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1. Introduction

Packing problems have been much studied in the past decades due, in particular, to
their wide range of applications in many settings of theoretical and practical interest,
including packing/loading, scheduling, and routing. We focus onMulti-Dimensional Packing
problems, which present specific methodological challenges while also being of particular
interest to transportation and modern supply chains, due to the need to consolidate and
optimize flows of freight and vehicles. The rich literature presents a plethora of problem
variants, models, and solution methods. Yet, a general overview and synthesis of the
field is missing, as we lack a general methodological framework able to efficiently address
different problem variants, i.e., obtain good-quality solutions with limited computational
efforts. Addressing these issues is the main goal of this chapter.

All Multi-Dimensional Packing problems display an identical structure, defining two sets of
elements in one or more (usually two or three) geometric dimensions: 1) a set of large items,
often called containers, bins, or knapsacks and 2) a set of small items, usually referred to simply
as items. The goal is to select all or some of the items, group them into one or more subsets, and
assign each of the resulting subsets to one of the bins, such that the geometric conditions hold,
i.e., the group of items of each subset fits completely within the corresponding bin with no
overlapping. Problem variants differ by the particular definition of their packing constraints
(presence of guillotine cuts, balancing and stability of the packing, possible overlapping of
certain items, forbidden rotations of the items, etc.) and objective function, going by the
well-known names of Knapsack, Bin Packing, Strip Packing, Variable Sized Bin Packing,
Container Packing, to name just a few (see Wäscher et al., 2007 for a tentative taxonomy of
multi-dimensional packing problems). We focus in this chapter on orthogonal packings, i.e.,
items and bins are rectangular in two-dimensions (2D) and boxes in three-dimensions (3D),
and items must be placed into bins with their sides parallel to the sides of the respective bin.

The aim of this chapter is twofold. We first survey the different approaches used to represent
the packing of items into bins. The issue is common to all problem variants, the packing
representation playing a central role in the efficiency of the solution methods. Second, we
discuss the different solution approaches proposed for the main Multi-Dimensional Packing
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problems, with respect to their performance, limits, and implementation issues within realistic
applications.

The chapter is organized as follows. We address packing issues in Section 2, introducing
the main mathematical models and the rules to define where to place an item into a
bin (usually already holding some items), and discussing efficiency, effectiveness, and
implementation aspects. Section 3 is dedicated to Multi-Dimensional Packing problems. We
describe bounds, exact methods, and meta-heuristics, discussing their effectiveness compared
to their computational effort. A more general discussion of the flexibility, simplicity of
implementation, and public availability of the codes of these methods is the topic of Section 4.

2. Multi-Dimensional Packing: models and packing rules

One of the main issues in addressing Multi-Dimensional Packing problems is defining the
positionwhere to place items inside the bin (Crainic et al., 2008; Lodi et al., 2002; Perboli, 2002).
Indeed, the performance of exact and heuristic solution methods targeting these problems is
very sensitive to the item-positioning rule in terms of computational efficiency and solution
quality (Crainic et al., 2008). While the issue is not relevant for mono-dimensional packing
problems, it is harder to address in the 3D case than in the 2D one.

The packing rules are an issue common to all the problems addressed in this chapter.
Moreover, different methods share the same packing rule whilst, on the other hand, the same
rule is applied to different Multi-Dimensional Packing problem settings. We therefore survey
the main rules presented in the literature, focusing on those that can be used in both 2D and
3D cases. The first subsection addresses the mathematical models defining a packing, while
the second one the most efficient rules for placing items into an existing bin.

2.1 Models for Multi-Dimensional Packing

A first attempt to model packings is due to Gilmore & Gomory (1965). They proposed a
representation given by the enumeration of all the patterns, i.e., all subsets of items that
could be accommodated into a bin, given the problem constraints. The huge number of
patterns that can be defined from a given set of items makes this approach appropriate for
column-generation approaches only (Baldacci & Boschetti, 2007).

Beasley (1985b) considered a formulation for 2D packing based on the discretization of the
bin surface into p × q rectangles, the bottom-left corner of each item being then placed
on the bottom-left corner of a rectangle. A similar representation was introduced by
Hadjiconstantinou & Christofides (1995), except that instead of explicitly partitioning the bin
into rectangles, they limited the set of coordinates each item could assume to p and q values. In
both cases, the number of variables grows with the accuracy of the discretization. Therefore,
both representations are principally used to compute bounds through Lagrangian relaxation
and subgradient optimization.

Egeblad & Pisinger (2009) provided a model for the Three-Dimensional Knapsack Problem.
The model represents the packing by specifying the overlapping of items using binary
variables. The model is able to deal with rotations and additional constrains, e.g., fixing
the position of an item. A similar mathematical representation of item overlapping was
introduced by Baldi et al. (2011) to model the variant where balancing constraints must be
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considered, i.e., the items are characterized by mass and center of mass, and the center of
mass of the overall packing must lie inside a given domain.

2.2 Packing rules for Multi-Dimensional Packing

All Multi-Dimensional Packing models present, at different degrees, two main challenges: the
large number of variables and the high level of solution degeneracy. In fact, these models
can be used only for small-sized instances (20 items in single-bin 3D problems). Rules were
therefore introduced to definewhere to place additional items into a bin already holding some.
All these methods deal with two different issues: reduce the computational effort and the
data structure complexity needed to use the rule, and the possibility to introduce additional
packing constraints, like fixing item positions and introducing guillotine cuts.

