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Abstract—Next generation sequencing plays a key role in
the detection of structural variations. Chimeric transcripts are
relevant examples of such variations, as they are involved
in several diseases. In this work, we propose an effective
methodology for the detection of fused transcripts in RNA-Seq
paired-end data. The proposed methodology is based on an
accurate fusion model implemented by a set of filters reducing
the impact of artifacts. Moreover, the methodology accounts
for transcripts consistently expressing in the sample under
study even if they are not annotated. The effectiveness of
the proposed solution has been experimentally validated on
of Chronic Myelogenous Leukemia (CML) samples, providing
both the genes involved in the fusion and the exact chimeric
sequence.

Keywords-Next Generation Sequencing, RNA-Seq data,
chimeric transcript detection, gene fusions, alternative splicing,
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I. INTRODUCTION

The recent advances in cancer research outlined the key
role of chimeric transcripts in the characterization of tumor
diseases. The success of these results is coupled with the
pace of biotechnological field, mainly with the Next Gen-
eration Sequencing technology. Specifically, the analysis of
RNA-Seq data have been playing a key role in the detection
of new fused genes in several disease. In [2], the VAPB-
IKZF3 chimera have been found to be involved in the
survival in breast cancer cells analyzing RNA-Seq short
reads data with a specific bioinformatic pipeline. Moreover,
even if the analysis of single long reads has been performed
to reveal novel fusion junctions [6], the application of short
paired-end reads has been recently demonstrated to provide
higher dynamic range and sensitivity in supporting fusion
transcripts [8].

In fact, putative chimeric candidates can be discovered
analyzing the way the paired-end reads map on the gene
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fusion boundaries. Figure 1 shows a schematic representa-
tion of how the paired-end reads map on two fused genes.
Paired-end mate map across the fusion junction in a twofold
arrangment: 1) Each mate of the read encompasses the
junction and maps on a different gene of the fused gene
couple. The read is considered as a read encompassing the
fusion boundary; ii) Alternatively, a single mate of the read
overlaps the fusion junction while the corresponding paired-
end mate matches one of the two genes involved in the
fusion. In this case, the read is considered as spanning the
fusion junction.
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Figure 1. Paired-end reads alignment on a gene fusion junction.

Both encompassing and spanning reads can be used to
detect the exact boundary sequence between two fused
genes: Encompassing reads allow the production of a first
list of gene fusion candidates, while spanning reads are used
to detect the exact junction sequence.

However, due to the shortness of the sequenced mates
and repetitive regions of the DNA the simple analysis of
paired-end reads restricted to the detection of encompassing
and spanning set produces a huge list of putative fused gene



candidates. This scenario recalls to the need of an accu-
rate gene fusion model for the detection of those putative
chimeric transcripts that most likely fit the model features.
In this work, we propose an advanced analysis pipeline for
the detection of fusion transcripts through short paired-end
reads. In particular, we built an accurate gene fusion model
based on recent experimental evidences [2] and we select
the most fitting candidates by applying a set of modular
filters. Moreover, in order to reduce ambiguous alignments
of the reads to isoforms, we perform the analysis on top of a
splicing-driven alignment and abundance estimation analy-
sis. This approach allows to account for those transcripts that
are consistently expressed in the sample under study, even
if they are not annotated. Furthermore, the splicing-driven
alignment allows encompassing reads to be mapped more
accurately even in presence of proximal splice junctions.

To achieve these targets, the proposed framework lever-
ages upon algorithms such as Cufflinks [10] and TopHat [5],
aimed at overcoming RNA-Seq challenges concerning mul-
tiple read alignments, novel transcripts discovery and ac-
counting for alternative splicing events.

On this concern, our methodology presents distinguishing
features with respect to fusion detection algorithms proposed
in the last year [9] [12] [13] [11], in that it integrates these
new instruments in a fusion detection framework.

In this paper we report the fusion genes discovered by the
proposed framework on experimentally validated biological
samples of Chronic Myelogenous Leukemia (CML) [14].
Results highlight that the developed methodology, while
recognizing the validated fusions, it reduced the final set
of predictions and includes fusions involving non-annotated
genes.

