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Abstract. We consider the collective behaviour of small three-dimensional transient

perturbations in sheared flows. In particular, we observe their varied life history through the

temporal evolution of the amplification factor. The spectrum of wave vectors considered fills

the range from the size of the external flow scale to the size of the very short dissipative waves.

We observe that the amplification factor distribution is scale-invariant.

In the condition we analyze, the system is subject to all the physical processes included in

the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these

features are the same as those characterizing the turbulent state. The linearized perturbative

system offers a great variety of different transient behaviours associated to the parameter

combination present in the initial conditions. For the energy spectrum computed by freezing

each wave at the instant where its asymptotic condition is met, we ask whether this system is

able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for

at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer

is yes.

1. Introduction

A fundamental notion in the phenomenology of turbulence (in the sense of Kolmogorov 1941) is
that a power-law scaling with an exponent close to -5/3 is observed for the energy spectrum over
a quite large range of a few decades of wavenumber. This interval is called the inertial range
since, at these wavenumbers, the dynamics of the Navier-Stokes equations is dominated by the
inertia terms (Kolmogorov, 1941; Frisch, 1995). It is a common criterium for the successful
production of a fully developed homogeneous turbulent field to verify that the energy spectrum
has such a scaling in the inertial range (Sreenivasan & Antonia, 1997).

We propose an experimental approach, based on the numerical determination of a large
number of perturbations, to approximate the general perturbation solution of a Navier-Stokes
field for two typical shear flows, the plane Poiseuille flow and the bluff-body wake. The set
of small three-dimensional perturbations constitutes a system of multiple spatial and temporal
scales which are subject to all the processes included in the perturbative Navier-Stokes equations:
linearized convective transport, molecular diffusion, linearized vortical stretching. Leaving aside
the nonlinear interaction among the different scales, these features are the same as those found
in the turbulent state.

The answer to two key questions is the main goal of the present work: (i) Does a power-law
scaling for the energy spectrum exist for an intermediate range of wavenumbers or frequency even
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in the linear dynamics of the perturbative Navier-Stokes equations? (ii) And, if so, how does
it compare, in terms of decay exponent and width of range where it applies, to the well-known
-5/3 Kolmogorov law for homogeneous fully developed turbulence?

In order to answer such questions, we study how the energy spectrum resulting from the
analysis of a large set of solutions of the linearized perturbative Navier-Stokes equations behaves
(Scarsoglio & Tordella, 2010) and we compare it with the energy spectrum of homogeneous fully
developed turbulence.

In Section 2 the initial-value problem formulation is introduced and a collection of transient
behaviour is showed. In Section 3 the self-similarity of the perturbative system is discussed and
relevant energy spectra results are reported. In Section 4 some concluding remarks are given.

2. Initial-value problem

The energy spectrum behaviour of the perturbed system is studied using the initial-value problem
formulation (Criminale & Drazin, 1990). We consider two different typical shear flows, i.e. the
wake behind a circular cylinder and the plane Poiseuille channel flow (see Fig. 1). The bluff-
body wake is approximated at an intermediate (x0 = 10) and far longitudinal station (x0 = 50),
through a two-dimensional analytical expansion solution (Tordella & Belan, 2003) of the Navier-
Stokes equations. The plane Poiseuille flow is, instead, taken as a parallel flow (Criminale et al.,
1997).

−5 0 5
0.4

0.6

0.8

1

y

sym input asym input

Wake flow(a)

        U(y)
Re=30,x

0
=10

        U(y)
Re=100,x

0
=10

        U(y)
Re=100,x

0
=50

        U(y)
Re=30,x

0
=50

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

y

U(y)

asym input

sym input

Channel
flow

(b)

Figure 1. (a) Wake flow U(y;Re, x0) at different downstream stations (x0 = 10 and x0 = 50)
and at different Reynolds numbers (Re = 30 and Re = 100). (b) Plane Poiseuille channel
flow U(y). Initial conditions in terms of v̂(y, t = 0) are represented by thin curves: symmetric
(dotted) and asymmetric (solid) inputs.

The Reynolds number, Re, is defined through a typical velocity (the free stream velocity, Uf ,
and the centerline velocity, U0, for the 2D wake and the plane Poiseuille flow, respectively), a
characteristic length scale (the body diameter, D, and the channel half-width, h, for the 2D
wake and the plane Poiseuille flow, respectively), and the kinematic viscosity, ν. The Reynolds
number values are set in order to consider stable and unstable configurations for the bluff-body
wake (Re = 30 and Re = 100, respectively) as well as for the plane Poiseuille flow (Re = 500
and Re = 10000, respectively).

