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MONOMIALS AS SUMS OF POWERS: THE REAL
BINARY CASE

MATS BOIJ, ENRICO CARLINI, AND ANTHONY V. GERAMITA

ABSTRACT. We generalize an example, due to Sylvester, and prove
that any monomial of degree d in R[xg,x1], which is not a power
of a variable, cannot be written as a linear combination of fewer
than d powers of linear forms.

1. INTRODUCTION

It is well-known, and easy to prove, that if k£ is a field of charac-
teristic zero and R = k[zy,...,z,] = @jo, R; is the standard graded
polynomial algebra, then the k-vector space R, (for any d) has a basis
consisting of polynomials {L¢, ... L%} where s = (d:") = dimy R4 and
the L; are pairwise linearly independent forms in R;. It follows that
every form in Ry is a k-linear combination of at most s d** powers of
linear forms and, if k is algebraically closed, simply a sum of at most s
d"™ powers of linear forms. We will call such a way of writing F' € Ry a
Waring expansion of F' because of the echo of Waring’s problem from
number theory. We will further refer to such an expression as a min-
imal Waring expansion for F' if the number of summands in such an
expression for F' is minimal among all such representations.

If n >0 and d = 2 it is a classical fact that although s = (";2)
every quadratic form has a Waring expansion involving < n+1 < s
summands and that, in general, i.e. for [F] belonging to a non-empty
Zariski open subset of P(R;) a minimal Waring expansion for F' has
exactly n + 1 summands.

These observations have led to a series of problems, usually called
Waring Problems, which ask for information on minimal Waring
expansions for forms of degree d in R.

The long outstanding problem of finding the number of summands
in a minimal Waring expansion of the generic form of degree d was
solved, after being open for almost 100 years, by J. Alexander and A.
Hirschowitz (see [AH95]), when k is an algebraically closed field.

Of course, solving this problem for the generic form of degree d does

not always give information about any specific form of degree d and the
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problem of finding the length of the minimal Waring expansion for spe-
cific forms has also been a continuing source of interesting speculations
and lovely results. E.g. it was Sylvester ([Har92]) who first observed
that although for R = Clxg, 2], the generic form of degree d has a War-
ing Expansion with s = [%2] summands, the monomial zgz{ " has d
summands in its minimal Waring expansion (the maximum possible).

The Waring problem for specific forms has been considered in depth
by B. Reznick in his monograph (see [Rez92]) and by Comas and
Seiguer who, to our knowledge, were the first to resolve the problem
completely and algorithmically in C|zg,z;] in their unpublished work
([CSo1]).

It is interesting to note that although the Waring problem is a very
interesting and stimulating problem in purely algebraic terms, it has
a surprising number of intimate connections with problems in areas as
seemingly disparate as algebraic geometry and communication theory
(see for example [RS00],[CC0O3] and [CM96])

Indeed, if £ = R, the field of real numbers, the connection with real
world problems is very direct. This has prompted a re-examination of
the Waring problem for R = R[z¢, 1], and a recent very suggestive pa-
per of Comon and Ottaviani (see [COQ09]) considered this very problem
for degrees d < 5.

Our main result in this paper follows the line of Sylvester’s examples
and concerns the minimal Waring expansion for monomials in R[zg, z1].
We first give a new proof of the fact that the minimal Waring expansion
of the monomial zgx% in Clxg, 7] with 0 < a < b has b+ 1 summands.
In sharp contrast to this we show that in R[zg, 1] every monomial of
degree d (except z¢ and z¢) has d summands in its minimal Waring
expansion.

2. BASIC RESULTS

Let S = k[zg,z1] and T = k[yo, y1]. We make S into a T-module
using differentiation, i.e. we think of yo = 0/0zy and y; = 0/0z;.
We refer to a polynomial in T as 0 instead of using capital letters. In
particular, for any form F in S; we define the ideal F* C T as follows:

Ft={0eT:0F =0}.
The following Apolarity Lemma is due to Iliev and Ranestad [IR01].

Lemma 2.1. A homogeneous form F € S can be written as

F(xg,z1) = Zai(Li)d, L; pairwise linearly independent, «; € k
i=1



MONOMIALS AS SUMS OF POWERS: THE REAL BINARY CASE 3

i.e. has a Waring expansion with r summands, if and only if the ideal
F+ contains the product of r distinct linear forms.

