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a b s t r a c t

Navigation, control and guidance of the propulsive phase of planetary landing, e.g. on

Mars (or the Moon), with a soft landing being the only target, are driven by Inertial

Measurement Units and a radar altimeter/velocimeter. Their measurements are affected

by bias and scale errors. The latter ones are aggravated by the attitude navigation error

as it accumulates during the ballistic (and aerodynamic) flight after orbiter separation

and couples for most of the descent trajectory with the vehicle axis inclination from the

local vertical direction. By complementing the center-of-mass dynamics with appro-

priate disturbance state equations driven by noise vectors and estimating the noise

from the model error (plant measurements minus model output), scale errors and bias

can be retrieved in real time in the form of disturbance state variables. Although a

similar complement is adopted in the standard navigation algorithms, it takes the form

of an output disturbance, which may lead to unobservability. In this paper instead, the

disturbance complement is designed to be fully observable, which may require that the

derivatives of smooth systematic errors be pushed up to the command channel (a form

of back-stepping). It is then viable, unlike standard navigation, to eliminate them from

position and velocity tracking errors through disturbance rejection, under appropriate

convergence conditions and sensor layout. It will, however, be demonstrated in this

paper that the same result cannot be achieved under pure feedback control. Since

constant errors (bias) become zero through back-stepping, a well known fact derives:

bias can only be eliminated by disposing of supplementary sensors.

To further enlighten and solve the question of bias rejection, a further case study is

treated. The attitude control of drag-free satellites is considered, where fine accelerometers

allow for the rejection of wide-band aerodynamic torques (think of low-Earth orbit

spacecrafts) at the price of attitude divergence because of accelerometer bias and drift.

The spacecraft attitude can be made bounded and accurate, if bias and drift are modeled as

angular accelerations, affecting the attitude. They are estimated by attitude sensors like star

trackers and then are rejected by the attitude control. The results in the soft landing and

drag free case studies are illustrated by simulated runs and Monte Carlo trials.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Elimination of sensor bias and scale errors (in general of
systematic errors) from tracking errors is discussed as a case
study in disturbance rejection and space applications.

Systematic errors affect the ‘true’ variable to be controlled,
biasing the tracking error, which is the difference between
the reference and the ‘true’ variable. Biasing cannot be
accepted if significant compared to zero-mean fluctuations
caused by random sources. Therefore, calibration must be
performed, either off-line or on-line [1–7].

On-line calibration is usually performed though differ-
ent versions and extensions of the Kalman filter, starting
from Friedland’s paper [4]. A classical problem is the bias
and scale factor estimation of the different sensors to be
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integrated in a navigation process [7], which is the same
problem dealt with herein. Navigation is performed as a
stand-alone process fully separated from control law,
though feeding the latter. Stand-alone navigation is per-
mitted by accelerometer units that provide the external
accelerations (disturbance and command) acting on the
body. Integrating the acceleration provides the navigation
state variables, velocity and position. Drift, provoked by
accelerometer errors, can be corrected provided velocity
and position measurements are available. The correction
scheme is usually implemented as a Gauss–Markov esti-
mator, as in Kalman filtering. Error statistics must be
propagated to the purpose. Systematic errors are usually
modeled as a first order random drift adding to the
measured variable in the form of an output disturbance.
A key problem is the observability of the output distur-
bance, which is usually guaranteed by supplementary and
appropriate sensors. The observability problem is not
explicitly dealt with in [4–6] but is mentioned in [7].
The filtering objective is to provide control strategies with
state variables (velocity and position) free from drift or
systematic errors, when the latter ones are observable.

The same problem is faced here in a different and more
generic manner. Firstly, acceleration is split into com-
mand and input disturbance and the dynamics of the
latter is explicitly modeled. The advantage is to allow
commands to explicitly contrast not only gravity, but also
aerodynamic forces. Secondly, systematic errors are trea-
ted as a particular case of output disturbance as in the
aforementioned standard navigation scheme; yet the
observable components are not simply estimated, but
rejected through a control law. This implies that the
controlled variable is no longer the ‘true’ variable which
is measured, but rather a ‘dirty’ variable sum of the ‘true’
variable and of systematic errors. A new control problem
arises, and the interest is to prove under which conditions
the zero tracking error of a ‘dirty’ variable is paralleled by
the zero tracking error of the ‘true’ variable. Rejection of
the output disturbance is a well known problem in
classical and modern control [8,9], usually solved via the
internal model principle, where a disturbance is modeled
as the free response of a linear and time invariant state
equation and a servo-compensator is designed as in [8].