An approach often used for 2D-packing building consists in combining procedures designed
for mono-dimensional problems, namely shelf (or layer) methods (Berkey & Wang, 1987;
Bortfeldt & Winter, 2009; Chung et al., 1982). The items are first sorted and packed into
“shelves" with sizes equal to the width of the bin. The problem then reduces to solving a
mono-dimensional packing instance. Indeed, a 2D packing can be obtained by placing the
shelves into the bin according to the solution of a mono-dimensional packing problem, where
the size of the items equals the depth of the shelves and the size of the mono-dimensional
bin equals the depth D of the two-dimensional one. The same approach can also be used to
build 3D packings. Build first two-dimensional shelves by using any 2D algorithm and, then,
arrange them into a three-dimensional bin by solving a mono-dimensional packing problem,
where the size of the items equals the height of the shelves and the size of the bin equals the
height H. When the 2D shelves are also built according to the shelf approach, the method
is known as wall-building (George & Robinson, 1980; Pisinger, 2002). The drawback of the
shelf approach is that it introduces guillotine cuts on the depth and height of the two and
three-dimensional bins, respectively, leading to their underutilization. Figure 1 illustrates 2D
and 3D packings obtained by means of the shelf approach.

Fig. 1. Shelf Packings in 2D and 3D

A graph-theoretical approach for the characterization of Multi-Dimensional Packings was
proposed by Fekete & Schepers (1997; 2004a). The authors considered the relative positions
of the items in a feasible packing and defined a graph describing the item “overlapping"
according to the projection of the items on each orthogonal axis. In this way, the authors
were able to deal with classes of packings sharing a certain combinatorial structure, instead
of having to consider one packing at a time. The packing classes are represented by a series
of graphs, one for each axis. The graphs are proven to be interval graphs, i.e., a special and
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well-studied class of graphs for which elegant and extremely efficient algorithms have been
developed. More formally, let Gd (V, Ed) be the graph associated to the dth axis. Each vertex
of Gd (V, Ed) is associated to an item i in the bin and a non-oriented edge (i, j) between two
items i and j exists if and only if their projections on axis d overlap (see Figure 2). The authors
proved necessary conditions on the interval graphs to define a feasible packing. Combined
to good heuristics for dismissing infeasible subsets of items, this characterization was used
to develop a two-level tree search. According to computational results, mainly limited to
2D problems, this strategy outperformed previous methods. The method cannot handle
additional constraints on the packing, however, such as fixing the position of one or more
items. No direct comparison with the Branch & Bound ofMartello et al. (2007) was performed.
The link between guillotine cuts and interval graphs was analyzed by Perboli (2002). Recently,
Joncour et al. (2010) introduced an efficient algorithm to manage the interval-graph structure
by means of MPQ-trees, combinatorial structures introduced in Korte & Möhring (1989).

Fig. 2. Packings and Associated Interval Graphs

A similar approach to the one by Fekete & Schepers has been used by Imahori et al. (2003) to
give a general representation for packing problems where the costs in the objective function
depend on the location of the items. Instead of working on interval graphs, however, the
authors directly deal with the sequencing of the items, i.e., which item is to be put before
another into the packing. The decoding algorithm is managed by a dynamic programming
method with pseudo-polynomial complexity and is used to derive Multi-Start and Iterated
Local Search heuristics. As the representation addresses 2D packings, the computational
experiments were limited to the Minimum Area Packing Problem, a variant of the 2D
Container Loading problem where the minimal boxed envelope of the final packing must
be considered (Murata et al., 1996).

Martello et al. (2000) defined Corner Points as the non-dominated locations where an item
can be placed within an existing packing. In two dimensions, Corner Points are defined
where the envelope of the items in the bin changes from vertical to horizontal (the large dots
in Figure 3b). Corner Points on the three-dimensional envelope can be found applying the
two-dimensional algorithm for each distinct value of the height of the bin defined by the
lower and upper terminal lines of each item (large dots in Figure 3a). A Corner Point set
can be computed in O(n2). Martello et al. (2000) used this idea to design a Branch & Bound
algorithm to verify whether a given set of items can be packed into a bin or not. den Boef
et al. (2005) showed that the algorithm to compute the Corner Points presented in Martello
et al. (2000) may miss some feasible packings. Martello et al. (2007) addressed this issue by
providing a new version of the procedure to compute the Corner Points, as well as an updated
version of the related Branch & Bound algorithm.
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Fig. 3. Corner Points in 3D and 2D Packings

Fig. 4. Extreme Points in 3D and 2D Packings

Crainic et al. (2008) defined the Extreme Points, an extension of Corner Points providing a
better exploitation of the bin volume by identifying additional points where an item can be
added to an existing packing, as illustrated in Figure 4. In particular, while one cannot use
Corner Points to add an item within the space left inside an existing packing, e.g., the dark
gray regions in Figure 3b, Extreme Points provide this capability. Thus, for example, item 11
can be accommodated within the dark gray region on top of item 7 in Figure 4b, which is
not possible with the Corner Points of Figure 3b. The Extreme Point idea was used by the
authors to design new constructive heuristics based on the First Fit Decreasing and the Best
Fit Decreasing heuristics for the mono-dimensional problem. Computational results showed
that the proposed method outperformed all the other constructive heuristics for both 2D and
3D Bin Packing problems, and that it obtains, in negligible time, results comparable to those
of the best existing meta-heuristics.

3. Multi-Dimensional Packing problems

We now turn to the main packing classes, 2D and 3D Bin Packing, 2D and 3D Knapsack, and
3D Container Loading. For each problem, we give its definition, the classification according
to Wäscher et al. (2007), and a brief description of the state-of-the-art solution methods.
Finally, a comparison of the computational results obtained with the state-of-the-art methods
is presented. For this survey, we focus on meta-heuristic methods, as these methods are the
most efficient way to solve real-sized instances while preserving sufficient accuracy.
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The results of all the methods are taken from the literature. For the computational times, due
to the variability of the different processors used in the computational tests, we adopted a
Unified Computational Time (UCT) obtained considering a Pentium4 3000 MHz workstation
as the reference machine and scaling the computational times according to the SPEC CPU2006
benchmarks published in SPEC (2006). Notice that, due to the limited amount ofmemory used
by all the methods, this parameter does not effect the overall results.

