POLITECNICO DI TORINO

Repository ISTITUZIONALE

Monomials as sums of powers: the Real binary case

Original
Monomials as sums of powers: the Real binary case / Boji, M.; Carlini, Enrico; Geramita, A. V.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 139:(2011), pp. 3039-3043. [10.1090/S0002-9939-2011-11018-9]

Availability:

This version is available at: $11583 / 2440683$ since
Publisher:
AMERICAN MATHEMATICAL SOCIETY

Published
DOI:10.1090/S0002-9939-2011-11018-9

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

MONOMIALS AS SUMS OF POWERS: THE REAL BINARY CASE

MATS BOIJ, ENRICO CARLINI, AND ANTHONY V. GERAMITA

Abstract

We generalize an example, due to Sylvester, and prove that any monomial of degree d in $\mathbb{R}\left[x_{0}, x_{1}\right]$, which is not a power of a variable, cannot be written as a linear combination of fewer than d powers of linear forms.

1. Introduction

It is well-known, and easy to prove, that if k is a field of characteristic zero and $R=k\left[x_{0}, \ldots, x_{n}\right]=\bigoplus_{i=0}^{\infty} R_{i}$ is the standard graded polynomial algebra, then the k-vector space R_{d} (for any d) has a basis consisting of polynomials $\left\{L_{1}^{d}, \ldots, L_{s}^{d}\right\}$ where $s=\binom{d+n}{n}=\operatorname{dim}_{k} R_{d}$ and the L_{i} are pairwise linearly independent forms in R_{1}. It follows that every form in R_{d} is a k-linear combination of at most $s d^{\text {th }}$ powers of linear forms and, if k is algebraically closed, simply a sum of at most s $d^{t h}$ powers of linear forms. We will call such a way of writing $F \in R_{d}$ a Waring expansion of F because of the echo of Waring's problem from number theory. We will further refer to such an expression as a minimal Waring expansion for F if the number of summands in such an expression for F is minimal among all such representations.

If $n>0$ and $d=2$ it is a classical fact that although $s=\binom{n+2}{2}$ every quadratic form has a Waring expansion involving $\leq n+1<s$ summands and that, in general, i.e. for $[F]$ belonging to a non-empty Zariski open subset of $\mathbb{P}\left(R_{2}\right)$ a minimal Waring expansion for F has exactly $n+1$ summands.

These observations have led to a series of problems, usually called Waring Problems, which ask for information on minimal Waring expansions for forms of degree d in R.

The long outstanding problem of finding the number of summands in a minimal Waring expansion of the generic form of degree d was solved, after being open for almost 100 years, by J. Alexander and A. Hirschowitz (see AH95]), when k is an algebraically closed field.

Of course, solving this problem for the generic form of degree d does not always give information about any specific form of degree d and the
problem of finding the length of the minimal Waring expansion for specific forms has also been a continuing source of interesting speculations and lovely results. E.g. it was Sylvester ([Har92]) who first observed that although for $R=\mathbb{C}\left[x_{0}, x_{1}\right]$, the generic form of degree d has a Waring Expansion with $s=\left\lceil\frac{d+1}{2}\right\rceil$ summands, the monomial $x_{0} x_{1}^{d-1}$ has d summands in its minimal Waring expansion (the maximum possible).

The Waring problem for specific forms has been considered in depth by B. Reznick in his monograph (see [Rez92]) and by Comas and Seiguer who, to our knowledge, were the first to resolve the problem completely and algorithmically in $\mathbb{C}\left[x_{0}, x_{1}\right]$ in their unpublished work (CS01).

It is interesting to note that although the Waring problem is a very interesting and stimulating problem in purely algebraic terms, it has a surprising number of intimate connections with problems in areas as seemingly disparate as algebraic geometry and communication theory (see for example [RS00, [CC03] and [CM96])

Indeed, if $k=\mathbb{R}$, the field of real numbers, the connection with real world problems is very direct. This has prompted a re-examination of the Waring problem for $R=\mathbb{R}\left[x_{0}, x_{1}\right]$, and a recent very suggestive paper of Comon and Ottaviani (see [CO09]) considered this very problem for degrees $d \leq 5$.

Our main result in this paper follows the line of Sylvester's examples and concerns the minimal Waring expansion for monomials in $\mathbb{R}\left[x_{0}, x_{1}\right]$. We first give a new proof of the fact that the minimal Waring expansion of the monomial $x_{0}^{a} x_{1}^{b}$ in $\mathbb{C}\left[x_{0}, x_{1}\right]$ with $0<a \leq b$ has $b+1$ summands. In sharp contrast to this we show that in $\mathbb{R}\left[x_{0}, x_{1}\right]$ every monomial of degree d (except x_{0}^{d} and x_{1}^{d}) has d summands in its minimal Waring expansion.