The viscous perturbative equations are written in terms of the vorticity and the transversal
velocity and then transformed through a Laplace-Fourier decomposition (Scarsoglio et al., 2009,
2010) in the plane (x, z) which is normal to the base flow plane (x, y). We define k as the polar
wavenumber, αr = kcos(φ) as the wavenumber in x direction, γ = ksin(φ) as the wavenumber
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Figure 2. Relevant behaviours of the linear transient dynamics: amplification factor, G(t),
as a function of time. (a-b) Channel and wake flow at unstable configurations. Asymmetric
longitudinal and oblique waves (dark solid curves) show temporal modulations before minima
of energy are reached, then they are asymptotically amplified. The corresponding symmetric
perturbations (light solid curves) are instead immediately amplified. Three-dimensional
symmetric and asymmetric waves (thin dotted curves) are slowly damped in time. (c) Plane
Poiseuille channel flow at Re = 10000, φ = π/2, symmetric inputs, k ∈ [1, 1000]. High maxima
of energy are reached before the three-dimensional perturbations are asymptotically damped.(d)
Wake flow at Re = 100, x0 = 50, symmetric initial condition, φ = π/4, k ∈ [0.7, 70]. Unstable
behaviour occurs by decreasing the wavenumber, k.

in z direction, and φ as the angle of obliquity with respect to the physical plane. The measure
of the perturbation growth can be defined through the disturbance kinetic energy density in the
plane (α, γ):

e(t;α, γ) =

∫

+yd

−yd

(|û|2 + |v̂|2 + |ŵ|2)dy =

=
1
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∫
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(
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∣

∣

2

+ |α2 + γ2||v̂|2 + |ω̂y|
2

)

dy, (1)

where û, v̂ and ŵ are the components of the perturbation velocity, ω̂y is the transversal vorticity,
while 2yd is the extension of the spatial numerical domain. The amplification factor G(t) can
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be introduced in terms of the normalized energy density, G(t;α, γ) = e(t;α, γ)/e(t = 0;α, γ).
We account for symmetric and asymmetric initial conditions (see thin curves in Fig. 1) in terms
of the transversal velocity v̂, while the transversal vorticity ω̂y is initially equal to zero. Three
different angles of obliquity (φ = 0, π/4, π/2) are analyzed for the perturbative waves.

The variety of the transient linear dynamics observed in recent exploratory analyses
(Scarsoglio et al., 2009; Marais et al., 2011; Reddy & Henningson, 1993; Schmid, 2007) - i.e.
emergence of different temporal scales, maxima of energy followed by an asymptotic damping,
minima of energy beyond which an ultimate slow amplification occurs (see some relevant
behaviours in Fig. 2) - suggests the idea to investigate the ensemble behaviour of many of
these perturbations, considered all together even in the linear dynamics, to understand analogies
and/or differences with the turbulent state.

3. Energy spectra

The appearance of different temporal scales associated to the different perturbation wavelengths
(see Fig. 3a) suggests that a self-similarity approach should be adopted to describe the temporal
evolution (Barenblatt, 1996). A continuous instantaneous normalization can be used by defining
t∗ = t/τ , with τ = G(t)/|dG/dt|. For the wake case, in Fig. 3, the amplification factor, G,
is reported as a function of both t and t∗ for a group of perturbations with k ∈ [0.45, 500].
It should be noted that, depending on whether the perturbations are stable or unstable,
two subsets of waves (k ∈ [0.45, 2] and k ∈ [2.5, 500]) showing self-similarity features can
be observed (see Fig. 3b). Assuming that for each of these ranges the amplification factor
distribution is scale-invariant, then G(λt) = λhG(t), with h unique. It can be observed, that

G(t∗) = G

(

t

G(t)/|dG/dt|

)

≈
G(t)

τ
= |dG/dt|, so that λ = 1/τ and h = 1.
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Figure 3. Temporal scaling. (a) G as function of t; (b) G as function of the normalized variable
t∗ = t/τ , with τ = G(t)/|dG/dt|. Wake flow at Re = 100 and x0 = 10. φ = 0, symmetric inputs.