One advantage of the present approach is to embed
navigation in the whole control algorithm, as it is suggested
by the Embedded Model Control [10–12]. Guidance (refer-
ence generator), navigation and control are designed around
a unique dynamic model, the embedded model, which is the
core of the control unit, made up of two parts, controllable
and disturbance dynamics. The former is driven by com-
mands, the latter by a noise vector playing the role of a
disturbance input, to be real-time retrieved from the model
error (plant output less model output) by means of a
suitable noise estimator. The free response of the distur-
bance dynamics describes ‘known components’ that must
not be real-time retrieved. The ensemble of embedded
model and noise estimator becomes the navigation filter
(actually a state predictor) affected by prediction errors.

As a property of the embedded model, all the state
variables, forced either by command, or noise, must be
observable from the model output. The restriction implies

that systematic errors cannot be modeled as the output of
a dynamic system whose eigenvalues are equal to those of
the controllable dynamics. In fact, adding the systematic
error to the ‘true’ variable makes the overall system
unobservable, or, equivalently, the state equation non-
minimal. The remedy is to minimize the state variables by
‘back-stepping’ the output disturbance up to the com-
mand location. In other words, it amounts to replacing
systematic errors with their derivatives, as in feedback
linearization [13]. Error derivatives must exist, which is
coherent with systematic error smoothness. Naturally,
some limitations may occur since derivation can force
some error components, such as bias, to zero. Indeed, the
latter need not be back-stepped, but requires supplemen-
tary sensors to become ‘real-time’ observable. The obser-
vable disturbance can then be rejected by a control law,
freeing the ‘dirty’ variable from systematic errors, less
prediction errors. No supplementary sensor is necessary
since systematic errors are only eliminated from the
‘dirty’ variable and not from the ‘true’ one. The correction
becomes effective when the reference trajectory to be
tracked converges to a condition of zero systematic error,
as in the planetary soft landing case dealt with in this
paper. In that case, the ‘true’ variable converges to the
‘dirty’ one, and, therefore, to the reference trajectory, as
will be demonstrated further on.

Methods and results are outlined with the help of
simple case studies derived from space applications. No
general formulation is carried out in this paper. The first
problem concerns planetary soft landing [14] when the
powered descent is driven by inertial measurements
(100 Hz accelerometers and gyros) complemented with
radar altimeter and velocimeter data (usually available at
a rate between 10 and 20 Hz). Without loss of generality,
the treatment in Sections 2 and 3 will assume a common
rate. Since attitude is propagated from gyro measure-
ments, its uncertainty affects velocity and altitude mea-
surements with a scale error as they are converted from
the body to the local vertical local horizontal frame,
where the descent command is computed. The same goes
for accelerometer measurements. Moreover, all the mea-
surements are affected by bias.

Firstly, a 3D velocity control shows how accelerometer
errors can be fully eliminated throughout the whole of the
descent phase, whereas velocimeter errors are progres-
sively eliminated, less the bias, as soon as the velocity
magnitude tends to zero. Then a single degree-of-freedom
altitude control is outlined, proving that accelerometer
and velocimeter errors are eliminated throughout the
whole of the descent phase, whereas altimeter errors
tend to zero less the bias as soon as the velocity magni-
tude approaches zero. In soft landing, only vertical posi-
tion is controlled. Discrete time is adopted.

The second application is the 10 mrad attitude control of
a drag-free satellite endowed with ultra-fine 10 Hz accel-
erometers providing center-of-mass (CoM) and angular
accelerations [11]. These are essential for a wide-band
rejection (up to 0.5 Hz) of aerodynamic, magnetic and
gravity accelerations well below 0.1 mrad/s2. Accelerometer
bias, though very small, is such to make the attitude drifting
out of milliradians in a few tens of seconds. Endowing the
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spacecraft with star trackers, though sampled at a rate not
greater than 2 Hz and affected by an equivalent noise larger
than 20 mrad (1 sigma), allows the accelerometer bias to be
compensated for and the reference attitude to be accurately
tracked.