II. METHODS

The flow is mainly composed of two building blocks:
Chimeric Candidates Detection and Exact Junction Break-
point Analysis (Figure 2). Chimeric Candidates Detection
aims at providing the list of possible chimeric candidates by
detecting and analyzing those reads encompassing putative
fusion junctions. Exact Junction Breakpoint Analysis relies
on the detection of the exact junction breakpoint between
two gene candidates through the collection of reads spanning
the putative junction breakpoint.

A. Chimeric Candidates Detection

Figure 2 depicts the schematic flow of the Chimeric
Candidates Detection. This phase is composed of three
steps: 1) Initial sample alignment to the genome reference;
ii) Mapping of read mates to transcripts determined by
abundance analysis; iii) Detection of the encompassing
reads from the overall set.

The alignment of short RNA-Seq paired-end reads to the
reference genome (Initial Sample Alignment) is the starting
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Figure 2. Complete Analysis Flow Schema.

point for determining the list of chimeric candidates. We
exploit the capability of TopHat alignment tool [5] to align
read fragments on a reference genome considering splicing
events and using defalut parameters. At the end of the initial
alignment of paired-end reads, both mapped (that include
possible encompassing) and unmapped (that include possible
spanning) reads are extracted.

In order to find out candidate genes involved in a fusion
event, we need to assign the read location to an annotation
file. In the Mate-Gene Mapping (see Figure 2) we map
cach aligned mate on the transcripts detected by transcript
abundance analysis by means of Cufflinks [10], thus over-
coming the limit of considering only known and annotated
transcripts. In fact, analyzing RNA-Seq samples it is possible
to reveal new alternative splicing events, novel genes and
transcripts that might be neglected in an official annotation
file.

The collected set of mapped read mates is analyzed in
order to retrieve the subset of reads having the two mates
mapping on different genes. At the end of the Chimeric Can-
didates Detection phase the list of possible gene candidates
and the set of initially unmapped reads is provided.

On this set of candidates, a cascade of filters is applied
to reduce the impact of errors due to the alignment phase
as well as artifacts in the preparation of the biological sam-
ple [2]. Moreover, ambiguous alignments due to paralogue
or homologous regions are taken into account. Related filters
will be discussed in Section III.

B. Junction Breakpoint Analysis

Starting from the list of fused candidates previously de-
tected, the scope of the Exact Junction Breakpoint Analysis
phase, outlined in Figure 2 is to determine the exact junction
breakpoint and validate the gene fusion by the alignment of
unmapped reads to the putative junction.

From a computational point of view, intron regions cause
many mismatches, making alignment programs to fail across



the junction. Splicing discovery programs [4] [5] [7] are
aimed at efficiently detecting the exact intron-exon bound-
ary, but due to the considerable computational complexity,
they limit their research within a maximum intron size.

To exploit the junction discovery capabilities of splicing
detection tools without compromising computational effi-
ciency, Exact Junction Breakpoint Analysis adopts a virtual
reference: 1) For each couple of gene candidates a virtual
reference consisting in the concatenation of the two genes
is created; 2) A splicing discovery algorithm (i.e. TopHat)
is launched on the virtual reference providing as input
the initially unmapped reads resulting from the Chimeric
Candidates Detection phase.

As shown in Figure 2, in order to create a virtual fusion
Jjunction a Create Virtual Reference module automatically
retrieves the sequences corresponding to the gene fusion
candidates using the coordinates provided by Cufflinks, thus
involving both annotated and non annotated transcripts.

The sequences are concatenated and the resulting output
represents the virtual genome reference of the virtual fusion
junction. TopHat receives as input the set of unmapped
reads and the virtual genome reference, resulting from the
concatenation of the two gene fusion candidates. TopHat
reports all the mapping reads including the spanning end
mates. After TopHat alignment, a rearrangement from virtual
to chromosomal coordinates is needed, therefore the set of
end mates spanning the gene fusion junction is collected and
the read coordinates are translated from virtual to genomic
coordinates. End mates spanning the fusion boundaries can
be represented as a split read and each chunk maps on a
different gene. Thus, the exact points where the first mate
chunk ends and the second mate chunk starts represent the
exact junction boundary coordinates.