3. BINARY MONOMIALS: THE COMPLEX CASE
The complex case is straightforward for monomials.

Proposition 3.1. Let M = z22% be a monomial in Clzg,x1]. If 0 <
a < b, then M has a minimal Waring expansion with b+ 1 summands,
.e. 18 a sum of b+ 1 powers of linear forms and no fewer.

Proof. Let I = M+ = (yg™, y4*") and notice that the linear system
defined by Iy, is base point free on P! = PS;. Applying Bertini’s
Theorem, we get that the generic element of [, defines a set of b+ 1
distinct points and hence it is the product of b+ 1 distinct linear forms.
Thus the apolarity lemma yields that M is the sum of b+ 1 powers of
linear forms. If r < b+ 1, then r powers do not suffice as no element
in I, = (y§™), is a product of r distinct linear forms. O

4. BINARY MONOMIALS: THE REAL CASE

We can also ask for a real Waring expansion of a monomial M. More
precisely, we want to write

M(zo,21) =Y ai(Li)*, o € {1,-1}
i=1

where the linear forms L; are in R[xg, z1]. In order to do this, we have
to increase the number of summands in Proposition 3.1l
The following elementary facts will be extremely useful.

Lemma 4.1. Consider the degree d polynomial
F(x) = cgz® +...c1m + ¢y € R[]

If ¢; = ¢;.1 = 0 for some 1 < i < d, then F(x) does not have d real
T001S.

Proof. The proof is obvious if ¢ = 1 or ¢ = d, so we may as well assume
that 1 <7 < d.

Consider all the pairs (¢, ¢s) of non-zero coefficients such that r > s
and ¢; = 0 if » > j > s. Let a be number of pairs such that r — s is
odd and § the number of pairs such that » — s is even. Notice that, by
hypothesis, a + 20 < d—1

Now we apply Descartes’ rule of signs. For a pair (¢, ¢s) such that
r — s is odd we get a real root of F(z). For a pair (c,,cs) such that
r — s is even we get either two real roots of F'(z) or none.
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In conclusion, the number of real roots of F(z) is at most o + 2
and we are done. O

Lemma 4.2. For each i < d there exists a degree d polynomial F'(z) =
cgr® + ... c1x + co € Rlz] having d real roots and such that ¢; = 0.

Proof. Choose ay,...,aq € R and consider the polynomial F(z) =
(x —ay1) ... (x — aq). This polynomial can also be written as

d
F(z) =) Ei(a, ... a0,
=0
where F; is the degree ¢ elementary symmetric function in its argu-
ments. The vanishing of the i-th coefficient of F(z) can be written
as

Ei(a,...,aq-1) + agEi_1(ay, ..., aq-1) = 0.
Hence, if we choose the aq,...,a4_1 > 0 and distinct there exists a
unique, negative value of a4 such that the coefficient of 2' in F(z) is

zero. As the roots of F(x) are ay,...,aq the polynomial has d real,

distinct roots.
O

Using the previous results we immediately get a lower bound on the
number of summands in the minimal Waring expansion of a monomial
in R[zg, x1].

Lemma 4.3. Let M = z§z} be a monomial in Rlxg, z1]. If0 < a <b,
then M does not have a Waring expansion with r < a + b — 1 real
summands.

Proof. Let I = M+ = (y2*',4*™). The general degree 7 element in [
has the form F(yo,y1) =

A Y17 T B oMY Vo T R NIRRT VA VLA SR ST T

If a+1 > r—b+2, then by LemmalL1] F(yo, y1) is not the product of
r real linear forms. The conclusion follows by the apolarity lemma. [J

Proposition 4.4. Let M = x32% be a monomial in R|xg,x1]. If 0 <
a < b, then M has a minimal Waring expansion with a + b summands
which are powers of real linear forms.

Proof. We have that M+ = I = (y3™',4*™). Notice that I, 4 is the
subspace of T,.; of polynomials which are missing all the monomials
having factor y¢ or y2. Thus, Lemma and the apolarity lemma yield
the result. O
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