The energy spectrum is evaluated as the wavenumber distribution of the perturbation kinetic
energy density, G(k), in asymptotic condition. That is when the exponential behaviour is
stabilized. We base the definition of this temporal asymptotic limit on the temporal variation
of the normalized energy, G. We thus assume the asymptotic condition is reached when
d(|dG/dt|/G)/dt = dλ/dt→ 0 is satisfied for stable and unstable waves. The normalized energy
density G in the asymptotic state is shown - as function of the polar wavenumber k - in parts
(a), (b), (c), (d) of Figure 4, for the bluff-body wake (parts (a) and (b)) and for the channel
flow (parts (c) and (d)).

13th European Turbulence Conference (ETC13) IOP Publishing

Journal of Physics: Conference Series 318 (2011) 032004 doi:10.1088/1742-6596/318/3/032004

4



10
−1

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

k

G Asym φ=π/2

Asym φ=π/4

Asym φ=0

Sym φ=π/2

Sym φ=π/4

Sym φ=0

Wake flow 
Re=30 x

0
=50

(a)

k
−5/3

k
−2

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−4

10
0

10
4

k

G

Asym, φ=π/2

Asym, φ=π/4

Asym, φ=0

Sym, φ=π/2

Sym, φ=π/4

Sym, φ=0

Wake flow
Re=100 x

0
=50

(b)

k
−5/3

k
−2

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

k

G Asym φ=π/2

Asym φ=π/4

Asym φ=0

Sym φ=π/2

Sym φ=π/4

Sym φ=0

Channel flow 
Re=500

(c)

k
−5/3

k
−2

10
0

10
1

10
2

10
3

10
−5

10
0

10
5

k

G

Asym, φ=π/2

Asym, φ=π/4

Asym, φ=0

Sym, φ=π/2

Sym, φ=π/4

Sym, φ=0

(d)
Channel flow
Re=10000

k
−2

k
−5/3

Figure 4. Energy spectrum G of symmetric (dark symbols) and asymmetric (light symbols)
perturbations (⊓⊔: φ = 0, ◦ : φ = π/4, △: φ = π/2). (a)-(b) Bluff-body wake at Re = 30,
x0 = 50 (stable) and Re = 100, x0 = 10 (unstable), respectively. (c)-(d) Plane Poiseuille flow at
Re = 500 (stable) and Re = 10000, respectively. Light and dark curves: −2 and −5/3 slopes,
respectively.

For both stable and unstable configurations, there exists an intermediate range of about a
decade (k ∈ [2, 20] and k ∈ [15, 150] for the bluff-body wake and the plane Poiseuille flow,
respectively) where longitudinal and oblique perturbations present a power-law decay which
is close to -5/3 (dark curves), while purely three-dimensional waves have a decay of about -2
(light curves). For larger wavenumbers (k > 20 and k > 150 for the bluff-body wake and the
plane Poiseuille flow, respectively), all perturbations show a power-law decay very close to -2
(light curves). The transition from -5/3 to -2 power-law scalings smoothly occurs inside the
self-similar range at about a wavenumber of order 10 for the wake and 102 for the plane channel.
For the longer waves (k < 1 − 2 and k < 10 for the bluff-body wake and the plane Poiseuille
flow, respectively), results do not seem to reveal any characteristic behaviour. The energy
spectrum strongly depends, here, on initial and boundary conditions as well as on the shape
and wavelength of perturbations. It seems that as soon as the dissipative influence becomes less
important, but still perturbations are not too long, the energy spectrum is able to show a decay
rate which is close to the one observed in a fully developed turbulent field, where nonlinearities
are considered as a dominant aspect of the dynamics.
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4. Concluding remarks

We have numerically computed a large collection of three-dimensional small perturbations for the
bluff-body wake and the plane Poiseuille flow in stable and unstable configurations. We consider
the time instant where all the waves meet the asymptotic exponential condition and build the
energy spectrum. Whether the waves are aligned with the base (bounded or unbounded) flow
or not, the energy of the intermediate range of wavenumbers in the spectrum decays with an
exponent close to (−5/3). That is we observe a situation close to the spectrum of the velocity
fluctuation of fully developed turbulent flows, where the nonlinear interaction is dominant. It
seems possible to conclude that the spectral power-law scaling of intermediate/inertial waves
(with an exponent close to −5/3) is a general dynamical property of the Navier-Stokes solutions
which encompasses the nonlinear interaction.
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