In conclusion, at the end of the Exact Junction Breakpoint
Analysis for each couple of gene fusion candidates the set
of putative junctions, as well as the supporting spanning
reads, are reported. However, the detection of spanning reads
can be affected by propagation errors due to both alignment
limitations and artifacts in the experimental preparation of
the sample. For this reason, the resulting junctions are ana-
lyzed and filtered depending on how the spanning read maps
on each junction. Next section describes the filtering policy
applied to improve the accuracy of proposed methodology
to discover gene fusions.

ITI. FILTERS

In this section we deep into details of the filters applied
in order to select the chimeric candidates that mostly fit the
fusion junction model as described in recent experimental
evidences [2]. For clarity sake, we divide the filters into
two categories. The former relies on the filters applied to
the initial list of candidates resulting from the analysis of
the encompassing reads. The latter concerns the analysis
of the junction breakpoints detected by the spanning reads

discarding those candidates outlining anomalous junction
breakpoints.

A. Filters based on encompassing reads analysis

The following filters are applied to the set of putative
fused gene candidates resulting from the Chimeric
Candidates Detection phase. Consequently, they are applied
to the set of reads encompassing the two genes implying
the candidates.

Ambiguous Encompassing Reads Removal. We recall
that gene fusion candidates are detected when two mates of
the same read map on different genes. However, it might
occur that the same mate maps on multiple transcripts
leading to ambiguous encompassing reads detection. The
reason is that the lower is the mate length, the higher is
the probability of having multiple matches of the same
mate. Dealing with short paired-end reads, the probability
of having multiple matches in the reference genome is
significant, thus mates of the same read might map on
multiple genes. In order to remove ambiguous encompassing
reads detection we adopt the following strategy: If both
the mates of the same read detect multiple couples of gene
fusion candidates but both the mates also match on the
same gene, the read is discarded. By looking at Figure
3 two mate ends of the same ReadA individuate two set
of genes determining multiple couples of gene fusion
candidates (GeneA-GeneB and GeneB-GeneC). In the case
shown in figure, the two gene sets share a gene. So, they
are not considered because it is highly probable that the
two mates actually belong to the same genes. Therefore, if
the two gene sets have no gene in common, they do not
map on the same gene and all the possible combinations of
genes belonging to the two sets are considered as possible
candidates.

Abnormal Inner Size Filter. We focus now the dis-
cussion on the second type of filter which implements a
strategy similar to [9], where a distribution of the inner
distance between encompassing reads is estimated. Those
candidates presenting the inner distance that is outliers
respect to the fragment inner distance mean are removed.
The inner distance is computed through consensus regions
as depicted in Figure 4. In this work we also propose a new
and extended implementation that takes into consideration
a recent observation in [2] about the asymmetry in the
alignment. This is recognized to be a feature of artifacted
chimeric transcripts.

This filter looks at consensus regions made by
encompassing reads on the candidate genes. The length
of these regions is computed (excluding possible gaps in
between) as shown in Figure 4. If one of the two regions,
for instance the one related to candidate A in Figure 5, is
much larger than the corresponding consensus region of the
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Figure 3. Candidates selection in case of multiple mismatches. The Matel
of the ReadA maps on the GeneA and GeneB, whereas the Mate2 of the
ReadA maps on GeneB and GeneC. The ReadA individuates two set of
genes with the GeneB in common, thus the read is discarded. Conversely,
Matel of ReadB maps on GeneA whereas Mate2 of ReadB maps on GeneB
and GeneC. Therefore, all genes in the gene set are distinct and ReadB
individuates two gene fusion candidates.
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Figure 4. Consensus Regions and Inner Distance Computation.
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Homologous Sequence Filter. After filtering the reads
involved in artifacts and alignment errors, another set of
filters on chimeric candidates is performed. Candidates sup-
ported by a percentage of ambiguous reads with respect
to the total number of reads are discarded. Ambiguous
reads are caused by short or long homologous sequences in
the reference genome. Fusion detection analysis is affected
because the mate pairs that, without homologous sequences,
would match on the same gene, match discordantly on two
distinct but similar genes, thus creating fake encompassing
reads. Homologous regions may be due both to the presence
of paralogue genes that share long sequence regions and to
the presence of short similar sequences.

The Homologous Sequence Filter implements two differ-
ent policies for both cases. Concerning the long homologous
sequences due to paralogue genes a filter that query TreeFam
[3] database has been implemented. For short homologous
sequences, we apply a strategy similar to what proposed in
[9], where read mates encompassing the fusion candidates
are extracted and reversely mapped on the same genes.

