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Abstract—This article investigates the problem of Simultaneous partial observability in standard EKF-SLAM implementatio
Localization and Mapping (SLAM) from the perspective of linear  are not fully understood, this being witnessed by recent
estimation theory. The problem is first formulated in terms of results ]_ The second class of approaches, namely Rao-

graph embedding: a graph describing robot poses at subsequent . . . . .
instants of time needs be embedded in a three-dimensional space,BIaCkVVe”'Zed particle fllters[[S], is based on a factoriaatof

assuring that the estimated configuration maximizes measure- the posterior and was successfully employed for buildinty bo
ment likelihood. Combining tools belonging to linear estimation landmark-based and occupancy grid map representatiohs of t
and graph theory, a closed-form approximation to the full environment([29]. Also in this case, fundamental limitago

SLAM problem is proposed, under the assumption that the = 5yq \ye|l known to the robotic community [21]: a finite number

relative position and the relative orientation measurements are f particl t be able t " t thedtai
independent. The approach needs no initial guess for optimization of parucies may not be able 1o correctly represent (nediayg

and is formally proven to admit solution under the SLAM setup.  Posterior, and this issue becomes critical when the uriogyta
The resulting estimate can be used as an approximation of the in the posterior increases. The third category encompakees
actual nonlinear solution or can be further refined by using it techniques in which measurements acquired during robot mo-
as an initial guess for nonlinear optimization techniques. Finally, jon are modeled as constraints in a graphical model. Thegpos
the experimental analysis demonstrates that such refinement is L . .
often unnecessary, since the linear estimate is already accurate. assum_ed by the robot during its motion Correspond to vestice
of a directed graph, whereas the constraints are modeled as
l. INTRODUCTION edges in such graph. Hence SLAM can be stated in terms
In the landscape of Simultaneous Localization and Mappimdg maximum likelihood and solved through nonlinear opti-
problems it is possible to distinguish betweenline and mization techniquesi__[_tO]. Although graph-based apprasache
full SLAM approaches@Q]. The former methods estimat&re recognized to outperform other SLAM techniques in terms
the SLAM posterior by recursively including the most recerdf accuracy, they present the classical drawbacks of neain
measurements in the posterior density. This is typically tloptimization techniques: convergence to a global minimdm o
case of a robot that acquires proprioceptive and exterocepe cost function cannot be guaranteed in general and, if the
tive measurements from the environment and, at each tiindial guess for optimization is outside the basin of attien
step, incrementally includes such information in the paste of the global optimum, the iterative process is likely to be
describing robot pose and a representation of the surrngndstuck in a local minimum.
environment. Full SLAM approaches, instead, tackle thédpro In this article we address the full SLAM problem in planar
lem of retrieving the whole posterior, taking into accounth@ setups. Combining tools of linear estimation and graphrtheo
same time all the available measurements; this batch enluta closed-form approximation to SLAM is retrieved, under
may occur, for instance, when the data, acquired durimgild assumptions on the structure of the involved covaganc
robot operation, have to be processed off-line to producensatrices. The linear approximation requires no initial ggje
meaningful representation of the scenario. moreover, experimental evidence demonstrates that itdg-ac
From the algorithmic point of view, literature on SLAM carrate in practice, hence it can be used in place of the exact
be roughly divided in three mainstream approaches: Gaussslution or for bootstrapping nonlinear techniques.
filter-based, Particle filters-based and graphical appresc
The first category includes Extended Kalman Filter SLAM
(EKF-SLAM) [26], Sparse Extended Information Filtéﬂ[ZS], The seminal papeﬁiZO] paved the way for several results
delayed-state EKF—SLAM[[9] and related approaches. EKEewards the objective of a sustainable solution to full SLAM
like techniques require the linearization of both procesd aThe setup considered by Lu and Milios was based on scan
measurement models; the first-order approximation, howevmatching for retrieving relative constraints between tobo
often comes at a price of inconsistency and divergeEIce [Bbses, but the use of a Gauss-Newton scheme for optimization
Moreover the complexity of the filter is quadratic in theprevented its applicability in large scale scenarios. Tisme-
number of landmarks, hence a naive implementation prevemisrk was extended to the general case of a graph containing
large scale mappinﬂlz9]. Finally, we remark that the eff@ft both robot poses and landmark positionsm [27]. Thrun and

II. RELATED WORK



Montemerlo showed that it is possible to marginalize var{e.g., Eﬁ@]) are often employed for bootstrapping nuedr
ables corresponding to landmarks, hence reducing thegobltechniques (i.e., bundle adjustmeﬁ] [13]). Similar intuis can
to the pose estimation setup discussed lin [20]. Moreovee also found within the SLAM community, sde [6].

