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Abstract

We present the application of a new method for the localization of the regions

where the turbulent fluctuations are underresolved to the selective large-eddy

simulation (LES) of a compressible turbulent jet of Mach number equal to 5.

The localization method is based on the introduction of a scalar probe function

f which represents the magnitude of the twisting-stretching term normalized

with the enstrophy [1]. The statistical analysis shows that, for a fully developed

turbulent field of fluctuations, the probability that f is larger than 2 is zero,

while, for an unresolved field, is finite. By computing f in each instantaneous

realization of the simulation it is possible to locate the regions where the magni-

tude of the normalized stretching-twisting is anomalously high. This allows the

identification of the regions where the subgrid model should be introduced into

the governing equations (selective filtering). The results of the selective LES

are compared with those of a standard LES, where the subgrid terms are used

in the whole domain. The comparison is carried out by assuming as high order

reference field a higher resolution Euler simulation of the compressible jet. It is

shown that the selective LES modifies the dynamic properties of the flow to a

lesser extent with respect to the classical LES.

1. Small scale detection criterion

In the large-eddy simulation (LES) of many flows, subgrid scales, that is

fluctuations on a scale smaller than the grid size, are present only in part of the

computational domain. In a recent paper [1] we have investigated the possibil-

ity to use a stretching based sensor for the detection of underresolved regions
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in large-eddy simulations of turbulent flows. The criterion is based on the in-

troduction of a local functional of vorticity and velocity gradients: the regions

where the fluctuations are unresolved are located by means of the scalar probe

function [1]

f(u, ω) =
| (ω − ω) · ∇(u − u) |

| ω − ω |2
(1)

where u is the velocity vector, ω = ∇×u is the vorticity vector and the overbar

indicates the statistical average. Function (1) is a normalized scalar form of the

vortex-stretching term that represents the inertial generation of three dimen-

sional vortical small scales. When the flow is three dimensional and rich in small

scales f is necessarily different from zero, while, on the other hand, it is instead

equal to zero in a two-dimensional vortical flow. The mean flow is subtracted

from the velocity and vorticity fields in order to consider the fluctuating part

only of the field. A priori test of the spatial distribution of functional test have

been performed by computing the statistical distribution of f in a fully resolved

turbulent fluctuation field (DNS of a homogeneous and isotropic turbulent flow

(10243, Reλ = 230, data from [2])) and in some unresolved instances obtained

by filtering this DNS field on coarser grids (from 5123 to 643).

It has been shown [1] that shows that the probability that f assumes val-

ues larger than a given threshold tω is always higher in the filtered fields and

increases when the resolution is reduced. The difference between the probabil-

ities in fully resolved and in filtered turbulence is maximum when tω is in the

range [0.4, 0.5] for all resolutions. In such a range the probability p(f ≥ tω)

that f is larger than tω in the less resolved field is about twice the probability

in the DNS field. Furthermore, beyond this range this probability normalized

over that of resolved DNS fields it is gradually increasing becoming infinitely

larger. From that it is possible to introduce a threshold tω of the values of f ,

such that, when f assumes larger values the field could be considered locally

unresolved and should benefit from the local activation of the Large Eddy Sim-

ulation method (LES) by inserting a subgrid scale term in the motion equation.

The values of this threshold is arbitrary, as there is no sharp cut, but it can be

reasonably chosen to be equal to that where the difference between the resolved

and unresolved field is maximum, that is tω ≈ 0.4.

Such value of the threshold has been used to investigate the presence of

2



regions with anomalously high values of the functional f , by performing a set

of a priori tests on existing Euler simulations of the temporal evolution of a

perturbed cylindrical hypersonic light jet with an initial mach number equal to

5 and ten times lighter than the surrounding external ambient [1]. When the

effect of the introduction of subgrid scale terms in the transport equation is ex-

trapolated from those a priori tests, they positively compare with experimental

results and show the convenience of the use of such a procedure [1, 12].

In this paper we have carried out large-eddy simulations of the same temporal

evolving jet, where the subgrid terms are selectively introduced in the transport

equations by means of the local stretching criterion [1]. The aim is not to model

a specific jet, but instead we want to understand, from a physical point of view,

the differences introduced by the presence of subgrid terms in the underresolved

simulations of hypersonic jets.

2. Flow configuration

We have studied numerically, and in Cartesian geometry, the temporal evo-

lution of a 3D jet subject to periodicity conditions along the longitudinal direc-

tion. The flow is governed by the ideal fluid equations for mass, momentum, and

energy conservation. In the astrophysical context, this formulation is usually

considered to approximate the temporal evolution inside a spatial window of

interstellar jets, which are highly compressible collimated jets characterized by

Reynolds numbers of the order 1013−15. It is known that the numerical solution

of a system of ideal conservation laws (such as the Euler equations) produces

the exact solution of another modified system with additional diffusion terms.