Figure 6 shows the main idea behind the adopted
algorithm. If the mapping is confirmed it means that the
read encompasses the candidates due to a homologous
subsequence. The candidate is then discarded in the case
the ratio between the number of ambiguous reads and
total number of encompassing reads is greater than a user
defined threshold.
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Figure 6. Short Homologous Sequence Filter.

Additional Filters. The remaining filters look at gene
candidate distance and number of supporting encompassing
reads. In particular, fusions occurring between genes
closer than a user defined threshold are filtered out by
the Neighbor Candidate Filter, as they are considered
instances of transcriptional readthroughs [2]. Finally, since
both alignment bias and biological sample preparation



artifacts produces false fusion candidates that are typically
supported by a small number of encompassing reads,
chimeric candidates having the number of encompassing
reads below a user defined threshold are filtered out by the
Supported Candidates Thresholding Filter. The threshold
value depends on the coverage of the overall sequencing
experiment and adopted protocol.

B. Filters based on spanning reads analysis

The Exact Junction Breakpoint Analysis provides a list
of putative junctions boundaries between two fused genes.
A selection is performed at this stage by looking at the
distribution of the reads spanning the junction, to reveal
possible artifacts. Therefore, we apply some filters in order
to remove all the artifact junctions from the resulting set
and to make junctions list more accurate.

Floating Fragment Removal Filter. It might occur that
the same read mate maps on the putative junction in multiple
ways. In fact, some subsequences of the gene sequence
might be homologous and consequently some small frag-
ments of the read mate matche the candidate gene in multiple
places of the sequence. Thus, these fragments float on
multiple places of the gene sequence and the accuracy of
their mapping may be compromised. Furthermore, when this
scenario occurs, TopHat reports a distinct read mate instance
for each multiple match. However, this does not lead to a
realistic count of the number of read mates supporting the
junction.

To address this issue, we propose Floating Fragment
Removal Filter, that removes all the small floating fragments
of the read mate sequence mapping on multiple places of
the reference gene. Figure 7 depicts an example where
the second mate is characterized by fragments mapping
on different locations. Specifically, this filter detects and
preserves all those read mate subsequences mapping the
reference in the same region. In this way, only those read
portions that are highly probable to be correctly mapped
on the reference sequence are considered to support the
putative junction. Moreover, as only the commonly mapped
subsequences are preserved, it is pointless to report multiple
instances of the same read mate, therefore the mate is
considered as unique.

PCR Artifacts Removal Filter. A second filter, named
PCR Artifacts Removal Filter, is based on the observation
that PCR amplification might cause false putative junc-
tions [2]. Reads mapping exactly to the same position are
likely due to an artifact originated by amplification and
sequencing of the same initial fragment repeated more times.
As a result, multiple identical reads are considered as a
single one and the fusion supported by those reads will
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Figure 7. Floating Fragment Removal Filter.

be discarded unless other supporting spanning reads will be
found.

Real fusions are characterized by a ladder-like pattern of
the spanning reads supporting the junction (Figure III-B).
Conversely, false positive junctions due to PCR amplification
artifacts lack this pattern and all the short read mates
spanning the junction either map on the same position or are
one or two bases shifted (Figure I1I-B). The PCR Artifacts
Removal Filter removes all those putative junctions lacking
the ladder-like pattern.

A final filtering is performed on: i) Candidate fusions
supported by a number of spanning reads lower than a
user defined threshold (Supported Junctions Thresholding
Filter); i1) Coherency with encompassing reads. In particular,
the latter is based on the observation that, in presence
of a genuine gene fusion, the genomic coordinates of the
set of encompassing reads must be adjacent or in some
cases overlapped to the location of the spanning reads.
Therefore, consensus of the final set of both encompassing
and spanning reads is created. If the coordinates of the
corresponding locations are either adjacent of overlapped
the fusion candidate is confirmed otherwise it is discarded.

----I Candidate Gene A |- ------------- ~]

Read Mate A - - -
Read Mate B -

Candidate Gene B e

Read Mate C - o —
Read Mate D re—
(a) Read mates correctly spanning the junction
===={__CandidateGenen |} CandidateGene s ==
Read Mate A - o
Read Mate B - o —

Read Mate C
Read Mate D
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Figure 8. PCR Artifact Removal Filter.