they enabled the estimation of large maps®(landmarks), Notation and preliminaries. I,, denotes the, x n identity matrix,0,,
applying a conjugate gradient-based optimization. K@®li genotes a (column) vector of all zeros of dimensioi/,, . denotes
investigated a reduction scheme for the purpose of impEVig matrix withn rows andm columns ands denotes the Kronecker
the computational effort of nonlinear optimization [17het product. The cardinality of a generic sgfs written as S|. A directed
optimization process was restricted to poses involved in &aphg is a pair(V, £), whereV is a finite set of elements, called
least one loop constraint, providing a remarkable advantagticesor nodes andé is a set containing ordered pairs of nodes. A
for graphs with low connectivity. Freset al;_[froposed @ generic element € &, referred to agdge is in the forme = (i, ),
multilevel relaxation approach for full SLA 0], allowtn  meaning that edge, incident on nodes and j, leavesi (tail) and is
to considerably reduce the computational time of optinrat girected towards nodg (head [18]. The number of nodes and edges
by applying a multi-grid algorithm. A further breakthroughyre genoted witi + 1 (the reason for this choice will be clear later)
in the literature of graph-based approaches came with thgy,, respectively, i.e.|]V| = n + 1 and |€| = m. Theincidence

use ofincremental pose parametrizatipproposed in[[23]. matrix A of a directed graph is a matrix iR+ *™ in which each
Olsonet al. showed how a clever selection of the optimizatiogojymn contains the information of an edgedn in particular the
variables can greatly simplify the problem structure, én8b cojymn corresponding to the edge= (4, 5), has thei-th element

fast computation. Moreover they proposed not to optimize @qyal to—1, the j-th element equal te-1 and all the others equal
the constraints at the same time, but to sequentially selggbero. A directed graph isonnectedor weakly connectddf there
each constraint and refine nodes’ configuration so to reduggsis an undirected path (regardless edges’ orientation) connecting
the residual error for such constraint. Grisettial. extended 4ny pair of nodes. Apanning treeof G is a subgraph with: edges
such framework, taking advantage of the use of stochasfigt contains all the nodes & The edges of that do not belong to a

gradient descent in planar and three-dimensional scenar@en spanning tree of the graph are usually referred thasis[a].
[|1_.’l|]. Moreover they proposed a parametrization based on a

spanning tree of the graph, for speeding up the correction of I1l. PROBLEM FORMULATION
the residual errors over the network. This approach wasshow Let V = {v,...,v,} be a set ofx + 1 nodes (representing
to be quite resilient to therientation wraparound problem subsequent poses assumed by a mobile robot) an® let
(which causes the configuration estimate to be stuck in d lodg,. ..., p, } denote a corresponding set of absolute poses in a
minimum [11]) and currently constitutes the state-of-#te- planar setup, i.ep; = [p] 6;]T € R?, wherep; = [z; 1] €
All the aforementioned techniques are iterative, in thessenR? is the Cartesian position of theth node, and; is its
that, at each iteration, they solve a local convex approtiana orientation. We shall calP a configurationof nodes. Suppose
of the original problem, and use such local solution to updathat it is possible to measure the relative pose between some
the configuration. This process is then repeated until thedes, say node, j); in particular nodei can measure the
optimization variable converges to a local minimum of thpose of; in its local reference fram&;, i.e., &; = p; S pi,
cost function. In particular, when a linear approximatidn avherec is a standard pose compounding operator that can be
the residual errors in the cost function is considered, thewritten in explicit form as:
problem becomes an unconstrained quadratic problem and -
the local correction can be obtained as solution of a system P Opi = { Rig(,pi*_pi) } ; 1)
of linear equations, known asormal equation[lﬂ]. In such T
a case the source of complexity stems from the need lméing R; € R?*? a planar rotation matrix of an angl.
repeatedly solving large scale linear systems. A discussip Since relative pose measurements are affected by noise, the
the performances of direct and iterative methods for sglvifneasured quantities are in the foqyy = &;; + €;;, where
large scale equations, with application to SLAM, can be tburfij. € R; IS aéetgo ”3183” Gaussian nto!seil 16§~ {}/(07 Pij),
1 11 Some-rgnal atempts 10 orplo the matmematefng 8,3 by 5 cotarance matn n practce, e car
structure of the optimization problem and the properties o% . . :
the underlying graph have been recently propoedl (5,17, 111.° odometric constraintsrelative measurements between
poses assumed by the robot at subsequent instants of time.
Although the state-of-the-art approaches have been demon- These constraints are connected to measurements of the
strated to produce impressive results on real world problem  ego-motion (odometry) of the robot and are provided by
their iterative nature requires the availability of an imlit proprioceptive sensors (wheel odometry, IMU, etc.) or by
guess for nonlinear optimization, which needs be suffitjent ~ €xteroceptive sensors-based techniques (scan matching,
accurate for the technique to converge to a global solutfon o Visual features registration, etcl) [29]; -
the problem. In this work we provide a linear approximation * loop closing constraintsare connected to place revisiting i
X F episodes. This phase clearly requires the use of exterocep
of the full SLAM solution that can be used as initial guess for  tjye sensors, among which it is worth mentioning vision
an iterative nonlinear approach. We remark that the idea of a sensors and laser range finders.
linear initialization is not new in the literature. For inste, In this context, we assume the constraints to be given, since
in computer vision, linear methods based on algebraic ®rrdhe reliable determination of both odometric constraimd a



loop closing constraints is still an active research to2f],
whose implications are out of the scope of the present articl T .