2. Basic Results

Let $S=k\left[x_{0}, x_{1}\right]$ and $T=k\left[y_{0}, y_{1}\right]$. We make S into a T-module using differentiation, i.e. we think of $y_{0}=\partial / \partial x_{0}$ and $y_{1}=\partial / \partial x_{1}$. We refer to a polynomial in T as ∂ instead of using capital letters. In particular, for any form F in S_{d} we define the ideal $F^{\perp} \subseteq T$ as follows:

$$
F^{\perp}=\{\partial \in T: \partial F=0\} .
$$

The following Apolarity Lemma is due to Iliev and Ranestad [IR01.
Lemma 2.1. A homogeneous form $F \in S$ can be written as

$$
F\left(x_{0}, x_{1}\right)=\sum_{i=1}^{r} \alpha_{i}\left(L_{i}\right)^{d}, L_{i} \text { pairwise linearly independent, } \alpha_{i} \in k
$$

i.e. has a Waring expansion with r summands, if and only if the ideal F^{\perp} contains the product of r distinct linear forms.

3. Binary monomials: the complex case

The complex case is straightforward for monomials.
Proposition 3.1. Let $M=x_{0}^{a} x_{1}^{b}$ be a monomial in $\mathbb{C}\left[x_{0}, x_{1}\right]$. If $0<$ $a \leq b$, then M has a minimal Waring expansion with $b+1$ summands, i.e. is a sum of $b+1$ powers of linear forms and no fewer.

Proof. Let $I=M^{\perp}=\left(y_{0}^{a+1}, y_{1}^{b+1}\right)$ and notice that the linear system defined by I_{b+1} is base point free on $\mathbb{P}^{1}=\mathbb{P} S_{1}$. Applying Bertini's Theorem, we get that the generic element of I_{b+1} defines a set of $b+1$ distinct points and hence it is the product of $b+1$ distinct linear forms. Thus the apolarity lemma yields that M is the sum of $b+1$ powers of linear forms. If $r<b+1$, then r powers do not suffice as no element in $I_{r}=\left(y_{0}^{a+1}\right)_{r}$ is a product of r distinct linear forms.

4. Binary monomials: the real case

We can also ask for a real Waring expansion of a monomial M. More precisely, we want to write

$$
M\left(x_{0}, x_{1}\right)=\sum_{i=1}^{r} \alpha_{i}\left(L_{i}\right)^{d}, \quad \alpha_{i} \in\{1,-1\}
$$

where the linear forms L_{i} are in $\mathbb{R}\left[x_{0}, x_{1}\right]$. In order to do this, we have to increase the number of summands in Proposition 3.1.

The following elementary facts will be extremely useful.
Lemma 4.1. Consider the degree d polynomial

$$
F(x)=c_{d} x^{d}+\ldots c_{1} x+c_{0} \in \mathbb{R}[x] .
$$

If $c_{i}=c_{i-1}=0$ for some $1 \leq i \leq d$, then $F(x)$ does not have d real roots.

Proof. The proof is obvious if $i=1$ or $i=d$, so we may as well assume that $1<i<d$.

Consider all the pairs $\left(c_{r}, c_{s}\right)$ of non-zero coefficients such that $r>s$ and $c_{j}=0$ if $r>j>s$. Let α be number of pairs such that $r-s$ is odd and β the number of pairs such that $r-s$ is even. Notice that, by hypothesis, $\alpha+2 \beta<d-1$

Now we apply Descartes' rule of signs. For a pair $\left(c_{r}, c_{s}\right)$ such that $r-s$ is odd we get a real root of $F(x)$. For a pair $\left(c_{r}, c_{s}\right)$ such that $r-s$ is even we get either two real roots of $F(x)$ or none.

In conclusion, the number of real roots of $F(x)$ is at most $\alpha+2 \beta$ and we are done.

Lemma 4.2. For each $i<d$ there exists a degree d polynomial $F(x)=$ $c_{d} x^{d}+\ldots c_{1} x+c_{0} \in \mathbb{R}[x]$ having d real roots and such that $c_{i}=0$.