2. Soft landing velocity control

Soft landing requires that the velocity magnitude
v¼9v9 be brought to zero and the vehicle axis tends to
be vertical at the terminal time tf corresponding to a pre-
specified altitude hf from ground. If touch-down is sof-
tened either by air bags, crushable structures (ExoMars
landing demonstrator [15]), or damping legs, then the
thrusters controlling the vehicle braking are switched off
at tf. If the vehicle landing is planned in such a way that it
is to hover over the landing site, such as in the case of the
US Mars Science Laboratory [16], thrust is lowered so as
to simply compensate for local gravity.

2.1. State equations

Denote the center-of-mass velocity coordinates in the
local vertical local horizontal frame (assumed to be
inertial) with the three-dimensional vector v, and write
the CoM dynamics as

vðiþ1Þ ¼ vðiÞþauðiÞþdðiÞþwuðiÞ�gðiÞ

dðiþ1Þ ¼ dðiÞþwdðiÞ

yvðiÞ ¼ vðiÞþsvðvðiÞÞþevðiÞ, ð1Þ

where i is the discrete-time instant corresponding to a
time unit T¼0.05 s, d is a disturbance state mainly
accounting for aerodynamic forces, wu and wd are noise
vectors, au is the commanded acceleration, yv is the
velocimeter measurement affected by the systematic
error sv and the model error ev, and g is the known
gravity vector. All the vectors in (1) are three-dimen-
sional. The concept of a model error like ev affecting the
measured variable yv [10] is more generic than that of
measurement error, as it includes the effect of the input-
output dynamics (actuator and sensor) which has been
neglected in (1). Since sensor and actuator dynamics are
not dealt with in this paper, model error coincides with
measurement error. Random errors and noises may be
modeled either as discrete-time white noises, or as zero-
mean bounded, arbitrary signals. The systematic error is a
smooth function of v. For simplicity’s sake a first order
disturbance dynamics has been written in (1). Smooth-
ness assumption on sv implies the existence of the
difference equation

svðiþ1Þ�svðiÞ ¼ Svð ~vðiÞÞðvðiþ1Þ�vðiÞÞ ¼ Svð ~vðiÞÞaðiÞ, ð2Þ

where Sv is the Jacobian matrix of sv(v(i)) and is computed
at the interpolated velocity ~v ið Þ ¼ a ið Þv ið Þþ 1�a ið Þð Þv iþ1ð Þ,
0rar1, so as to guarantee equality in (2). In the
velocimeter case, the Jacobian matrix holds Sv¼DSþ

DRb(i), where DS is the constant scale error matrix
including misalignments, whereas DRb is the transforma-
tion error from body to inertial frame. The latter matrix
typical bound is 9DRb9r0.05 rad. The following result

states that the systematic error sv is not observable from
(1) and (2).

Result 1. The state variables in (1) and (2) are not
observable from yv.

The proof comes by observing that sv and v sum up in
the output equation of (1) and belong to the state equations
(1) and (2) having equal and unitary eigenvalues.

Observability can be recovered by rewriting (1) and (2)
in terms of the ‘dirty’ velocity

vd ¼ vþsv, ð3Þ

and of the ‘extended’ disturbance

dv ¼ dþSva: ð4Þ

In other terms, sv has been dropped from the output
Eq. (1) and ‘back-stepped’ to become an acceleration
disturbance, thus converting (1) into the state equations