The problem can be naturally modeled using graph for- Sjee | (05 = pi) = AL ] PN [RT (5 = pi) = AL+
malism: each node in the s&t corresponds to a vertex of a e 105 — 0:) — 6i,]7 pl [(8; — 6:) — 6:5].
directed graplg(V, £) (often referred to apose graph, where th.g)es B T B !

& (graph edges) is the set containing the unordered node pairfn order to put the previous formulation in a more com-
(i,7) such that a relative pose measurement exists betweegact form, let us number the nodes pairs, for which a rel-
and j. By convention, if an edge is directed from notléo ative pose measurement is available, framto m; let us

nodej, the corresponding relative measurement is expressgdck all the relative position measurements in the vector
in the reference frame of node We denote with= the set Al = [(A})T (AL)T,...,(AL)T]T, and all the relative

m

of all available measurements, i.&,= {&;;, (i,j) € £}. The grientation measurements in the vecfor: [6;, 6, ..., 0] .

cardinality of the se€ is |E| = |£] = m. The relationship Repeating the same procedure for all the positions and ori-

between odometric (and loop closing) constraints and graghtations assumed by the robot we get thedes’ posi-

edges is discussed in detail in Section IV-E. tion pt = [pl.p1.....p;]7 and thenodes’ orientation
From the knowledge of relative pose measurements and {ie _ [60,61,....00] . Tr?erefore it can be easily verified

corresponding uncertainty, the robot is required to eserttee 4t equafion’EM)’ an be rewritten as:

configurationP in a given reference framg,. By convention,

we set the initial pose of the robot to be the origin of such _— N =1 T .

reference frame, i.epo = [0 0 0]T. In topological graph ~ /(P) = (A3 p" = RAY) " (RPART) ™ (A3 p7 = RAT + - )

theory the problem is also referred to as graphbeddingre- +(ATOT —5) Pyt (ATOT —4)

alizationor drawing, depending on the context and on proble : o :

constraints[[12]. Therefore our objective is to determime &heri A A|s®tr}e ilgcgjneng)e( ;?]?jtég( grngheofg{ﬁggi(r%ige)zh ce

estimated configuratio®* = {pj,...,p;}, that maximizes * 2. = S [[I1]2P _ dia?g(P P Pa ), Py —

the likelihood of the observations. It is common in literatu ' 1Al Afy ALy s BAL ) B0

(©)

to assume independence among observations, hence we $88(Fs.; Ps,. - .-, Fs,,), and R = R(f) is a block diagonal
write the log-likelihood function of a configuration as: matrix containing the rotation matrices that transform the
corresponding local measurements in the global framethe.
In £(P|Z) = Z In7(&5|P), (2) non-zero entries oft are in positions2k — 1,2k — 1), (2k —
ot 1,2k), (2k, 2k — 1),(2k,2k), k = 1,...,m, and thek-th

diagonal block contains the rotation matrix converting ki
where (&;;|P) is the conditional probability density of therelative position measurement in the global frame.
measurement;; given the node configuration. Since we Equation [[b) can be further simplified by recalling the
assumed that the involved densities are Gaussians, it ys ealsoice of the reference fram@ = [0 0]" and 6, = 0,
to demonstrate that maximizing the likelihood functi@h i) leading to the following relation:
equivalent to minimize the sum of the weighted residualrsrro

F(P) = (AJp— RA)T (RPy(RT) " (A] p— RAT) +
JPY="Y (pjopi—&;) Py (piopi—&;). +(ATo—68)" Pyt (AT —0) ’
(i,4)€€

(6)

wherep and @ are the vectors obtained fropt and 6+ by
The full SLAM problem is hence formulated as a minideleting the elements, andd,, respectively, wheread and

mization of the nonlinear non-convex cost functidh (3),,i.eA, are reducedincidence matrices, obtained by deleting the

the optimal configuration i$* = arg min f. The nonlinearity rows corresponding t6, andp, from A and.A,, respectively.

of the function f(P) is due to the structure of the pose We observe that the minimization of the cost functibh (6)

compounding operatof](1) and, in particular, to the nowlineis equivalent to find the solution (in the least-squares eens

terms in the orientations of the robot. to the following system of equations:
IV. A LINEAR ESTIMATION FRAMEWORK FORSLAM { Ag p= R(O)A! )
ATh=96 ’