3.1 Multi-dimensional bin packing problems

Given a set of box items i ∈ I, with sizes wi, li, and hi, and an unlimited number of bins
of fixed sizes W, L, and H, the Three-Dimensional Orthogonal Bin Packing problem (3D-BP)
consists in orthogonally packing the items into the minimum number of bins. We assume
that the items cannot be rotated. According to the classification introduced by Wäscher et al.
(2007), the problem is also known as the Three-Dimensional Single Bin-Size Bin Packing Problem
(3D-SBSBPP). The Two-Dimensional Orthogonal Bin Packing problem (2D-BP) is the restriction
of 3D-BP in two dimensions.

TSPACK is the Tabu Search algorithm for the 2D-BP developed by Lodi et al. (1999). This
algorithm uses two simple constructive heuristics to pack items into bins. The Tabu Search
only controls the movement of items between bins. Two neighborhoods are considered to
try to relocate an item from the weakest bin (i.e., the bin that appears to be the easiest to
empty) to another. Since the constructive heuristics produce guillotine packings, so does the
overall algorithm. The algorithm is presently the best meta-heuristic for 2D-BP, but it requires
a computation effort of the order of 60 CPU seconds per instance to achieve these results.

The same authors presented a shelf-based heuristic for the 2D-BP, called Height first - Area
second (HA) (Lodi et al., 2004a). The algorithm chooses the best of two solutions. To
obtain the first, items are partitioned into clusters according to their height and a series of
layers are obtained from each cluster. The layers are then packed into bins by using the
Branch-and-Bound approach by Martello & Toth (1990) for the 1D-BP problem. The second
solution is obtained by ordering the items by non-increasing area of their base and new layers
are built. As previously, the layers are packed into bins by solving a 1D-BP problem. The
method is faster but less accurate than TSPACK.

The first exact method for the 3D-BP was a two-level Branch-and-Bound algorithm proposed
by Martello et al. (2000). The first level assigns items to bins. At each node of the first-level
tree, a second level Branch-and-Bound is used to verify whether the items assigned to each
bin can be packed into it. In the same paper, the authors introduced two constructive
heuristics. The first, called S-Pack, is based on a layer-building principle derived from the
shelf approach. The second, called MPV-BS, repeatedly fills one bin after the other by means
of the Branch-and-Bound algorithm for the single bin presented by the authors in the same
paper. The authors also gave the results of their method by limiting its computational effort
to 1000 CPU seconds.

Faroe et al. (2003) presented a Guided Local Search (GLS) algorithm for the 3D-BP. Starting
with an upper bound on the number of bins obtained by a greedy heuristic, the algorithm
iteratively decreases the number of bins, each time using GLS to search for a feasible packing.
The process terminates when a given time limit has been reached or the upper bound
matches a precomputed lower bound. Computational experiments were reported for 2 and

96 New Technologies – Trends, Innovations and Research



Recent Advances in Multi-Dimensional Packing Problems 7

3-dimensional instances with up to 200 items. The results were satisfactory, but required a
computational effort of the order of 1000 CPU seconds to be reached.

Crainic et al. (2008) defined the Extreme Points (EPs) and combined them to the well-known
Best First Decreasing (BFD) heuristic for the 1D-BP, producing the EP-BPH heuristic.
Extending the EP-BPH to address the 3D-BP proved far from trivial, however, as the
ordering of items in higher dimensions may be affected by more than one attribute (e.g.,
volume, side area, width, length, and height of the items). Several sorting rules were tested
and the best ones were combined into C-EPBFD, a composite heuristic based on EP-BPH.
Extensive experimental results showed C-EPBFD requiring negligible computational efforts
and outperforming both constructive heuristics for the 3D-BP and more complex methods,
e.g., the truncated Branch-and-Bound by Martello et al. (2000).

Crainic et al. (2009) proposed TS2PACK, a two-level Tabu Searchmeta-heuristic for the 3D-BP.
The first level is a Tabu Search method that changes the assignment of items to bins. For each
assignment, the items assigned to a bin are packed by means of the second-level Tabu Search,
which makes use of the Interval Graph representation of the packing by Fekete & Schepers
(2004a) to reduce the search space. The accuracy of the overall meta-heuristic is enhanced by
the k-chain-move procedure, which increases the size of the neighborhoodswithout increasing
the overall complexity of the algorithm. TS2PACK currently obtains the best solutions for
the 3D-BP. Nevertheless, the method has a rather slow convergence rate, requiring 300 CPU
seconds to find the best solution.

Finally, Perboli et al. (2011) introduced GASP - Greedy Adaptive Search Procedure, a
meta-heuristic able to efficiently address two and three-dimensional multiple bin packing
problems. GASP combines the simplicity of greedy algorithms with learning mechanisms
aimed to guide the overall method towards good solutions. Extensive computational results
showed that GASP is able to obtain state-of-the-art results for both 2D-BP and 3D-BP in
negligible computational times.

We compare the different methods on standard benchmark instances, the results being taken
from the literature.

We consider ten classes of instances from Berkey & Wang (1987) (Classes I-VI) and Martello
& Vigo (1998) (Classes VII-X) for 2D-BP. Each class is characterized by different distributions
of the item sizes and considers a number of items equal to 20, 40, 60, 80, and 100. For each
combination of class and instance size, 10 repetitions are considered.

We consider the instances of Martello et al. (2000) for the 3D-BP. The instances are organized
in six classes.