With the discretizations used in this study it possible to verify a posteriori that

the numerical viscosity implies an actual Reynolds number of about 103. In

such a situation it is clear that the addition of the diffusive-dissipative terms

into the governing equations would be meaningless. The formulation used is

thus the following:

∂ρ

∂t
+

∂

∂xi

(

ρui

)

= 0 (2)

∂(ρuk)

∂t
+

∂

∂xi

(

ρuiuk + pδik

)

=
∂

∂xi

H (fLES − tω) τSGS
ik (3)

∂E

∂t
+

∂

∂xi

[

(E + p)ui

]

=
∂

∂xi

H(fLES − tω)qSGS
i (4)
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where the fluid variables p, ρ and ui and E are, as customary, the filtered

pressure, density, velocity, and total energy respectively. Here τSGS
ik and qSGS

i

are the subgrid stress tensor and total enthalpy flow, respectively. Function H(·)

is the Heaviside step function, thus the subgrid scale fluxes are applied only in

the regions where f > tω. The threshold tω is here taken equal to 0.4, which

is the value for which the maximum difference between the probability density

function p(f > tω) between the filtered and unfiltered turbulence was observed

[1]. Sensor f (1) is independent from the subgrid model used and from the kind

of discretization used to actually solve the filtered transport equation, so that

any subgrid model can be used. We have chosen to implement the standard

Smagorinsky model as subgrid model,

τSGS
ij +

1

3
τSGS
kk = ρνδSij , νδ = (Csδ)

2 | S |

where Sij is the rate of strain tensor and | S | its norm. Constant Cs has been

set equal to 0.1, which is the standard value used in the LES of shear flows, and

the turbulent Prandtl number is taken equal to 1. The initial flow configuration

is an axially symmetric cylindrical jet in a parallelepiped domain, described by

a cartesian coordinate system (x, y, z). The initial jet velocity is along the y-

direction; its symmetry axis is defined by (x = 0, z = 0). The interface between

the jet and the surrounding ambient medium is described by a smooth velocity

and density transition in order to avoid the spurious oscillations that can be

introduced by a sharp discontinuity. The flow profile is thus initialized as

u(r) =
U0

cosh(r/a)m

where r2 = y2 + z2 is the distance from the jet axis, a is the jet radius and U0

the jet velocity. m is a smoothing parameter which has been set equal to 4. The

same smoothing has been used for the initial density distribution,

ρ(r) = ρ0

(

ν −
ν − 1

cosh(r/a)m

)

where ρ0 is the density of the external ambient and ν is the ratio between the

jet density and ρ0. A value of ν larger than one implies that the jet is lighter

than the external medium. The mean pressure is set to a uniform value p0, that

is, we are considering a situation where there is initially a pressure equilibrium

between the jet and the surrounding environment. This initial mean profile
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is perturbed at t = 0 by adding longitudinal transversal velocity disturbances

whose amplitude is 1% of the jet velocity and whose wavelength is up to eight

times the fundamental wavelength 2π/L,

ui(x, y, z) =
1

100
U0

8
∑

n=0

sin

(

n
2π

L
y + ϕn

)

The integration domain is 0 ≤ x ≤ L −R ≤ y ≤ R, −R ≤ z ≤ R, with L = 10πa

and R = 6a. We have used periodic boundary conditions in the longitudinal

x direction, while zero normal derivative outflow conditions are used for all

variables in the other directions. A scheme of the flow configuration used in the

simulations is shown in figure 1.

In the following, all data have been made dimensionless by expressing lengths

in units of the initial jet radius a, times in units of the sound crossing time of

the radius a/c0, where c0 =
√

γp0/ρ0) is the reference sound velocity of the

initial conditions, velocities in units of c0 (thus coinciding with the initial Mach

number), densities in units of ρ0 and pressures in units of p0.

Equations (2-4) have been solved using an extension of the PLUTO code [6],

which is a Godunov-type code that supplies a series of high-resolution shock-

capturing schemes that are particularly suitable for the present application. The

code has been extended by adding the subgrid fluxes and the computation of the

functional f which allows to perform the selective large-eddy simulation. For

this application, we chose a version of the Piecewise-Parabolic-Method (PPM),

which is third order accurate in space and second order in time [13].

We have performed three simulations of a jet with an initial Mach number

equal to 5 and a density ratio ν equal to 10. The density ratio is an important

parameter in such flow configuration, as it has been shown that it has a strong

influence on the time evolution and on the entrainment. The selective LES of the

jet has been carried out on a 320×1282 uniform grid. Moreover, two additional

simulations were performed for comparison. A standard non selective LES where

the subgrid model was introduced in the whole domain, which is obtained by

putting H ≡ 1 in (2-4), and a higher resolution (640 × 2562) Euler simulation

obtained by putting H ≡ 0.
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3. Results

In this jet configuration we can follow the evolution of a compressible jet

from the amplification of its instable modes to its final quasi-steady state. As

it is known form previous study on the subject (e.g.[4]), four main stages can

be identified in the temporal evolution of hypersonic jet. In the first phase,

the unstable modes exited by the perturbations grow up in accord to the linear

theory, till their growth leads to the formation of internal shocks, then this stage

is followed by a second phase where the jet is globally deformed and shocks are

driven in the external medium, thus carrying momentum and energy away from

the jet and transferring them to the external ambient. This is followed by a so

called mixing stage: as a consequence of the shock evolution, mixing between

the jet and external material begins to occur. The longitudinal momentum,

initially concentrated inside the jet radius, is spread over a much larger region

by the mixing of the jet material. In the end the jet reaches a statistically

quasi-stationary phase and slowly decays.