We first observe that each relative pose measurement is

composed by a two-valued vectorelative position corre- The system[{7) includes: vector-valued relations (or con-
sponding to the first two components ¢f;, see [(1), and a straints) on relative positions and scalar constraints. When
scalar (elative orientatio). Therefore we can rewrite eachy solution exactly satisfies all the constraints (7), the
measurements a§; = [Aéj %]T, where the superscript corresponding minimum of the cost functiofl (6) is zero,
denotes that the relative position vector is expressed ata@ | otherwise, the searched solution has to minimize the weghht
frame. According to the notation introduced so far the cogésidual errors on the constraints. The nonlinear natut@ef
function [3) can be rewritten as: problem at hand is connected with the matfX#), which
T contains trigonometrical functions of nodes’ orientation
R;r(pj - pi) — Aé]' } p-! { R;r(pj - pi) — Aé]'

2anee |0, 0;) - 51y 9 (0; —0:)—di;; ] A. Solving SLAM with Linear Estimation Theory

In this context we assume that the relative position infor- We now provide a procedure that allows to retrieve an
mation and the relative orientation measurements are @mepapproximation of the actual nonlinear solution @i (6). The
dent, i.e.P;; = diag Pa: , Ps,,)- This hypothesis is a technicalprocedure can be summarized in three phases:
requirement for attacKing the problem, see also Renbdrk 21) Solve the following linear estimation problem:

in Section[Y. Under this hypothesis the cost functif(i)
becomes: ATo =6, (8)



from which the suboptimal orientation estimateand the corresponding row. Thereforg} is full rank and P(;1

its covariance matrix’; can be obtained. is positive definite by definition, thenlP; ' AT is positive
2) Estimate the relative position measurements in the glokRefinite, hence invertible, see [14]. If the matrix is iniele,
reference frame: the solution of the linear problem can be uniquely deterchine
A asf = (AP;'AT)"1 AP s, O
L { R O2mxn } { Al } _ { 91(AL,0) } ©) It is worth observing that once the absolute orientation of
Odmxn  In 0 92(0)  Jo5’ the robot is known, also the first equation [ (7) becomes

linear in the unknownp. Therefore, usingd as the actual
odes’ orientation, we can also compute an estimate forgiode
position p, using linear estimation framework:

with R = R(é); compute the corresponding uncertaint
(preserving the correlation with the orientation estifiate

o PA’ 027n><n T
PZ_H{ o h ]H . (10

. L\ -1 -t . U
5= {AQ (RPNRT> A;} As (RPNRT> RA! (14)
where H is the Jacobian of the transformation [ (9):
992 I, and uniqueness of the solution directly stems from Proposi-
oAb 004 _ tion 1. However, the first equation ifil(7) also constraints th
3) Solve the linear estimation problem in the unkngw#  orientations of the robot, thus the estimagte= [p7 6]

[p" 67]", given> @) and P, (10): constitutes a suboptimal solution, in which the influence of
AT 0 the first equation on the estimated orientations is neglecte
o = |: 2 2mXxn :| |: g :| _ BTp, (12)

&
O2pxn  1In C. Phase 2: First-order Error Propagation

from which the solutionp* = [(p*)"(6*)7]" and the = The second phase simply provides an estimate of the relative
corresponding uncertainty can be retrieved. position measurements in the global reference frame: the
In the rest of this section we will show how the proposedector z will be in the form =z = [(A%)" §7]" where

procedure provides an approximate solution to SLAM witih9 = RA! is the vector containing the relative node position
graphical models. For sake of readability each phase of tbgpressed in the absolute reference fraRg The corre-
procedure will be discussed in detail, hence the proof of t@onding covariance matrix can be obtained by a first-order
result will be clear at the end of Sectibn TW-D. propagation of the uncertainty, hence we can rewfié (10) in
explicit form as:

991 9g1 > Ho_ 7 ; ; .
o= { A o ] _ { OTR J } - (11) where R = R(f). Also in this case, the proof of existence
0

2mxn

B. Phase 1: Linear Orientation Estimation

Observing the structure of probleidl (7) it can be seen that
the second part of the system, including the relative oaigort
measurements, is linear in the unknown variadlerhe first A A
phase of the procedure requires the solution of such subaélere P, = RP,:RT, andJ and P, are defined as if(11)
of constraints; this is a standard linear estimation prmoble and [I3). The trick of including the orientation estimatas i
given the matrix4, the measurementsand the corresponding z is useful for preserving the correlation between the nedati
covariance matrix’s, the objective is to provide an estimate position measurements (expressed in the global frame) and
of the unknownd. According to well known results in linear the corresponding angular information. As we will see in the
estimation theory[[22], the Best Linear Unbiased Estimat@®llowing section, such correlation terms play a fundaraent
(BLUE) for 6 in (8) and the corresponding covariance are: role in the outcome of the procedure.