The bin size is W = H = D = 100 for Classes I to III, the items belonging to five types, ranging
from small to large-sized. The five classes mix the item types in order to test different usage
scenarios. Bin and item dimensions in Classes IV to VI vary according to the following rules:

• Class IV: wi, li, hi ∼ U[1,10] and W = L = H = 10;
• Class V: wi, li, hi ∼ U[1,35] and W = L = H = 40;
• Class VI: wi, li, hi ∼ U[1,100] and W = L = H = 100.

The number of items is fixed to 50, 100, 150, and 200 items for each class, and 10 instances are
considered for each combination of class and cardinality of the item set.
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The solution methods used for each problem variant and their experimental settings are:

• 2D-BP
– TSPACK: coded in C and run on a Silicon Graphics INDY R10000sc (195 MHz) with a

time limit of 60 CPU seconds for each instance (Lodi et al., 1999);
– GASP: coded in C++, runs were performed on a Pentium4 3 GHzworkstation. The time

limit was set to 3 seconds (Perboli et al., 2011).
• 3D-BP

– GLS: coded in C and run on a Digital workstation with a 500 MHz CPU. A time limit
of 1000 CPU seconds was imposed for each instance (Faroe et al., 2003);

– MPV: this is the truncated Branch and Bound proposed in Martello et al. (2000). It was
coded in C and run on a Pentium4 with 3 GHz CPU with a time limit of 1000 CPU
seconds per instance;

– TS2PACK: coded in C++ and run on a Pentium4 with 2 GHz CPU with a time limit of
300 CPU seconds per instance;

– GASP coded in C++, runs were performed on a Pentium4 3 GHz workstation. The time
limit was set to 5 seconds.

The results for 2D-BP are summarized in Table 1. The instance type is given in the first column,
while Columns 2, 3, and 4 present the results of GASP, TSPACK, and the best known solution
taken from the literature (the optimal value in most cases), respectively. Notice that the best
known solutions have been generally obtained by means of different exact methods and with
a computational effort of several thousands of seconds. Finally, Columns 5 and 6 give the
relative percentage gaps of GASP with respect to TSPACK and the best known solutions (a
negative value means a better performance of GASP). All the time limits reported in the table
are expressed in UCT.

GASP achieves better results than TSPACK, while reducing the computational effort by a
factor of about 4. As the code of TSPACK is publicly available, we also run it for 30 UCT
seconds but the results did not change. Moreover, GASP achieves results that are less than 1%
from the overall optima.

Class GASP TSPACK UB* Gap TSPACK Gap UB*
3 s 12 s

I 100.1 101.5 99.7 -1.40% 0.40%
II 12.9 13 12.4 -0.81% 4.03%
III 70.6 72.3 68.6 -2.48% 2.92%
IV 13 12.6 12.4 3.23% 4.84%
V 90.1 91.3 89.1 -1.35% 1.12%
VI 11.8 11.5 11.2 2.68% 5.36%
VII 83.1 84 82.7 -1.09% 0.48%
VIII 83.6 84.4 83 -0.96% 0.72%
IX 213 213.1 213 -0.05% 0.00%
X 51.4 51.8 50.4 -0.79% 1.98%

Total 729.6 735.5 722.5 -0.82% 0.98%

Table 1. 2D-BP Comparative Results

The results of 3D-BP are summarized in Table 2. Columns 1-3 give the instance type, bin
dimension, and number of items, respectively, Column 4 presents the results of GASP, while
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Columns 5-8 give the gaps of the solutions obtained by GASP relative to those of MPV, GLS,
TS2PACK, and the best lower bound available, respectively. The gaps were computed as
(meanGASP − meano)/meano, where, for a given set of instances, meanGASP and meano are the
mean values obtained by the GASP heuristic and the method compared to, respectively. A
negative value means that GASP yields a better mean value. The last row displays the total
number of bins used by GASP, computed as the sum of the values in the column, and the
average of the mean gaps. As for the 2D-BP, the time limits displayed are given in UCT.

The results indicate that GASP performs better than the truncated Branch & Bound and has
a gap of only 0.9% with the best algorithm in the literature, with a negligible computational
time: 5 CPU seconds compared to 1000 for GLS and 300 for TS2PACK.

To further illustrate this efficiency, Table 3 displays the performance of GASP w.r.t. those of
GLS and TS2PACK, in comparable times (i.e., 60 CPU seconds on a Digital 500 workstation
for GLS, equivalent to 18 UCT seconds, and 18 seconds for TS2PACK). These results are
impressive as GASP actually improves the solutions of both GLS and TS2PACK up to 0.6% on
average.

Class Bins n GASP MPV GLS TS2PACK LB
5 s 1000 s 300 s 300 s

I 100 50 13.4 -1.47% 0.00% 0.00% 3.88%
100 26.9 -1.47% 0.75% 0.75% 5.08%
150 37 -3.14% 0.00% 0.00% 3.35%
200 51.6 -1.34% 0.78% 0.98% 3.82%

II 100 50 29.4 0.00% 0.00% 0.00% 1.38%
100 59 -0.17% 0.00% 0.17% 0.85%
150 86.8 -0.46% 0.00% 0.00% 0.46%
200 118.8 -0.59% -0.17% 0.00% 0.42%

III 100 50 8.4 -8.70% 1.20% 1.20% 10.53%
100 15.1 -13.71% 0.00% -0.66% 7.86%
150 20.6 -14.17% 1.98% 2.49% 9.57%
200 27.7 -12.89% 1.84% 1.09% 6.54%

IV 10 50 9.9 1.02% 1.02% 1.02% 5.32%
100 19.1 -1.55% 0.00% 0.00% 3.80%
150 29.5 -0.34% 0.34% 1.03% 3.51%
200 38 -0.52% 0.80% 0.80% 3.54%

V 40 50 7.5 -8.54% 1.35% 1.35% 10.29%
100 12.7 -16.99% 3.25% 3.25% 10.43%
150 16.6 -15.74% 5.06% 5.06% 15.28%
200 24.2 -13.88% 2.98% 2.98% 6.61%

