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MONOMIALS AS SUMS OF POWERS: THE REAL

BINARY CASE

MATS BOIJ, ENRICO CARLINI, AND ANTHONY V. GERAMITA

Abstract. We generalize an example, due to Sylvester, and prove
that any monomial of degree d in R[x0, x1], which is not a power
of a variable, cannot be written as a linear combination of fewer
than d powers of linear forms.

1. Introduction

It is well-known, and easy to prove, that if k is a field of charac-
teristic zero and R = k[x0, . . . , xn] =

⊕

∞

i=0
Ri is the standard graded

polynomial algebra, then the k-vector space Rd (for any d) has a basis
consisting of polynomials {Ld

1, . . . , L
d
s} where s =

(

d+n

n

)

= dimk Rd and
the Li are pairwise linearly independent forms in R1. It follows that
every form in Rd is a k-linear combination of at most s dth powers of
linear forms and, if k is algebraically closed, simply a sum of at most s
dth powers of linear forms. We will call such a way of writing F ∈ Rd a
Waring expansion of F because of the echo of Waring’s problem from
number theory. We will further refer to such an expression as a min-

imal Waring expansion for F if the number of summands in such an
expression for F is minimal among all such representations.
If n > 0 and d = 2 it is a classical fact that although s =

(

n+2

2

)

every quadratic form has a Waring expansion involving ≤ n + 1 < s
summands and that, in general, i.e. for [F ] belonging to a non-empty
Zariski open subset of P(R2) a minimal Waring expansion for F has
exactly n+ 1 summands.
These observations have led to a series of problems, usually called

Waring Problems, which ask for information on minimal Waring
expansions for forms of degree d in R.
The long outstanding problem of finding the number of summands

in a minimal Waring expansion of the generic form of degree d was
solved, after being open for almost 100 years, by J. Alexander and A.
Hirschowitz (see [AH95]), when k is an algebraically closed field.
Of course, solving this problem for the generic form of degree d does

not always give information about any specific form of degree d and the
1
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problem of finding the length of the minimal Waring expansion for spe-
cific forms has also been a continuing source of interesting speculations
and lovely results. E.g. it was Sylvester ([Har92]) who first observed
that although for R = C[x0, x1], the generic form of degree d has a War-
ing Expansion with s = ⌈d+1

2
⌉ summands, the monomial x0x

d−1

1 has d
summands in its minimal Waring expansion (the maximum possible).
The Waring problem for specific forms has been considered in depth

by B. Reznick in his monograph (see [Rez92]) and by Comas and
Seiguer who, to our knowledge, were the first to resolve the problem
completely and algorithmically in C[x0, x1] in their unpublished work
([CS01]).
It is interesting to note that although the Waring problem is a very

interesting and stimulating problem in purely algebraic terms, it has
a surprising number of intimate connections with problems in areas as
seemingly disparate as algebraic geometry and communication theory
(see for example [RS00],[CC03] and [CM96])
Indeed, if k = R, the field of real numbers, the connection with real

world problems is very direct. This has prompted a re-examination of
the Waring problem for R = R[x0, x1], and a recent very suggestive pa-
per of Comon and Ottaviani (see [CO09]) considered this very problem
for degrees d ≤ 5.
Our main result in this paper follows the line of Sylvester’s examples

and concerns the minimal Waring expansion for monomials in R[x0, x1].
We first give a new proof of the fact that the minimal Waring expansion
of the monomial xa

0x
b
1 in C[x0, x1] with 0 < a ≤ b has b+1 summands.

In sharp contrast to this we show that in R[x0, x1] every monomial of
degree d (except xd

0 and xd
1) has d summands in its minimal Waring

expansion.

2. Basic results

Let S = k[x0, x1] and T = k[y0, y1]. We make S into a T -module
using differentiation, i.e. we think of y0 = ∂/∂x0 and y1 = ∂/∂x1.
We refer to a polynomial in T as ∂ instead of using capital letters. In
particular, for any form F in Sd we define the ideal F

⊥ ⊆ T as follows:

F⊥ = {∂ ∈ T : ∂F = 0} .

The following Apolarity Lemma is due to Iliev and Ranestad [IR01].

Lemma 2.1. A homogeneous form F ∈ S can be written as

F (x0, x1) =

r
∑

i=1

αi(Li)
d, Li pairwise linearly independent, αi ∈ k
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i.e. has a Waring expansion with r summands, if and only if the ideal

F⊥ contains the product of r distinct linear forms.