PAg—I—JP(;JT J P

PZ = T )
PyJ 2

b= (AP TAT) AP S, Py = (AP;TATY L (13) D. Phase 3: Linear Position Estimation

We now want to show that the last phase allows to correct
tAe sub-optimal configuration estimaigleading it towards a
minimum of the cost function, i.e.

The following results establish existence and uniquenéss
the solution of problem{8). We recall that similar resulésc
be found in literature, seel[1] and the references therein.

Lemma 1 (Connectivity of pose graphlhe pose grapld 0* =0 +0, P =p+p,
modeling robot poses, including odometric and loop closing )
constraints is connected. in which § and / are first-order correction terms. In order

Proof. The proof is trivial since the path connecting all theo proceed in the demonstration we need to comptite=
nodes is actually the trajectory traveled by the robot; is thm,*)T(g*)T]T as solution of the linear systefi{12):
sense the edges corresponding to the odometric constraints

assure graph connectivity. | . p* T
Proposition 1 (Existence of the solution for phase The P = [ 0* } =(BP, B')  BP, = (15)
solution of the first step in the procedure TV-A is uniquegif
is connected and a node orientation is supposed to be knowso in this case, the demonstration of uniqueness of the
Proof. The incidence matrixA of a connected grapy solution [I%) can be easily deduced from Propositidn 1.
has rankn (with [V| = n + 1) and becomes full rank To write in explicit form p* and 6*, we first compute the
as soon as one row is deleted, sée [4]. As we have jisformation matrix P, *:
shown in [[6), assuming a node to have known orientation
(e.g., the first node is assumed to be the absolute reference pl_ Pt —P&TL}J
frame) allows to reduce the incidence matrix by deleting = T | I Pxy PU4JTPRT |



The previous inverse can be performed using blockwise mataptimization variabley andd, and imposing it to be zero.
inversion, seel[14]. We can now compute the informatiofhe minimum of [I8) corresponds to:
matrix I,» = (BP;1BT):

{ Pt —AxPy,J }
L = ; ,

3 = Ppe JT PR} (A;P,;AQPA—; - 12m) RA!
P
—JT P A P+ TPy

8p = Py Ao PXt Py JT P (AQT PyAs PRt — IZm) RAL,

whereP; = (A Py, AJ)~'. The inverse ofl,-, namelyP,-, which can be easily seen to coincide, respectively, Witind
is actually the covariance matrix of our estimated configur&: S€€ [(IV), thus proving our thesis. U

tion, and it is in the form: Remark 1:A direct (iterative) method (se€l[7] and the
references therein) would require solvifg linear problems
Py P, g of size3n (in which the iterationsV may increase arbitrarily,
Py = plpe* Py~ ) depending on the initial guess); our approach solves a emall
r problem (on robot orientations - sizg and a problem of the
where: same size of a single step of the direct method. The advantage
. now, is that the first-order correction provided by the ldsige
Ppx = (P(;1 +JTPLLT — JTP;;A;PﬁAzP;;J) of the proposed approach, refines a sub-optimal solutiontwhi
Py = Py + Py Ao PXLJPy-JT PXLAT P, in practice is already close to a global minimum. Therefore
Pye g» = P Ao PX TPy the approach is expected to be accurate, while reducing the

risk of being trapped in a local minimum. Furthermore, the
From the expression oP,- and P! it is straightforward sub-optimal solution needs not be computed explicitly:tfar
to compute the estimatedlS) as: purpose of proving Theorefd 1 we reportgdbut it is not
actually computed in the three-phases procedure.
0* = (AP P AT) "1 AP 15+ o . .
T4 1 5al (16) E. Regularization and Existence of the Correction Factors
+Py- JT Py (A P A Pry — Iom) RA', ) _ )
We now discuss a crucial point of the proposed approach,
and: which is connected with the periodic nature of the angu-
. . ) Izakr inli;ormZatiLon, i.e., r%bot orqierét.ations_ are .%efined up Ito
« A ST\ 4T A 5T AAL m, k € Z. Let us introduce the discussion with an example:
pr= | A (RPNR ) A 4z (RPA’R ) RA'+ consider a simple scenario, in which a robot travels aIF:)ng
-1 Tp—1 (4T —1 S AL a circumference (in anticlockwise direction) coming baok t
+PpAoPps I Py J T Pyy (A3 PpAaPry — Iam) RAL the starting point(. In a noiseless case, su)mming gup all the
By simple inspection it is possible to verify that the obtain relative orientation measurements from the one taken with
estimated* is already in the formd* = 6 + 4, since the first respect to the first node, to the loop closing constraingrretl
summand in[{16) coincides with {{13). The same consideratiffh the 1ast node, we obtaiw. This is because we sum small

holds for p* with respect to equatiofi (lL4). Therefore we caghgular measurements which are definegHim, x]. However,
write 6 and 5 as: the loop closing constraint is expected to link the last pose

with the initial pose, whose orientation was set by conwenti

to zero. The linear estimation framework presented so far

= Pp-JT PX,} (AZT PsAsPry — Izm) RA! an cannot recognize that the angléand 2 actually correspond