VI 100 50 9.3 -7.92% 1.09% 1.09% 6.90%
100 19 -5.94% 0.53% 1.06% 3.26%
150 24.8 -9.16% 3.77% 3.77% 10.22%
200 31.1 -10.89% 4.01% 3.67% 10.28%

Total 736.4 -4.35% 0.85% 0.90% 3.89%

Table 2. 3D-BP Comparative Results
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Class Bins n GASP GLS TS2PACK LB
5 s 18 s 18 s

I 100 50 13.4 0.00% 0.00% 3.88%
100 26.9 0.00% -0.37% 5.08%
150 37 -1.33% -1.86% 3.35%
200 51.6 -2.27% -2.64% 3.82%

IV 100 50 29.4 0.00% 0.00% 1.38%
100 59 0.00% -0.34% 0.85%
150 86.8 -0.34% -0.57% 0.46%
200 118.8 -0.92% -0.34% 0.42%

V 100 50 8.4 1.20% 1.20% 10.53%
100 15.1 0.00% -1.95% 7.86%
150 20.6 -0.48% -1.44% 9.57%
200 27.7 -0.36% -1.07% 6.54%

VI 10 50 9.9 1.02% 0.00% 5.32%
100 19.1 -1.04% -2.05% 3.80%
150 29.5 0.00% 0.34% 3.51%
200 38 -1.30% -1.81% 3.54%

VII 40 50 7.5 1.35% 1.35% 10.29%
100 12.7 3.25% 3.25% 10.43%
150 16.6 5.06% 3.75% 15.28%
200 24.2 -0.82% -2.42% 6.61%

VIII 100 50 9.3 1.09% 1.09% 6.90%
100 19 0.53% -1.04% 3.26%
150 24.8 1.22% 0.81% 10.22%
200 31.1 1.63% 0.97% 10.28%

Total 736.4 -0.23% -0.57% 3.89%

Table 3. 3D-BP Comparison of State-of-the-Art Methods in Comparable Computational
Times

3.2 Multi-dimensional knapsack problems

Given a set of rectangular items i = 1, . . . , n with sizes wi and li and a profit pi, and a bin of
fixed dimensions W and L, the Two-Dimensional Orthogonal Knapsack problem (2D-KP) consists
in orthogonally packing a subset of the items into the bin to maximize the sum of the profits
of the loaded items. Most algorithms present in the literature assume the items cannot be
rotated.

The natural extension to the three-dimensional case is called Three-Dimensional Orthogonal
Knapsack problem (3D-KP). The variant studied in the literature considers explicitly the
rotation of the items.

The restriction of 2D-KP to the case where the item profits are equal to the rectangle areas
is also known in the literature as the Cutting Stock problem. According to the classification
of Wäscher et al. (2007), 2D-KP can be characterized as a Two-Dimensional Single Large
Object Placement Problem (2D-SLOPP) and 3D-KP as Three-Dimensional Single Large Object
Placement Problem (3D-SLOPP).
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Integer Programming formulations for the 2D-KP were presented by Beasley (1985a),
Hadjiconstantinou & Christofides (1995), and Boschetti et al. (2002), among others. Fekete
& Schepers (1997; 2004b) addressed 2D and 3D Knapsack problems using an advanced
graph representation within a Branch-and-Bound algorithm, which assigned items to the
bin without specifying their position. Pisinger & Sigurd (2007) proposed a Branch-and-Cut
approach for the 2D-KP, in which a one-dimensional knapsack problem selects the most
profitable items whose overall area does not exceed the area of the bin. A two-dimensional
packing problem in decision form is then solved through constraint programming to check
the feasibility of loading the selected items. Caprara & Monaci (2004) also proposed a
Branch-and-Bound algorithm for the 2D-KP, where items are assigned to the bin without
specifying their positions, the feasibility check being performed afterwords through an
enumeration scheme.

Many authors presented heuristic procedures for the 2D-KP. Lai & Chan (1997a;b) developed
two meta-heuristics based on Simulated Annealing and evolutionary principles. The former
proceeds in three steps: splitting the master surface into sub-areas that can be used for
packing, placing the items according to a fitting heuristic, and finally a classical search
procedure based on moving the items and a cooling scheme. The evolutionary strategy
includes hill-climbing and mutation procedures. Both meta-heuristics were tested on
randomly generated instances as well as on real world problems with the objective of
minimizing the wasted material. Leung et al. (2001) proposed a Genetic Search approach
and a Simulated Annealing meta-heuristic. The authors hybridized the Genetic Search with a
simple on-line bottom-left heuristic that packed the items as down and as left as possible. An
extensive study of different crossover operators is presented but no detailed computational
results are given. The meta-heuristics proposed by Lai & Chan (1997a) and Leung et al. (2001)
cannot produce all the feasible cutting patterns. Liu & Teng (1999) used a different heuristic,
denoted the improved BL-algorithm, to overcome this issue by, first, placing the first item in the
bottom left-hand corner of the master surface, and then inserting all the other items starting
from the top right-hand corner of the surface and then shifting them alternatively left and
down until no further shifting is possible. Unfortunately, no computational results are given
for problem instances drawn from the literature, making impossible a direct comparison with
other heuristics.

Beasley (2004) proposed an innovative population-based meta-heuristic for a new nonlinear
formulations of the problem. Boolean variables were used to indicate whether an item is cut
from the master surface or not, two other integer variables representing the coordinates of the
center of the item cut. This formulation leads to a three-dimensional solution encoding used to
create the individuals of the population, which was evolved through crossover and mutation.
Infeasible solutions were penalized during the fitness-evaluation step. Computational results
were presented for a number of standard problems from the literature, as well as for a number
of large randomly generated problems.