3. Binary monomials: the complex case

The complex case is straightforward for monomials.

Proposition 3.1. Let M = xa
0x

b
1 be a monomial in C[x0, x1]. If 0 <

a ≤ b, then M has a minimal Waring expansion with b+1 summands,

i.e. is a sum of b+ 1 powers of linear forms and no fewer.

Proof. Let I = M⊥ = (ya+1

0 , yb+1

1 ) and notice that the linear system
defined by Ib+1 is base point free on P1 = PS1. Applying Bertini’s
Theorem, we get that the generic element of Ib+1 defines a set of b+ 1
distinct points and hence it is the product of b+1 distinct linear forms.
Thus the apolarity lemma yields that M is the sum of b+ 1 powers of
linear forms. If r < b + 1, then r powers do not suffice as no element
in Ir = (ya+1

0 )r is a product of r distinct linear forms. �

4. Binary monomials: the real case

We can also ask for a real Waring expansion of a monomial M . More
precisely, we want to write

M(x0, x1) =
r

∑

i=1

αi(Li)
d, αi ∈ {1,−1}

where the linear forms Li are in R[x0, x1]. In order to do this, we have
to increase the number of summands in Proposition 3.1.
The following elementary facts will be extremely useful.

Lemma 4.1. Consider the degree d polynomial

F (x) = cdx
d + . . . c1x+ c0 ∈ R[x].

If ci = ci−1 = 0 for some 1 ≤ i ≤ d, then F (x) does not have d real

roots.

Proof. The proof is obvious if i = 1 or i = d, so we may as well assume
that 1 < i < d.
Consider all the pairs (cr, cs) of non-zero coefficients such that r > s

and cj = 0 if r > j > s. Let α be number of pairs such that r − s is
odd and β the number of pairs such that r− s is even. Notice that, by
hypothesis, α + 2β < d− 1
Now we apply Descartes’ rule of signs. For a pair (cr, cs) such that

r − s is odd we get a real root of F (x). For a pair (cr, cs) such that
r − s is even we get either two real roots of F (x) or none.



4 M. BOIJ, E. CARLINI, AND A.V. GERAMITA

In conclusion, the number of real roots of F (x) is at most α + 2β
and we are done. �

Lemma 4.2. For each i < d there exists a degree d polynomial F (x) =
cdx

d + . . . c1x+ c0 ∈ R[x] having d real roots and such that ci = 0.

Proof. Choose a1, . . . , ad ∈ R and consider the polynomial F (x) =
(x− a1) · . . . · (x− ad). This polynomial can also be written as

F (x) =
d

∑

i=0

Ei(a1, . . . , ad)x
i,

where Ei is the degree i elementary symmetric function in its argu-
ments. The vanishing of the i-th coefficient of F (x) can be written
as

Ei(a1, . . . , ad−1) + adEi−1(a1, . . . , ad−1) = 0.

Hence, if we choose the a1, . . . , ad−1 > 0 and distinct there exists a
unique, negative value of ad such that the coefficient of xi in F (x) is
zero. As the roots of F (x) are a1, . . . , ad the polynomial has d real,
distinct roots.

�

Using the previous results we immediately get a lower bound on the
number of summands in the minimal Waring expansion of a monomial
in R[x0, x1].

Lemma 4.3. Let M = xa
0x

b
1 be a monomial in R[x0, x1]. If 0 < a ≤ b,

then M does not have a Waring expansion with r ≤ a + b − 1 real

summands.

Proof. Let I = M⊥ = (ya+1

0 , yb+1

1 ). The general degree r element in I
has the form F (y0, y1) =

cry
r
0+ cr−1y

r−1

0 y1+ . . .+ ca+1y
a+1

0 yr−a−1

1 + cr−b−1y
r−b−1

0 yb+1

1 + . . .+ c0y
r
1.

If a+1 ≥ r−b+2, then by Lemma 4.1 F (y0, y1) is not the product of
r real linear forms. The conclusion follows by the apolarity lemma. �

Proposition 4.4. Let M = xa
0x

b
1 be a monomial in R[x0, x1]. If 0 <

a ≤ b, then M has a minimal Waring expansion with a+ b summands

which are powers of real linear forms.

Proof. We have that M⊥ = I = (ya+1

0 , yb+1

1 ). Notice that Ia+b is the
subspace of Ta+b of polynomials which are missing all the monomials
having factor ya0 or yb1. Thus, Lemma 4.2 and the apolarity lemma yield
the result. �
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