5= PyAsPxt Py TPy (A;PﬁAQP_gl B ]2m) RAL to the same orientation, hence tries to impose contrasting
constraints, producing meaningless results. An easyisnlut

to the previous problem consists in adding a correctiorofact

. in the form2kn, k € Z, to some orientation measurements.
Theorem 1:The outcome of the three-phases procedure hese correction factors do not alter measurement content,

roximates the solution of the nonlinear optimization peoin g, . ;
ﬁﬁ)- In particular, the third phase produce% a local coimact because of the periodicity of the angular information, lit |
o

=1

We are now ready to state the following key result.

e . ) v . - the relative orientation measurements sum up to zero (this
of a sub-optimal configuration estimate computed in the fi operty will be lately referred to aero-sunproperty). Hence

phase, leading it towards a minimum of the cost funct|_0n. the input data provided to the problem solver are consistent
Proof. We have already shown that the final solution ISnd the estimated configuration is correct

composed by the suboptimal solution plus a correction terM. | the rest of this section we will prove the existence of

: ety (=T ATIT ! ; :
Now the demonstration reduces to verify that=[5 0 '] *  gyjtable correction factors for any connected graph and ilve w
IS a l(%ci" solution of our optimization problem aroufid= " {escribe a methodology for retrieving such correction germ
[p* 67]" . In order to prove this point we compute a firstBefore presenting the main result (Theofém 3) let us inttedu
order approximation of the residual errors [ (6) around th@me specific concepts from graph theory.

suboptimal solutiorp: A cycleis a subgraph in which every node appears in a even
. T number of edges. Aircuit is a cycle in which every node
f(P) =~ (AgTﬁJr Ag 6 — RA! - Jée) appears exactly in two edges. We can represertiracted
) PSS . .
Ap o RT AT 54 ATs, — RAL— Js 1g) Circuit as a vector; of m elements in which thé-th element
<R AfR ) ( 2 p: 2 {Q / 9> N (18) is +1 or —1 if edgek belongs to the circuit and it is traversed
+ (ATG + AT s — 5) Pyt (ATG + AT — 6) , respectively forwards (from tail to head) or backwards, and

if it does not appear in the circuit (notice that the orderaig
where 6 and ¢, are the displacements from the linearizathe edges ire; is arbitrary).
tion point. This convex approximation can now be easily Definition 1: Given a directed grapff and a spanning tree
minimized by taking the first derivative with respect to thd' of G, a fundamental circuitis a circuit composed by a



chord (4, j) of G with respect toT" and the unique path in The right hand side will contain the sum of the original

T connectingi and j. measurements for each fundamental circuit. In a noiseless
A cycle basisof G is the smallest set of circuits such thatase, the vecto€d contains terms in the forrkn, k € Z.

any cycle in the graph can be written as a combination of ti$nce the cycle basis matrékcan be computed from the graph

circuits in the basis. The space spanned by the vectors in #rel § is a given of the problem, the only unknown 6f§22)

basis is callectycle space is v and the existence of a proper regularization is reduced
Theorem 2:The set of the fundamental circuits of a dithe demonstration of existence of a solution to systenh (22).

rected graph constitutes a cycle basis gor Recalling [19), it is easy to show that a solution to system
The proof of the previous theorem can be found in sever@2), isv = [—(C5)" 0,]":

books of graph theory, sekl [4]. We already mentioned that a

spanning tre€l’ of a connected graply contains exactlyn Cv=I[I; BI[-(C&" 0]]" = -y, (23)

edges. Accordingly, the number of chords, hence of funda- ) )

mental circuits inG, is m — n. hence proving our thesis. O

Corollary 1: The dimension of the cycle space of a con- We notice that the aforementioned solution only requires to
nected graph G isl = m — n, and it is usually called correct the angular measurements corresponding to theshor
cyclomaticnumber of the grapH_[16]. without any modification to the edges in the spanning tree. We

Corollary 2: Ordering the edges of a connected directestmark that the correction terms are in the fa2kr, k € Z,
graphg from 1 to m, so that the firsin — n elements are the hence the regulation procedure does not alter the infoomati
chords ofG with respect to a given spanning tréeand the content of the orientation measurement. It is now evident
last n elements are the edges Bf the matrix containing all that, in the case of noisy relative measurements, condition
the vectorse; corresponding to the fundamental circuits ca@0) cannot be met exactly: our approach, in fact, will be in
be written as: charge of compensating the measurement errors by minignizin