These results were improved by Hadjiconstantinou & Iori (2007), who proposed a Genetic
Search meta-heuristic hybridized with a greedy procedure, where the items can be placed on
the point maximizing the so-called touching perimeter, i.e., the fraction of the perimeter of
an item to be added to the bin touching either the edges of the existing packing, or the edges
of the surface of the bin. Computational results showed that this method outperformed the
algorithm by Beasley (2004) from both the computational and the solution-quality points of
view.
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In the same year, Alvarez-Valdes et al. (2007) introduced another meta-heuristic that improved
the results of Beasley (2004). The algorithm is a Tabu Search meta-heuristic implementing
interesting moves able to compact the packing, thus reducing the wasted space. Moreover,
the algorithm is able to deal with additional constraints, e.g., the presence of different types
of items and lower bounds on the number of items to be loaded for each type.

The best results for 2D-KP are due to Bortfeldt & Winter (2009) who proposed a Genetic
Algorithm for guillotine packings. The algorithm is also able to deal with item rotations
and was tested on a wide series of instances with and without guillotine cuts. Their results
improved both Hadjiconstantinou & Iori (2007) and Alvarez-Valdes et al. (2007), but with a
significant computational effort.

The first contribution to 3D Knapsack problems is to be found in Egeblad & Pisinger (2009),
where the authors proposed an exact model and heuristics for 2D and 3D Knapsack problems.
The model cannot be used to derive both lower and upper bounds, however, whilst the
heuristic manages instances up to 60 items for the 3D case.

Finally, Perboli (2011) extended the GASP algorithm (Perboli et al., 2011) for the
Multi-Dimensional Bin Packing problem. The algorithm shares the same structure and
packing representation by means of EPs with the original method. Compared to the version
for Multi-Dimensional Bin Packing Problem, this variant of the algorithm incorporates a
long-term memory mechanism, which adapts the search according to the number of times an
item is loaded in a solution considered during the search. Themethod achieves state-of-the-art
results for both 2D-KP and 3D-KP, with or without rotation, within negligible computational
times.

We used two set on instances to test 2D-KP. A set of 38 small-size instances, with less than 100
items and known optimal solutions (except gcut13), was built as follows:

• Twelve instances (ngcut01 to ngcut12) from Beasley (1985b), available from the
ORLIB-Library (Beasley, 1990);

• Four instances (hccut03, hccut08, hccut11, hccut12) fromHadjiconstantinou & Christofides
(1995);

• Five instances (okp01 to okp05) from Fekete & Schepers (2004a);
• Three instances (cgcut01 to cgcut03) from Christofides & Whitlock (1977);
• Thirteen instances (gcut01 to gcut13) from Beasley (1985a), available from the

ORLIB-Library (Beasley, 1990);
• One instance (wang20) fromWang (1983).

A second set contains large-size instances with up to 4000 items from the sets ngcutfs01,
ngcutfs02, and ngcutfs03, randomly generated by Beasley (2004) similarly to the procedure of
Fekete & Schepers (2004a). All these instances are available from the ORLIB-Library Beasley
(1990). The large-size test set workswith a bin of size [100, 100] and is composed of instances of
Type I, II, and III, according to the criteria used for the random generation of items. For each of
the three types, m = 7 item subtypes and Q = 3 items for each item subtype were considered
and 10 random instances were built for each combination of m and Q. The complete set is thus
made up of 630 instances with up to 4000 items. Both sets refer to the 2D-KP problem with
fixed rotation, i.e., items cannot be rotated.

For the 3D-KP, we consider the instances presented in http://www.diku.dk/hjemmesider/
ansatte/pisinger/codes.html, together with the corresponding results.
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The instances were obtained as follows:

• number of items: n ∈ {20, 40, 60}
• item generation strategy: t ∈ {C, R}, where:

– C alias clustered, because the instance consists of only 20 items, which are duplicated
appropriately;

– R alias random, because the instance consists of independently generated items
• bin size: p ∈ {50, 90}, expressed as a percentage of the total volume of the items
• item attributes:

– size: si = (wi, di, hi), which must belong to one among the following geometric classes
(see Egeblad & Pisinger (2009)):
* Cubes (C). The items are cubic and their sizes are defined as wi ∈ [1, 100] , di =

wi, hi = wi;
* Diverse (D). The sizes of the items are randomly chosen in the following ranges

wi ∈ [1, 50] , di ∈ [1, 50] , hi ∈ [1, 50];
* Long (L). The sizes of the items are randomly chosen in the following ranges wi ∈
[1, 200/3] , di ∈ [50, 100] , hi ∈ [1, 200/3];

* Uniform (U). The sizes of the items are randomly chosen in the following ranges
wi ∈ [50, 100] , di ∈ [50, 100] , hi ∈ [50, 100];

– profit: pi = 200+ wi di hi.

The combination of all the values gives 60 instances for each set. In this case, the items can be
rotated.

The different algorithms compared and the test environments are:

• 2D-KP
– HB: heuristic by Beasley (2004), coded in FORTRAN and run on a Silicon Graphics O2

workstation with a R10000 225 MHz processor;
– HHI : heuristic by Hadjiconstantinou & Iori (2007), coded in FORTRAN and run on a

Pentium IV 1700 MHz;
– HAP: heuristic by Alvarez-Valdes et al. (2007), coded in C++ and run on a Pentium III

at 800 MHz;
– HBW : heuristic by Bortfeldt & Winter (2009), coded in C and run on an Intel PC 3 GHz,

Dual Core;
– GASP coded in C++ and run on a Pentium4 3000 MHz workstation

• 3D-KP
– HEP: heuristic by Egeblad & Pisinger (2009), coded in C++ and run on an AMD Athlon

64 3800+ processor;
– GASP coded in C++ and run on a Pentium4 3 GHz workstation.