The mixing phase where the flow can be considered turbulent, is reached

after about 15 initial sound crossing times. At this point, the resolution could

not be enough to solve all the scales and subgrid terms should start to be

introduced in the underresolved regions. Figure 2 shows, in the selective large-

eddy simulation, the probability that the sensor f is larger than the threshold,

that is, that subgrid scales are present, at t = 28. At this stage about 40-

60% of the jet is underresolved and there subgrid terms are applied. At the

same time the external ambient is still resolved. The effect of the subgrid scale

terms can be qualitatively appreciated in the visualizations of the pressure and

density fields. A visualization of the pressure field in a longitudinal section

at t = 36 is shown in figures 3(a-c) for the three simulations (selective LES,

classical LES, high resolution Euler simulation). The comparison shows the

higher smoothing and small scale suppression produced by the non selective use

of the subgrid model. This is even more evident in the plot of the density field

(figure 4): subgrid terms tend to delay the mixing of the jet and reduce the

spreading of the jet material. The time evolution of the enstrophy distribution

at two time instants far from the initial one is shown in figure 5 as a function

of the distance from the centre of the jet. While the agreement between the
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enstrophy distribution obtained with the selective LES simulation and with the

reference high resolution Euler simulation is fair, the non selective simulation

damps out the vorticity magnitude in the center of the jet and in the outer part,

and introduces a spurious accumulation in the intermediate radial region. As a

results, the vorticity dynamics is highly modified. The overall effect is a delay

in the formation of the turbulent structures, as it is evident when the spectrum

of the turbulent kinetic energy is considered. Figure 6 shows the kinetic energy

spectrum at r = 2, that is in the intermittent region between the jet core and

the surrounding ambient. In the non selective LES, there is a much lower energy

in the fluctuations in the first part of the simulation. Moreover, even after they

are generated (t = 28 and 36) there is a significant concentration of energy in

the low wavenumber region, which becomes even more pronounced in the later

stages (t = 36). This is consistent with the higher level of enstrophy seen in

figure 5 for the non selective LES at a similar distances from the centre of the jet.

Thus, we can observe that the selective introduction of the subgrid model yields

distributions much closer, with respect to the standard LES, to the distribution

shows by the high resolution Euler simulation.

A quantitative comparison of the different modelling procedures in the over-

all flow features can be made by considering the mean quantities, in particular

the velocity longitudinal distribution and the jet thickness. The mean velocity

profiles are shown in figure 8 where it is possible to appreciate not only the

different temporal decay of the axial velocity but also the different shape of

the velocity profiles. The geometrical thickness δ, here defined as the distance

from the jet axis where u/U0 = 0.5, shows a low sensibility to how the flow is

modelled, the vorticity thickness

δω =
U0

max
{

du
dr

}

clearly indicates the delay in the growth and the higher collimation of the stan-

dard LES, where the reduced amount of turbulent kinetic energy reduces the

spreading of the jet. The temporal growth rate can be transformed in an equiv-

alent spatial growth rate by means of the Taylor transformation x = U0t, that

is,
dδ

dx
=

1

U0

dδ

dt
.
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Both the higher resolution simulation and the selective LES present, in the

second part of the simulation, an equivalent spatial growth rate equal to about

0.028. Such value is in line with what can be expected in such a flow [1].

4. Concluding remarks

In this work we have shown that the selective LES, which is based on the

use of a scalar probe function f – a function of the magnitude of the local

stretching-twisting operator – can be conveniently applied to the simulation

of compressible jets. The probe function f was coupled with the standard

Smagorinsky subgrid model. However, it should be noted that the use of f can

be coupled with any model because f simply acts as an independent switch

for the introduction of a subgrid model. The comparison among the three

kinds of simulation (selective LES, standard LES, high resolution reference)

here carried out shows that this method can improve the dynamical properties

of the simulated field, in particular, the spectral distribution of the fluctuations

over the resolved scales.
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constant velocity u/U0, where U0 is the jet axis velocity.

10



Figure 3: Pressure distribution in a longitudinal section at t = 36: (a) selective LES, (b)

standard LES, (c) higher resolution pseudo-DNS. The figures show the contour levels of

log10(p/p0), the mean flow is from bottom to top. Local difference between the pressure

LES pressure fields and the higher resolution pseudo-DNS at t/τ = 32: (d) selective LES, (e)

standard LES. The figures show the contour levels of (pLES − pDNS)/p0.
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