T _ a suitable cost function. Accordingly, the ted in (22) will
Cd} = [Id B] s (19) . . f .

not contain exact multiples @&r. However, a simple rounding
where I; is the identity matrix of dimension and B is a to the closest multiple o7 allows to retrieve the desired
matrix with elements if—1,0, 1}. C is usually referred to as correction factors. One may argue that, if the noise is large
cycle basis matrix it is not possible to discern the desired correction fagtors

The previous result is a direct consequence of the structgiace the rounding cannot compensate measurement errors;
of the fundamental circuits, each one containing a singbeath however this issues was not found to be relevant in common
and a collection of edges in the spanning tiee [4]. With sliglapplications (see experimental section): as it will be rciea
abuse of notation, in the following; will denote both the a while, the impossibility to determine the correct mukif
cycle basis and the cycle basis matrix. 27 means that the amount of noise is so high that the robot,

According to the machinery introduced so far, we noticeevisiting a past pose, is not able to discern how many times
that the zero-sum property essentially requires that tme sthe robot turned around itself (i.e., completzd turns) since
of the relative orientation measurements along every dyclethe previous visit. Note that this result also sheds son# lig
the graph is zero, instead akn, k € Z\{0}. Hence we can on the so calledrientation wraparoundproblem [11], which
state the following theorem that holds under the assumptignknown to prevent convergence in iterative approaches.

C=lerea ...

of noiseless angular measurements. ) We now tailor the previous formulation to the SLAM setup.

Theorem 3 (Existence of correction factorsjiven  the We state the following facts, whose demonstration is omhjtte
relative orientation measuremerts= [0, d2,...,0,] " there since it can be easily inferred from the basic definitions.
exists a correction vectar = [v1,15,...,v,]" so that the  Proposition 2: The edges corresponding to odometric con-
corrected measurements= [§; + vy, 02 +va, ..., 6, +vm] | straints in the pose graph constitute a spanning feéor the
satisfy the zero-sum property. connected graply, describing the SLAM problem.

The elements ob are referred to asegularized relative  Corollary 3: The edges corresponding to loop closing con-
orientation measurementdhe process of compensating th&traints are chords of the pose gra@hwith respect to the
relative orientation measurements is namegllarization spanning tredl.

Proof. Let us start by formulating the zero-sum property in' Therefore, according to Corollafy 3 and Theofém 3, we can
a more familiar way. A necessary and sufficient condition faegularize the orientation measurements by simply canmgct
the zero-sum property to be satisfied for all the cycles in thgop closing constraints; in particular, a loop closingatien,
graph is that it is satisfied for the cycles in the cycle basigenstraining two robot poses, has to be corrected takiray int
see [[16]. Let us consider the cycle basis composed by tecount the number of complete turfsr turns) the robot did
fundamental circuits; for the zero-sum property to holceiruwhen traveling from the first to the second pose.
the corrected measurementdave to satisfy:

¢;6=0 Ve eC. (20) V. EXPERIMENTAL VALIDATION

Roughly speaking, i the sum of the relatve orentaiop, % S SEc1 e v S, a0 spaieator, o he proposed
measurements Is zero for the edge_s in the fundamentaltsirc olution of the full SLAM problem from real data requires
this property is true for every cycle in the graph. Equati@@)(

can be written in compact form using the cycle basis matriy?ree steps: ) . )
1) Odometric and loop closing constraints are extracted

Cé = 0. (21) from real sensor data; _ _ _
According to the definition of regularized measurements we 2) Regularization is performed for making the orientation
can rewrite [211) as: measurements consistent; _
3) The three-phases procedure is applied to solve the graph
C(6+v)=0; = Cv=-Co. (22) embedding problem.



Number | Number of | Number of Number of 003 x10*
of odometric | loop closing | chords needing 00'25 14
nodes | constraints| constraints | regularization ;02 2
. 10
[ 1228 | 1227 | 278 | 198 ] 2 0015 = e
TABLE | 0.01 6
NUMBER OF ODOMETRIC CONSTRAINTSLOOP CLOSING CONSTRAINTS 0.005 4
AND REGULARIZED ORIENTATION MEASUREMENTS FORINTEL DATASET. | S>S>————0——————— 2

0 200 400 600 800 1000 0 200 400 600 800 1000
(a) Iterations (b) Iterations

Fig. 3. Errors versus iterations for TORO (solid lines) ambes for the
three-phases procedure (dashed line). (a) translatiam squared +{.); (b)
angular error squared){).