We report only aggregated results for 2D-KP on the small-size instances of the first set. The
best results of HB present an average gap of 1.24% from the optimal solutions, while HHI
solves all the instances to the optimum, except gcut13 (for which no optimal solution is known
in the literature) and gcut02. HAP finds all the known optima (and the best known value for
gcut13), while HBW fails only in instance wang20. GASP solves to optimality all instances for
which the optimum is available and determines the best known value for gcut13 with a mean
computational effort less than 5 seconds.
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HB HHI HAP HBW GASP GASP
(best) (average)

Type I 1.64 1.24 0.95 1.03 0.98 1.01
558.00 46.41 10.00 3600.00 4.15 4.82

Type II 1.70 1.32 1.06 1.09 1.06 1.07
668.00 48.18 12.16 3600.00 3.77 3.68

Type III 1.66 1.35 0.94 0.95 0.94 1.01
685.00 63.80 16.61 3600.00 5.39 6.25

Average 1.67 1.30 0.98 1.02 0.99 1.03
637.00 52.79 12.92 3600.00 4.44 4.92

Table 4. 2D-KP Comparative Results

A more challenging comparison can be made considering the large-size instances. The results
are summarized in Table 4, which displays the mean values of the results obtained by the
three heuristics by instance type. Columns 1 to 4 report the results of HB, HHI , HAV , and
HBW , respectively, while the remaining columns display the the best and average solution
values obtained by GASP over the 10 repetitions. We report the percentage gaps from the
best known results and the Unified Computational Times. Notice that for the computational
times of HBW , the authors provided only the time limit and not the computational times they
needed to reach their best results.

According to these results, the best heuristic is still HAP with a mean optimality gap of
0.98%. HB is no longer competitive, while HBW has competitive results, but with a heavy
computational effort. We notice that HBW is still the best heuristic for the variant of the
problem where only guillotine cuts are considered. GASP performs practically as well as
HAP with a much smaller computational effort, actually reducing computing times by up to
two orders of magnitude compared to the other methods. GASP also shows high performance
stability when the random seeds are varied.

The results of the comparison for 3D-KP are presented in Table 5 aggregated by instance type.
We display themean percentage gaps with respect to the upper bound obtained by solving the
mono-dimensional knapsack problem with the items of the 3D-KP instance with item weights
equal the their respective volumes and a knapsack maximum weight equal to the volume of
the 3D knapsack. This bound is known to be quite poor in quality, but it is the current best for
3D knapsack where items can be rotated. As for 2D-KP, two results are provided for GASP:
the best and mean over 10 runs, respectively. Computational times were fixed to 120 seconds
for HEP and 10 seconds for GASP.

These results indicate that GASP performs better than HEP, both in quality and computational
efficiency, even when the mean GASP value over 10 random runs is considered. The small
gap between best and average results also shows that GASP is stable with respect to random
repetitions.

3.3 Container loading problem

Given a set of box items i = 1, ..., n with sizes wi, li, and hi and a container of fixed
dimensions W, L, and H, the Three-Dimensional Container Loading problem (3D-CLP) consists in
orthogonally packing a subset of the items into the container maximizing the used fraction of
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n HEP GASP (best) GASP (average)
20 19.7 15.2 15.3
40 19.3 18.0 18.3
60 15.7 14.8 15.1

Total 18.2 16 16.2

Table 5. 3D-KP Comparative Results

its volume. Usually, items can be rotated, but some restrictions on the feasible rotations can be
present. According toWäscher et al. (2007), the 3D-CLP can be classified as Three-Dimensional
Rectangular Single Large Object Placement problem (3D-SLOPP).

The problem arises in important practical cases, particularly in logistics and distribution
where containers, trucks, rail cars, etc. must be loaded with freight. It can be seen as a
special case of the Three-Dimensional Knapsack Problem, where the profits of the items are
their volumes. Yet, due to the large number of items that can be loaded into a container
and to the fact that the item profit is linked to the item size, the methods developed for the
Multi-Dimensional Knapsack Problem fail in most cases of interest. Consequently, the 3D-CLP
has been studied as a separate problem in the literature.

The first heuristic for the 3D-CLP was proposed by George & Robinson (1980). The authors
developed a wall-building procedure, which was later improved by several authors, e.g.,
Bischoff & Marriot (1990) and, more recently, Moura & Oliveira (2005). A different approach,
based on column generation, was proposed by Gehring & Bortfeldt (1997), which provided
the starting point of a series of meta-heuristics by the same authors: Tabu Search (Bortfeldt &
Gehring, 1998), a hybrid algorithm (Bortfeldt & Gehring, 2001), as well as their best algorithm,
a parallel hybrid local search combining Simulated Annealing and Tabu Search (Mack et al.,
2004). Parreño et al. (2008) presented a reactive GRASP, which uses a constructive-block
heuristic similar, for its usage of the space, to the Residual-Space idea of Crainic et al. (2008).
The authors improved their GRASP in Parreño et al. (2010). The method implemented the
same constructive heuristic presented in Parreño et al. (2008), but introduced five types
of neighborhoods, mixed in a VNS-based meta-heuristic, which yielded the best results in
the literature. Pisinger (2002) also presented a wall-building approach yielding interesting
results, but tested on a different set of instances than the other contributions, making a direct
comparisons difficult. Finally, because 3D-CLP is a special case of 3D-KP, any available code
for 3D-KP with rotations can be used as well. Consequently, we also consider the GASP
version developed for Multi-Dimensional Knapsack problems presented in Perboli (2011).