vdðiþ1Þ ¼ vdðiÞþauðiÞþdvðiÞþwuðiÞ�gðiÞ

dvðiþ1Þ ¼ dvðiÞþwdðiÞ

yvðiÞ ¼ vdðiÞþevðiÞ, ð5Þ

which are now observable.
As a proof guideline, rewriting (3) as v¼vd�sv and

replacing the same equation in (1) yields

vdðiþ1Þ ¼ vdðiÞþauðiÞþdðiÞþsvðiþ1Þ�svðiÞþwuðiÞ�gðiÞ

yvðiÞ ¼ vdðiÞþevðiÞ: ð6Þ

Then, Eq. (5) follows by replacing d(i)þsv(iþ1)�sv(i) in
(6) with the help of (2) and (4), and by assigning dv(i) the
same state equation of d(i) in (1). The latter stage assumes
that any realization of Sva (the back-stepped systematic
error) is sufficiently approximated by the realizations of a
1st order random drift driven by wd as in (5). The
assumption can be reinforced by interpreting a random
drift as an arbitrary step-wise function [10], which is
coherent with the expected time profile of Sva. Indeed, a(i)
in (4) approaches a step-wise profile since it corresponds
to the constant deceleration forcing v to zero (see Fig. 1).

2.2. Accelerometer measurements and observability

Because of a wider bandwidth and a lower noise, dv in (5)
can be better retrieved from accelerometer measurements.
For simplicity’s sake, the measurements are assumed to be
sampled at the same rate 1/T of the velocimeter. A multi-rate
case, not essential here, is treated in Section 4. State and
output equations are as follows:

xaðiþ1Þ ¼ AxaðiÞþaðiÞþsaðiÞþwaðiÞ

saðiþ1Þ ¼ saðiÞþwsðiÞ

yaðiÞ ¼ xaðiÞþeaðiÞ

aðiÞ ¼ auðiÞþdðiÞþwuðiÞ: ð7Þ

In (7) all the vectors are three-dimensional, xa plays the
role of a ‘dirty’ acceleration, a is the ‘true’ acceleration already
used in (4), sa is the systematic error including scale error,
bias and drift, wa and ea(i) are random errors. The 3�3 state
matrix A accounts for the accelerometer dynamics, which,
though usually neglected, is not here as it converts measure-
ment errors into disturbances. In the simplest case, dynamics
reduces to a single delay, in which case A¼0 as assumed
here.
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In standard navigation, the accelerometer dynamics is
neglected and (7) is replaced by

yaðiÞ ¼ aðiÞþsaðiÞþwaðiÞ

saðiþ1Þ ¼ saðiÞþwsðiÞ

aðiÞ ¼ auðiÞþdðiÞþwuðiÞ: ð8Þ

Then solving (8) for a(i) and replacing the solution in
(5), the second order navigation equation is found

vdðiþ1Þ ¼ vdðiÞþyaðiÞ�saðiÞ�waðiÞ�gðiÞ

saðiþ1Þ ¼ saðiÞþwsðiÞ

yvðiÞ ¼ vdðiÞþevðiÞ, ð9Þ

where ya and g are known input signals, dv disappears and
only sa plays a disturbance role. Since (9) is observable,
the simple noise estimator

wa

ws

" #
ðiÞ ¼

La

Ls

" #
ðyv�vdÞðiÞ ð10Þ

applies, and the gain matrices La and Ls can be designed as in
Kalman filter. Notice that (9) is still written in terms of the
‘dirty’ velocity vd, implying that sa is affected by the back-
stepped velocimeter error. Departing from standard naviga-
tion, the following result states that both the accelerometer
error sa and the disturbance dv are observable.

Result 2. The state variables in (5) and (7) are obser-
vable from yv and ya.

As a concise proof, (5) and (7) have independent
measurements and each one is observable.

2.3. Noise estimator

Unlike (9), the ensemble of (5) and (7) leads to a
multivariate noise estimation. Exploiting the different
bandwidth and noise of accelerometer and velocimeter,
a decoupled state predictor is designed as in [11], where
the accelerometer model error ea¼ya�xa is the source of
the noise vectors in (7), and the velocimeter model error
ev¼yv�vd is the source of the noise vectors in (5). To this
end, (5) and (7) are rearranged into a unique state
equation as follows:

vdðiþ1Þ ¼ vdðiÞþauðiÞþdsðiÞþwuðiÞþdaðiÞ�g

dsðiþ1Þ ¼ dsðiÞþwsðiÞ

xaðiþ1Þ ¼ auðiÞþdaðiÞþwaðiÞ

daðiþ1Þ ¼ daðiÞþwdðiÞ, ð11Þ

upon definition of a pair of new disturbance state vari-
ables

da ¼ dþsa

ds ¼ Sva�sa: ð12Þ

The former vector in (12), da, sums aerodynamic accel-
erations and the accelerometer systematic error, whereas
ds¼Sva�sa sums the opposite of the accelerometer sys-
tematic error and the back-stepped velocimeter error.

