP CLOSING CONSTRAINTS,

AND REGULARIZED ORIENTATION MEASUREMENTS FORINTEL DATASET.
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Fig. 1. Intel Research Lab dataset: odometric constraints (solid lines),
corresponding to the odometric trajectory corrected with scan matching, and
loop closing constraints (dotted lines).

In the following, we will tailor the formulation to the
particular application scenario, in which a mobile robot is
equipped with wheel encoders and a laser range finder. The
odometric constraints are obtained by refining the wheel
odometry measurements with a scan matching procedure,
see [19]. The loop closing constraints are selected from the
relations available at [18]. The number of odometric and loop
closing constraints is reported in Table I.

In Figure 1 we show the odometric trajectory of the robot
(solid line) obtained from wheel encoders estimates and scan
matching. The figure also shows, as dotted lines, the edges
corresponding to loop closing constraints. The scan matching
algorithm is only able to enforce local consistency by aligning
the laser readings acquired at subsequent poses, thus failing
in producing a globally consistent map. Once the relative
pose information (δ,∆l) is available, it is possible to perform
regularization for orientation measurements. Computing the
cycle basisC and the correction termsν = [−(Cδ)> 0

>
n ]>,

it is possible to obtain the regularized measurementsδ̄. In
Table I we show the number of loop closing constraints
for which a correction factor2kπ, k ∈ Z\{0} was needed.
The configuration estimated with the three-phases procedure
and the corresponding occupancy grid map are reported in

Fig. 2. Intel Research Lab dataset: (a) estimated node configuration, (b)
occupancy grid map obtained by associating the corresponding laser scan to
each node of the estimated configuration.
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Fig. 3. Errors versus iterations for TORO (solid lines) and errors for the
three-phases procedure (dashed line). (a) translation error squared (ηc); (b)
angular error squared (ηa).

Pij = diag(P∆l
ij

, Pδij
) Pij = I3

ηc [m2] ηa [rad2] ηc [m2] ηa [rad2]

TORO
2.60 · 10−3 2.30 · 10−4 6.16 · 10−4 1.62 · 10−4

(100 iter.)
TORO

1.90 · 10−3 2.18 · 10−4 5.83 · 10−4 1.62 · 10−4

(1000 iter.)
Proposed

0.91 · 10−3 2.25 · 10−4 3.36 · 10−4 2.00 · 10−4

approach

TABLE II
BENCHMARK METRICS [19] FOR THE INTEL DATASET: TRANSLATION

ERROR SQUARED(ηc) AND ANGULAR ERROR SQUARED(ηa).

Figure 2. For a quantitative evaluation we report the values
of the SLAM benchmark metrics proposed in [19]. Without
entering into details we mention that such metrics provide
a tool for comparing the SLAM approaches in terms of
accuracy. In Table II we show the values of theconstraint
satisfaction metrics, comparing the proposed solution with the
Tree-based netwORk Optimizer(TORO), which is available
online, see [11]. We consider two scenarios, in which different
measurements covariance matrices are considered: in one case
the covariance matrix is chosen to be the identity matrix
(Pij = I3), whereas, in the other scenario, measurements
covariance is in the formPij = diag(P∆l

ij
, Pδij

), and the
corresponding uncertainties are assumed to be proportional
to the respective measurements, e.g. bigger displacements
correspond to higher uncertainty. For this last case, in Figure
3 we plot the errors versus iterations for TORO, compared
with the corresponding statistics obtained with the three-
phases procedure. It is now clear that the proposed approach
is accurate in practice. Further experiments and simulations
can be found in [2], confirming the results presented so far.

Remark 2:The assumption of independent position and
orientation measurements holds true when dealing with holo-
nomic platforms. For non-holonomic platforms it constitutes
an approximation, but several state-of-the-art techniques have
been demonstrated to produce excellent results, even under
stricter assumptions on the covariance structure (e.g. spherical
covariances in [11]).

VI. CONCLUSION

The contribution of this work is twofold:in primis we
combine tools of linear estimation and graph theory, to gain
a deep insight on SLAM with graphical models; then we
apply this theoretical analysis for retrieving an approximate
solution to the full SLAM problem, under mild assumptions
on the structure of the involved covariance matrices. The
proposed estimation process requires no initial guess and is
formally demonstrated to admit solution when applied to the



embedding of the pose graph. Experiments on a real dataset
confirm the validity of the theoretical analysis. It is possible
to consider the proposed approach as a linear initialization
method for iterative optimization or as a stand-alone tool.The
impact of the proposed methodology concerns different aspects
of the SLAM problem: (i) the solution only requires basic
linear algebra machinery hence it can be envisioned to apply
complexity reduction techniques (Cholesky decomposition,
QR factorization, blockwise inversion, etc.) or to use parallel
computational architectures (e.g., FPGA) making the approach
suitable for large scale mapping; (ii) the paper provides an
insight on the orientation wraparound problem: in large-scale
applications, one cannot expect to let the robot travel for a
long time without incurring in this issue; (iii) the linearity of
the framework provides a chance for devising an incremental
solution to graph-based SLAM.
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[18] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke,
G. Grisetti, C. Stachniss, and A. Kleiner. Slam
benchmarking webpage. http://ais.informatik.uni-
freiburg.de/slamevaluation, 2009.
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