The experiments were performed using the standard benchmark instances for the 3D-CLP
generated by Bischoff & Ratcliff (1995). The whole set of instances is made up of 14 classes,
namely BR1 to BR14, of 100 instances each, but only sets BR1 to BR7 were tested on all the
algorithms presented previously. The number of box types increases from 3 in BR1 to 20 in
BR7, thus covering a wide range of situations. The number of items of each type decreases
from an average of 50.2 items per type in BR1 to 5.60 in BR7. For each item type, the maximum
number of items available is known. The total volume of the items is on average 99.5% of the
capacity of the container.

We compare the results of RGPAO, the Reactive GRASP by Parreño et al. (2008), TSBG, the Tabu
Search by Bortfeldt & Gehring (1998), and HMO, the GRASP approach by Moura & Oliveira
(2005) truncated after 5000 and 50000 iterations (indicated as 5k and 50k, respectively).
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Instance set TSBG HMO RGPAO 5k RGPAO 50k VNSPAO GASP
BR1 93.23 93.26 93.27 93.66 94.93 93.32
BR2 93.27 93.56 93.38 93.90 95.16 93.78
BR3 92.86 93.71 93.39 94.00 94.99 93.65
BR4 92.40 93.30 93.16 93.80 94.71 93.70
BR5 91.61 92.78 92.89 93.49 94.33 92.00
BR6 90.86 92.20 92.62 93.22 94.04 92.05
BR7 89.65 91.20 91.86 92.94 93.53 93.42

Mean volume 91.98 92.86 92.94 93.57 94.53 93.13
Mean time 38 205 8 77 28 10
Mean UCT 9 126 10 99 36 10

Table 6. 3D-CLP Comparative Results

Algorithm TSBG run on a Pentium II 400 MHz, using a mean computation effort of 316
seconds, HMO on a Pentium IV at 2.4 GHz, with an average time of 69 seconds, while RGPAO
run on a 1.5 GHz Pentium mobile with a mean effort of 7.83 seconds. GASP was coded in
C++ and run on a Pentium4 3000 MHz workstation. For each instance, 10 repetitions were
performed changing the seed of the random generator, with a time limit of 10 seconds.

Comparative performance results are reported in Table 6 as average values of the solutions
obtained on the 100 instances. Column 1 displays the instance set, while Columns 2 to
4 display the results of TSBG, HMO, RGPAO, VNSPAO, and GASP, respectively. The last
three rows display the mean used container volume (in %), the mean computational time
as reported in the literature, and the mean Unified Computational Time (no ratio is available
for the computer used by TSBG). The results indicate that, without any particular adaptation,
GASP compares advantageously in solution quality with previous state-of-the-art algorithms
for the 3D-CLP problem, while significantly reducing the computational effort. In particular,
GASP is on average more effective than HMO and RGPAO, requiring some 10 times less
computational effort than RGPAO, which leads in solution quality by a very narrow margin.

4. General remarks

Many solution methods were proposed for Multi-Dimensional Packing problems, the two
methodological frameworks emerging as the most used being Tabu Search and Genetic
Algorithms. The latter needs usually an hybridization with specific optimization procedures
managing the peculiarities of each problem setting.

Most methods in the literature generally aim for better solution quality without much care to
how general or flexible it is. To evaluate this aspect, we adopt the two additional performance
criteria stated by Cordeau et al. (2002) for evaluating Vehicle Routing heuristics, namely
simplicity and flexibility. The former relates to ease of understanding and coding of an
algorithm, while the latter focuses on the possibility to easily introduce additional constraints.

From the simplicity point of view, TSPACK (Lodi et al., 2004b) and GASP (Perboli et al., 2011)
stand out due to their simple structures and ease of implementation. Notice though, that,
similarly to many packing meta-heuristics, TSPACK mixes in the neighborhood structure
the issues of packing feasibility, which follows from the packing representation, and its
optimality, which relates to the particular problem settings. This greatly reduces the generality
of the method. This contrasts with the modular structure of GASP, which let the authors to
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successfully address different packing problems (Bin Packing, Knapsack, Container Loading,
etc.). On the other hand, methods such as TS2PACK (Crainic et al., 2009) present an interesting
structure, but the quite complicated packing representation given by the interval graphs make
them harder to understand and manage.

Evaluating flexibility, we see methods, e.g., TSPACK for the Multi-Dimensional Bin
Packing, and HBW (Bortfeldt & Winter, 2009) and HEP (Egeblad & Pisinger, 2009) for the
Multi-Dimensional Knapsack Problem, which have been successfully tested on different
variants of the same problem, showing a good flexibility at this level. On the other hand,
up to now, GASP is the only method that has been satisfactory tested on different packing
problem classes.

Turning to the packing representation, the most elegant approach is the interval graph
representation by Fekete & Schepers (1997). Unfortunately, it is also the less flexible when one
has to deal with additional constraints like items in fixed positions and guillotine cuts (Perboli,
2002). Moreover, its performances strongly depends on the data structures used to update the
representation. Corner Points by Martello et al. (2000) are probably the easiest to understand
and implement. The Extreme Points by Crainic et al. (2008) offer a better exploitation of the
bin volume and represent a good compromise between simplicity and accuracy.

The last point to focus on is the public availability of these methods. For most of them, the
code is not public. To our best knowledge, the only methods that are publicly available are
TSPACK, the Branch & Bound by Martello et al. (2000) and the heuristic for container loading
by Pisinger (2002). All these codes can be downloaded from the web sites of the authors.

5. Conclusions

In this chapter we presented a detailed and up-to-date survey of solution methods
for Multi-Dimensional Packing problems. We first focused on the common issue of
packing problems, i.e., the representation of the packing. We then considered the main
Multi-Dimensional Packing problems and discussed the efficiency and accuracy of the
available solution methods.

We identified for each problem setting the methods that perform best. We also observed that
most methods are tailored for one problem setting only. The only method that emerges as a
general framework is GASP, which has been successfully applied to different variants of the
problems presented in this chapter.
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