Decoupling of the noise estimator to be formulated below,
is driven by three properties of the Eq. (11).

(1) Firstly, the accelerometer systematic error, though
contributing to da, has no effect on the total distur-
bance dsþda to be rejected by the command au, which
implies that the error is implicitly canceled.

(2) Secondly, the noise vectors wu and ws only affect the
velocimeter measurement yv and the relevant model
error ev. The only source of their estimation is,
accordingly, ev. A similar reasoning applies to wa only
affecting ya.

(3) The third property concerns wd, which affects both yv

and ya and, in principle, could be estimated by
combining ev and ea. Given the time unit T defined
in Section 2.1, the dimensionless noise ratio

rav ¼
saT

sv
o0:001, ð13Þ

between the accelerometer and velocimeter standard
deviations sa and sv, respectively, is so small that the
gain of ev can be neglected in a Gauss–Markov
estimate. It may be argued that correlated residuals
of the estimate of wd which is obtained from ea alone,
could, in turn, be fit by ev. In fact, by estimating wd at
a sampling rate higher than the velocimeter, the
contribution of ev can be made ineffective by a
residual correlation vanishing within the velocimeter
sampling time. Accelerometer higher rates always
occur in practice and it is possible to make the
residual correlation vanish by providing a sufficiently
wide bandwidth to the closed-loop state predictor
from ya to xa.

In the end, the noise vectors in (11) are estimated by
the decoupled static feedback laws

wuðiÞ ¼ LuevðiÞ, wsðiÞ ¼ LsevðiÞ

waðiÞ ¼ LaeaðiÞ, wdðiÞ ¼ LdeaðiÞ: ð14Þ

The diagonal gain matrices Lu, Ls, La and Ld in (14) are
fixed by closed-loop eigenvalues: slower eigenvalues
apply to Lu and Ls because of the larger velocimeter noise,
and faster ones to La and Ld in agreement with a wider
bandwidth of the accelerometer state predictor that is
made possible by a smaller noise. Decoupling can be
shown to approach optimality, under suitable closed-loop
eigenvalue selection.

2.4. Control law and tracking errors

Neglecting prediction errors in (11), i.e. assuming the
noise vectors are exactly retrieved by (14), the control law
is designed to force the ‘dirty’ velocity tracking error
ev ¼ v�vd to be bounded. Guidance provides the refer-
ence velocity and the acceleration command satisfying

vðiþ1Þ ¼ vðiÞþaðiÞ

vðtf Þ ¼ 0, auðiÞ ¼ aðiÞþgðiÞ, ð15Þ

where gravity compensation has been added. Due to
command one-step prediction, only disturbance state
variables in (11) can be rejected as follows:

auðiÞ ¼ auðiÞþKvðvðiÞ�vdðiÞÞ�dsðiÞ�daðiÞ, ð16Þ

where the sum dsþda cancels the accelerometer systema-
tic error, as already anticipated. The following result is
proved.
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Result 3. Control law (16) and guidance (15) if applied
to (11) yield the tracking error equation

evðiþ1Þ ¼ ðI�KvÞevðiÞ�wuðiÞ, ð17Þ

which under asymptotically stable I�Kv and bounded
wu(i) ensures a bounded error. Moreover assuming
E{wu}¼0, we have limi-1E ev ið Þ

� �
¼ 0.

As a concise proof, replace (16) into the top equation of
(11) thus canceling daþds. Then subtract the remaining
equation from (15), thus canceling au which results
in (17).

The covariance matrix Pe ið Þ of evðiÞ can be obtained
from (17) through the asymptotically converging Lyapu-
nov equation

Peðiþ1Þ ¼ ðI�KvÞPeðiÞðI�KvÞ
T
þWu, Peð0Þ ¼ Pe0, ð18Þ

where Wu is the noise steady covariance.
Notice that (17) is linear and time-invariant, as it

does not depend on the systematic errors sa and sv. The
next step is to extend Result 3 to the ‘true’ tracking error
v�v.