Table 1
FUSIONS PREDICTED ON Chronic Myelogenous Leukemia SAMPLES.

Lib.  [#] Reads Read Frag. Frag. Total Inter Intra
(Mlns) Len. Mean  Stdev  Fus. Chr.  Chr.
s 4 20 75 212 16 2 2 0
s.7 32 75 225 19 4 3 1
s 8 29 75 229 22 10 9 1
IV. RESULTS

We evaluated the effectiveness of the proposed pipeline
of analysis in detecting chimeric transcripts analyzing
three samples of CML progression from a Philadelphia
chromosome-positive (Ph+) Chronic Myeloid Leukemia
(CML) patient [14] For CML samples we report a complete
characterization including the effects of filters. For CML
samples we report the number of detected fusions and the
details of the applied filters on the initial set of chimeric
candidates. The RT-PCR analysis on all the CML samples
presents the well-known chromosomal translocation between
BCR and ABLI1 genes and in all the samples the exact
sequence of the chimeric fusion has been detected. All the
CML samples are 75 length paired ends produced by an
[llumina Genome Analyzer II. For all the reported analysis
the GRCh37/hgl9 Feb. 2009 assembly of the human genome
and the GRCh37 file for annotations from Ensembl have
been adopted. Table I reports the statistics concerning all
the CML samples and details about the number of total
fusions detected. In the last column, the number of intra
chromosomic fusions are shown. Filter parameters used for
these runs have been set as follows. Minimum supporting
reads: 8; Inner distance threshold: 400bp.

Under the hypothesis that the scientist is not interested in
adjacent fused genes [2], that can be detected by classical
splicing detection tools, we set the Neighbor Candidates
Filters with 500000 bp thresholds and this caused most of
the revealed fusions to be inter-chromosome.

A. Material and Samples Preparation

Three samples from a Philadelphia chromosome-positive
(Ph+) CML patient were previously sampled (sample
s_4, s_7 and s_8) [14]. The patient was diagnosed with
Ph+ p210BCR-ABL-positive CML by chromosome band-
ing analysis. The samples were tested for rearrangements
between BCR and ABL genes by reverse transcription-
polymerase chain reaction (RT-PCR) [16].

RNA-Seq libraries (one per sample) were prepared using
the mRNA-Seq 8 sample preparation kits following manu-
facturer instructions. We modified the gel extraction step
by dissolving excised gel slices at room temperature to
avoid underrepresentation of AT-rich sequences [15]. Library
quality control and quantification was performed with a
Bioanalyzer Chip DNA 1000 series II (Agilent). Libraries
were sequenced on an Illumina genome analyzer II following

Table II
EFFECTS OF APPLIED FILTERS. THE REPORTED PERCENTAGES ARE
COMPUTED AS THE RATIO BETWEEN THE NUMBER OF FILTERED
CANDIDATES AND THE NUMBER OF CANDIDATES FILTERED BY THE
PREVIOUS FILTER.

Lib.  Initial Supp. Naming Neigh  Abnormal  Finally
Cand. Cand. Incoher. Cand. Inner Not
Thrs. *) Dist. Filtered
s 4 24337 87% 8% 6% 34% 1754
s_7 86552 94% 13% 9% 36% 2482
s 8 122931  95% 19% 8% 41% 2791
*Naming incoherencies are detected when the same gene name share
different gene identifier in Cufflinks annotation. Thus two apparently
different gene are actually a single gene.
Table I1I
HOMOLOGOUS SEQUENCE FILTER ON CML SAMPLES.
Library  Total Selected  Removed  Ratio Mismatch
Candidates  [%)] [%] Threshold  Allowed
s 4 1754 4 96 0,0 25
s_7 2482 3 97 0,0 25
s 8 2791 8 92 0,0 25

manufacturer instructions and 75 bp paired-end reads were
obtained.

B. Filtering Effects

We detail the effects of the various filters applied both to
the candidate fusions and to the spanning reads. We report
filtering results of the CML samples. Table II and III shows
the effect of filters on candidate fusions (Section II-A)
while Table IV refers to spanning reads filtering. Numbers
in the tables report the percentage of candidates removed
with respect to the previous filter in the cascade.