Proof. Choose $a_{1}, \ldots, a_{d} \in \mathbb{R}$ and consider the polynomial $F(x)=$ $\left(x-a_{1}\right) \cdot \ldots \cdot\left(x-a_{d}\right)$. This polynomial can also be written as

$$
F(x)=\sum_{i=0}^{d} E_{i}\left(a_{1}, \ldots, a_{d}\right) x^{i}
$$

where E_{i} is the degree i elementary symmetric function in its arguments. The vanishing of the i-th coefficient of $F(x)$ can be written as

$$
E_{i}\left(a_{1}, \ldots, a_{d-1}\right)+a_{d} E_{i-1}\left(a_{1}, \ldots, a_{d-1}\right)=0
$$

Hence, if we choose the $a_{1}, \ldots, a_{d-1}>0$ and distinct there exists a unique, negative value of a_{d} such that the coefficient of x^{i} in $F(x)$ is zero. As the roots of $F(x)$ are a_{1}, \ldots, a_{d} the polynomial has d real, distinct roots.

Using the previous results we immediately get a lower bound on the number of summands in the minimal Waring expansion of a monomial in $\mathbb{R}\left[x_{0}, x_{1}\right]$.
Lemma 4.3. Let $M=x_{0}^{a} x_{1}^{b}$ be a monomial in $\mathbb{R}\left[x_{0}, x_{1}\right]$. If $0<a \leq b$, then M does not have a Waring expansion with $r \leq a+b-1$ real summands.

Proof. Let $I=M^{\perp}=\left(y_{0}^{a+1}, y_{1}^{b+1}\right)$. The general degree r element in I has the form $F\left(y_{0}, y_{1}\right)=$
$c_{r} y_{0}^{r}+c_{r-1} y_{0}^{r-1} y_{1}+\ldots+c_{a+1} y_{0}^{a+1} y_{1}^{r-a-1}+c_{r-b-1} y_{0}^{r-b-1} y_{1}^{b+1}+\ldots+c_{0} y_{1}^{r}$.
If $a+1 \geq r-b+2$, then by Lemma 4.1 F $\left(y_{0}, y_{1}\right)$ is not the product of r real linear forms. The conclusion follows by the apolarity lemma.

Proposition 4.4. Let $M=x_{0}^{a} x_{1}^{b}$ be a monomial in $\mathbb{R}\left[x_{0}, x_{1}\right]$. If $0<$ $a \leq b$, then M has a minimal Waring expansion with $a+b$ summands which are powers of real linear forms.

Proof. We have that $M^{\perp}=I=\left(y_{0}^{a+1}, y_{1}^{b+1}\right)$. Notice that I_{a+b} is the subspace of T_{a+b} of polynomials which are missing all the monomials having factor y_{0}^{a} or y_{1}^{b}. Thus, Lemma 4.2 and the apolarity lemma yield the result.

5. Acknowledgement

This project started with a research visit supported by a grant for visiting researchers from the Göran Gustafsson Foundation.

References

[AH95] J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. J. Algebraic Geom., 4(2):201-222, 1995.
[CC03] E. Carlini and J. Chipalkatti. On Waring's problem for several algebraic forms. Comment. Math. Helv., 78(3):494-517, 2003.
[CM96] P. Comon and B. Mourrain. Decomposition of quantics in sums of power of linear forms. Signal Processing, 53(2):93-107, 1996. Special issue on HighOrder Statistics.
[CO09] P. Comon and G. Ottaviani. On the typical rank of real binary forms. arXiv:0909.4865v1, 2009.
[CS01] G. Comas and M. Seiguer. On the rank of a binary form. arXiv:math/0112311v1, 2001.
[Har92] J. Harris. Algebraic geometry, A first course. Graduate Texts in Math. Springer-Verlag, New York, 1992.
[IR01] A. Iliev and K. Ranestad. Canonical curves and varieties of sums of powers of cubic polynomials. J. Algebra, 246(1):385-393, 2001.
[Rez92] B. Reznick. Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 96(463):viii+155, 1992.
[RS00] K. Ranestad and F.-O. Schreyer. Varieties of sums of powers. J. Reine Angew. Math., 525:147-181, 2000.
(M.Boij) Department of Mathematics, KTH, Stockholm, Sweden

E-mail address: boij@kth.se
(E. Carlini) Dipartimento di Matematica, Politecnico di Torino, Turin, Italy

E-mail address: enrico.carlini@polito.it
(A.V. Geramita) Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada, K7L 3N6 and Dipartimento di Matematica, Università di Genova, Genoa, Italy

E-mail address: Anthony.Geramita@gmail.com, geramita@dima.unige.it