The next result first shows that the ‘true’ velocity v
asymptotically tends to the reference v under zero refer-
ence and unbiased systematic error. Second, it shows that
the asymptotic covariance matrix defined by

PvðiÞ ¼ limi-1PvðiÞ ¼ EððvðiÞ�lvðiÞÞðvðiÞ�lvðiÞÞ
T
Þ

lvðiÞ ¼ E vðiÞð Þ, ð19Þ

approaches the asymptotic limit of (18). To this end, (3) is
rewritten as

v¼ vd�bv�svðvdÞ, svð0Þ ¼ 0

svðvdÞ ¼ Svð ~vÞev, ~v ¼ v�aev, 0rar1 ð20Þ

where bv is the velocimeter bias and sv has been
expanded around v.

Result 4. Under the conditions (i) limi-1EfevðiÞg ¼ 0
guaranteed by Result 3, (ii) limi-1vðiÞ ¼ 0 corresponding
to an asymptotically zero reference, (iii) 9Svð0Þ9r
Sv,max51 in (20), and denoting the asymptotic covariance
of ev in (18) with Pe, the following limits hold

limi-1E v ið Þ
� �

¼ limi-1lv ið Þ ¼�bv

Pv ¼ IþSv,max

� ��1
Pe IþSv,max

� ��T
ffiPe ð21Þ

Proof. The proof of the first limit in (21) follows from
taking the asymptotic limit of the expected value in (20),
i.e.

limi-1EfvðiÞg ¼ limi-1ðvðiÞþEfevðiÞg�bv�EfSvð~vÞevðiÞgÞ ¼ bv:

ð22Þ

The second limit follows from (20) and from the
asymptotic equality

limi-1ðvðiÞ�lvðiÞÞ ¼ limi-1�ðIþSvðaevÞÞevðiÞ: ð23Þ

Assuming Svð�aevÞffiSvð0Þ in (23) and the inequality
9Svð0Þ9rSv,max51, the second limit in (21) is proved. &

In the case of planetary landing, Result 4 must be
extended to a finite time tf¼ ifT.

Result 5. If Efevðif Þg ¼ e, vðif Þ ¼ 0, and 9Svð9e9Þ9rSv,max,
the following limit holds

9bv9�ð1þSv,maxÞ9e9r9Efvðif Þg9r9bv9þð1þSv,maxÞ9e9:
ð24Þ

The proof follows by rewriting (20) at i¼ if as follows

Efvðif Þgþbv ¼�ðEfevðif ÞgþEfSvð�aeÞevðif ÞgÞ: ð25Þ

Taking the absolute value of (25) and using the
assumptions of Result 5, the following inequality is
obtained

9Efvðif Þgþbv9r9Svð9e9Þ99EfevðiÞg9þ9e9, ð26Þ

which proves the result.

2.5. Output feedback

Assume the control law (16) does not include any
disturbance rejection and the tracking error includes the
velocity measurement as follows:

auðiÞ ¼ auðiÞþKv vðiÞ�yvðiÞ
� �

: ð27Þ

In fact, yv should be filtered from the velocimeter noise
as in the standard navigation algorithm consisting of (9)
and (10), and of a computing procedure of the gain
matrices in (10). Assuming that the velocimeter noise
filter leads to the equality yv¼vd, then the state equation
of the tracking error ev ¼ v�vd holds

evðiþ1Þ ¼ ðI�KvÞevðiÞ�dðiÞ�SvaðiÞ�wuðiÞ: ð28Þ

Result 6. Under the same conditions of the Result 4 and
using (28), the ‘true’ velocity asymptote holds

limi-1EfvðiÞg ¼�bv�limi-1K�1
v E dðiÞþSvaðiÞ
� �

: ð29Þ

The asymptote in (29) cannot be generically zero,
which is especially true at a finite time. Also in the case
of zero convergence, i.e. when bv¼0 and E{d(i)þSva(i)}¼0,
the asymptotic covariance Pv can be shown to be larger
than (21).
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Fig. 1. Commanded acceleration.
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2.6. Monte Carlo results