Effects of filters on candidate fusions. The considerable
number of initial candidates detected in the first phase by
discordant reads mapping (up to 122931 in s_8 sample) is
consistently reduced through the pipeline of filters shown in
Table II. A large fraction of candidates is discarded because
was not supported by a sufficient number of encompassing
reads (see third column in Table IT). Moreover, 34%-41% of
putative fusions with a sufficient number of encompassing
reads has been removed because of abnormal inner size and
asymmetry in consensus regions.

Table III details the effect of Homologous Sequence
Artifacts Filter. Because of its large computational cost due
to the reverse remapping of the encompassing reads, this
filter has been applied as a final step on a reduced set of
candidates. This filter was very selective, leaving 3%-8%
of putative candidates for the following spanning analysis
phase.

Effects of filters on junction artifacts. Both alignment
bias and biological artifacts due to PCR amplification might
cause the detection of false putative junctions. In order to
mitigate the negative effects of these events on the chimeric
transcript analysis, the filters described in Section III-B

[%]
Not
Filt.
7%
3%
2%



Table IV
EFFECTS OF THE FILTERS ON THE PUTATIVE JUNCTIONS.
PCR Artifact

Floating Fragm. Less Supported

Sample Rem. Filter Rem. Filter ~ Junction Rem. Filter
[#] [%] # [ [ [%]
s_4 214 0 178 17 82 62
s_7 227 0 206 9 125 45
s_8 427 0 339 21 263 39

are applied during the Exact Junction Breakpoint Analysis
phase. Table IV reports the effect of the application of the
filters on the initial number of putative junctions detected for
each sample. The initial number of junctions (i.e. spanning
reads) is in general larger than the candidates resulted from
the first encompassing analysis phase, since each candidate
has multiple spanning reads associate to it.

The Floating Fragment Removal Filter does not reduce
the number of the initial putative junctions. However, it
plays a fundamental preliminary role for the following PCR
Artifacts Removal Filter. In fact, the floating fragments cause
false ladder-like patters that are actually replicas of the
same reads (see Figure 7). The Floating Fragment Removal
Filter removes the floating fragments and it allows a more
accurate detection of PCR artifacts. Therefore, the PCR
Artifacts Removal Filter removes from the 9% to 20% of
false putative junctions and the number of junctions ranges
in the best case (sample s_8) from 427 to 339. Moreover,
the removal of the floating fragments makes in some cases
to considerably decrease the number of reads spanning
across the putative junction (See Figure 7). Consequently,
the Supported Junctions Thresholding filter is more effective
after applying Floating Fragment Removal Filter and the
reduction spans from 39% to 62%.

C. Exact Junction Discovery Details

Figure 9 depicts the results of the Exact Junction
Breakpoint Analysis applied to CML samples. A group
of reads is mapped onto the reference genome spanning
the fusion boundary between the BCR and ABL1 genes.
This chimera has been validated through RT-PCR analysis.
The spanning reads present reported in Figure 9 show a
ladder-like pattern across the junction boundary according
to the junction model we use in this work. The exons
involved in the fusion are exon 14 (s_4), exon 1(s_7) and
exon 12 (s_&) of BCR and exon 2 of ABLI.

Fusions involving non-annotated genes. Being based on
transcript expression analysis instead of annotated genes,
fusions involving non-annotated genes have been detected.
The analysis of sample s_8 reveals that 3 on 10 fusions
involved non-annotated transcripts. This result is relevant
for the detection of new aberrant modifications in the
gene regulation, which is one of the main targets of next
generation sequencing analysis.
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Figure 9. Junction Boundary Detection.

V. CONCLUSION

In this paper we presented a new methodology for the
detection of chimeric transcripts in RNA-Seq paired-end
data. The main contribution of the proposed approach is
the capability of selecting chimeric candidates fitting an
accurate fusion transcript model. Moreover, the flow is
able to detect gene fusions involving both annotated and
non annotated transcripts. Reads alignment phase takes into
account splicing events directly derived from experimental
data, enhacing the overall alignment accuracy.

The proposed strategy has been applied to real Chronic
Myelogenous Leukemia samples and the detected fusions
have been validate through RT-PCR analysis. These results
highlight the effectiveness of the proposed approach in the
detection of novel fused transcript discovery.
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