POLITECNICO DI TORINO

Repository ISTITUZIONALE

Erratum to: The Controllability of the Gurtin-Pipkin Equation: A Cosine Operator Approach

Original
Erratum to: The Controllability of the Gurtin-Pipkin Equation: A Cosine Operator Approach / Pandolfi, Luciano. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - 64:3(2011), pp. 467-468. [10.1007/s00245-011-9149-6]

Availability:

This version is available at: $11583 / 2450775$ since:

Publisher:

Published
DOI:10.1007/s00245-011-9149-6

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

Correction to "The controllability of the Gurtin-Pipkin equation: a cosine operator approach"

Luciano Pandolfi
Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino - Italy, Tel. +39-11-5647516 luciano.pandolfi@polito.it

> Author version. Paper published in Applied Mathematics and Optimization Volume 64, Issue 3 (2011), Page 467468

Lemma 18 states that $A^{-1}\left[\mathcal{R}_{\infty}\right]^{\perp} \subseteq\left[\mathcal{R}_{\infty}\right]^{\perp}$. Its proof is based on Lemma 17 which is not correct since an integral in the (sketched) computations does not cancel out. A proof of Lemma 18 which does not use Lemma 17 is as follows.

Using formula (7), the Laplace transform of $\theta(t)$ with $\theta(0)=0$ is

$$
\begin{equation*}
\hat{\theta}(\lambda)=-A\left(\frac{\lambda}{\hat{b}(\lambda)} I-A\right)^{-1} D \hat{u}(\lambda) . \tag{1}
\end{equation*}
$$

Let $u(t)=u_{0} e^{-t}$. For every λ (in a right half plane) and $\xi \perp R_{\infty}$ we have

$$
0=-\langle\xi, \hat{\theta}(\lambda)\rangle=\frac{1}{1+\bar{\lambda}}\left\langle\xi, A\left(\frac{\lambda}{\hat{b}(\lambda)} I-A\right)^{-1} D u_{0}\right\rangle, \quad \forall u_{0} \in U .
$$

The assumptions on $b(t)$ imply that this equality can be extended by continuity to $\lambda=0$ and for $\lambda=0$ we have $\left\langle\xi, D u_{0}\right\rangle=0$ for every $u_{0} \in U$. Hence, if $\xi \perp R_{\infty}$ then $\xi \perp$ im D.

Now we use (1). We use $A=A^{*}$ and we get

$$
\begin{aligned}
& -\left\langle A^{-1} \xi, \hat{\theta}(\lambda)\right\rangle=-\left\langle\xi, A^{-1} \hat{\theta}(\lambda)\right\rangle=\left\langle\xi, A\left\{A^{-1}\left(\frac{\lambda}{\hat{b}(\lambda)} I-A\right)^{-1}\right\} D \hat{u}(\lambda)\right\rangle \\
& =\overline{\left[\frac{\hat{b}(\lambda)}{\lambda}\right]}\left\{\langle\xi, D \hat{u}(\lambda)\rangle+\left\langle\xi, A\left(\frac{\lambda}{\hat{b}(\lambda)} I-A\right)^{-1} D \hat{u}(\lambda)\right\rangle\right\}
\end{aligned}
$$

When $\xi \perp R_{\infty}$, the first addendum is zero since we proved $\xi \perp \operatorname{im} D$. The second addendum is $\langle\xi, \hat{\theta}(\lambda)\rangle=0$. So, $\left\langle A^{-1} \xi, \hat{\theta}(\lambda)\right\rangle=0$, i.e. $\left\langle A^{-1} \xi, \theta(t)\right\rangle=0$ for every t and every control $u(t)$, as wanted.

References

[1] L. Pandolfi (2005) The controllability of the Gurtin-Pipkin equation: a cosine operator approach. Appl Mat Optim 52: 143-165