?:]5 P = diag(PAgj s P5ij) P =13
ne [Mm?] na [rac’] ne [m?] 1a [racP]
“ TORO T, . . .
B (100 iter.) 2.60 - 10 2.30-10 6.16 - 10 1.62-10
- TORO -3 —4 —4 —4
BN (1000 iter.) 1.90-10 2.18 - 10 5.83-10 1.62-10
Pmposeﬁ 0.91-1072 | 2.25-10~* | 3.36-10"* | 2.00-10~*
Fig. 1. Intel Research Lab dataset: odometric constrairad(dines), approac

corresponding to the odometric trajectory corrected wiinsamatching, and TABLE I

loop closing constraints (dotted lines). BENCHMARK METRICS [[I9] FOR THEINTEL DATASET: TRANSLATION
ERROR SQUARED(7)c) AND ANGULAR ERROR SQUARED(7)4).

In the following, we will tailor the formulation to the
particular application scenario, in which a mobile robot 1|j§
equipped with wheel encoders and a laser range finder.
odometric constraints are obtained by refining the whe tering into details we mention that such metrics provide
odometry measurements with a scan maiching proced tool for comparing the SLAM approaches in terms of
see [1B]. The loop closing constraints are selected from t g

: . . . In Tabl&dll we show the values of tbenstraint
relations available af [18]. The number of odometric anglod .o o:acy - - - -
closing constraints is reported in Tafle I. satisfaction metricscomparing the proposed solution with the

. X . ree-based netwORKk OptimizéFORO), which is available
In Figure[1 we show the odometric trajectory of the robqyine “seel11]. We consri)der tv(?/o scerzarios, in which differ

Gfleasurements covariance matrices are considered: in sae ca

matching. The figure also shows, as dotted lines, the edggs™ o ariance matrix is chosen to be the identity matrix
corresponding to loop closing constraints. The scan mh'(Pi,» — 1), whereas, in the other scenario, measurements

algorithm is only able to enforce local consistency by dlign ovariance is in the formP;; = diag Pa: , Ps,.), and the
the laser readings acquired at subsequent poses, thmgfaiﬁ tJ Ajjr i)

in producing a globally consistent map. Once the relati®eSPonding uncertainties are assumed to be propartiona
pose informationd, Al) is available, it is possible to perform© the respective measurements, e.g. bigger displacements

regularization for orientation measurements. Computing tSO"eéspond to higher uncertainty. For this last case, inirféig
cycle basisC and the correction terms = [—(C8)T 0]]7 B we plot the errors versus iterations for TORO, compared
n '

e : ; ; ith the corresponding statistics obtained with the three-
it is possible to obtain the regularized measurementsn Wi :
Table[] we show the number of loop closing constrainq%hases procedure. It is now clear that the proposed approach

. : te in practice. Further experiments and simulatio
for which a correction factoRkm, k € Z\{0} was needed. accura . e
The configuration estimated with the three-phases proeedﬁf‘m be found in[[2], confirming the results presented so far.

: ; - Remark 2: The assumption of independent position and
and the corresponding occupancy grid map are reDOrtedolrri{gntation measurements holds true when dealing with-holo

nomic platforms. For non-holonomic platforms it consttsit

an approximation, but several state-of-the-art techrichaere
been demonstrated to produce excellent results, even under
stricter assumptions on the covariance structure (e.griah
covariances in[[11]).

ure[2. For a quantitative evaluation we r%ort the values
the SLAM benchmark metrics proposed In[19]. Without

VI. CONCLUSION

The contribution of this work is twofoldin primis we
combine tools of linear estimation and graph theory, to gain
a deep insight on SLAM with graphical models; then we
apply this theoretical analysis for retrieving an approaien
solution to the full SLAM problem, under mild assumptions
Fig. 2. Intel Research Lab dataset: (a) estimated node coafign, (b) on the structure of the involved covariance matrices. The
S o o esociating the corresporidser scan o yroposed estimation process requires no initial guess &nd i
formally demonstrated to admit solution when applied to the




embedding of the pose graph. Experiments on a real dataset ing. IEEE Trans. on Intelligent Transportation Systems
confirm the validity of the theoretical analysis. It is pddsi
to consider the proposed approach as a linear initializatifl2] J.L. Gross and T.W. TuckerTopological graph theory
method for iterative optimization or as a stand-alone tdbke
impact of the proposed methodology concerns differentaspe[13] R.l. Hartley and A. ZissermarMultiple View Geometry
of the SLAM problem: (i) the solution only requires basic
linear algebra machinery hence it can be envisioned to apply 0521623049, 2000.

complexity reduction techniques (Cholesky decompositioffi4] R.A. Horn and C.R. JohnsonMatrix Analysis Cam-
QR factorization, blockwise inversion, etc.) or to use para

computational architectures (e.g., FPGA) making the aaghvo [15] G. Huang,

suitable for large scale mapping; (i) the paper provides an
insight on the orientation wraparound problem: in largalsc
applications, one cannot expect to let the robot travel for a

long time without incurring in this issue; (iii) the linegriof
the framework provides a chance for devising an incremental

solution to graph-based SLAM.
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