Monte Carlo runs compare control laws (16) and (27).
Control law (16), denoted as ‘disturbance rejection’ is
complemented with state predictors (11) and (14) in order
to predict the disturbance state variables. Control law (27),
denoted as ‘output feedback’, employs the raw velocity
measurement, which is of no detriment owing to a small
measurement noise, on the order of 0.1 m/s (1s). A single
degree of freedom is reported, i.e. the local vertical velocity,
which is distinguished by the subscript z. The terminal time
tf is triggered (terminal logic) when the (negative) reference
vertical speed reaches zero value, i.e. when vzZ0. A unique
time unit T¼0.05 s has been assigned to all the control
algorithms, which assignment is conservative as the accel-
erometer sampling time of 10 ms is not exploited.

Fig. 1 shows the commanded acceleration auz in (16)
and the open-loop component auz in (15). The latter
which is the sum of the ground Mars gravity g and of a
‘constant’ braking acceleration, holds

auzðiÞffigþ0:5v2
z ðiÞ= hðiÞ�hðif Þ

� �
ffi6m=s2, ð30Þ

where vz is the vertical velocity, h is the altitude and
hðif Þ40 the final altitude. The initial altitude h(0) and the
initial vertical velocity vz(0) have been fixed to 1500 m
and to �80 m/s, respectively.

Fig. 2 compares a pair of realizations of the ‘true’
tracking error, showing convergence to zero in the ‘dis-
turbance rejection’ case. Assuming zero bias, i.e. bvz ¼ 0,
the initial ‘true’ tracking error can be written from (20) as
vzð0Þ�vzð0Þffi evzð0Þþsvðvdzð0ÞÞ, where 9evzð0Þ9r3sv is
on the order of the velocimeter standard deviation
svffi0:1m=s, and 9sv9 is bounded by 9svðvdzð0ÞÞ9rSv,max

9vdzð0Þ9ffi3:2m=s. Thus the initial error is dominated by
the systematic error sv as Fig. 2 shows.

In fact, zero convergence of the terminal velocity vz(if)
in the ‘disturbance rejection’ case only occurs in the
average as shown by the 500-run histogram by Fig. 3,
which corresponds to assuming zero terminal tracking
error, i.e. 9e9¼0 in (24). Ordinates give the occurrence
frequency nj/N, N¼500, for each abscissa bin
j�1=2,jþ1=2
� �

Dx, where Dx¼N/m is the bin width and
j¼�m/2, y, m/2. In the ‘disturbance rejection’ case, the
dispersion is only due to the input noise wu in (17), but in
the ‘output feedback’ case the not rejected disturbance
dsþda in (16) makes the difference. Accordingly, the latter
case looks more spread, with a root mean square (RMS)
value three times larger (0.17 m/s) than the ‘disturbance
rejection’ case (0.06 m/s) and slightly biased as expected
from (29). The target RMS is in the order of 0.1 m/s. The
velocimeter bias has been fixed at zero.

3. Soft landing altitude control

3.1. Altitude kinematics and state predictor

The results of Section 2 are briefly extended to the case of
altitude control. Accelerometer and velocimeter are now
complemented with a radar altimeter, measuring the slanted
distance from the vehicle CoM to the terrain along the
vehicle axis. Altimeter is assumed to be active also close to
the ground, which is usually not the case due to radar
limitations. When converted to the local vertical local hor-
izontal frame, the measurement yh is affected by a systematic
error sh, mainly depending on scale factor, misalignment,
vehicle tilt and terrain profile, and can be written as

yhðiÞ ¼ hðiÞþshðh,. . .ÞþehðiÞ ¼ hdðiÞþehðiÞ, ð31Þ

where h is the local vertical coordinate, hd is the ‘dirty’
variable and eh(i) is the measurement noise on the order of
0.8 m (1s). The latter is larger than the equivalent veloci-
meter noise on the order of 0.1T¼0.005 m (1s), which again
suggests decoupling between altitude, velocity and accelera-
tion predictors, as in Section 2.

To this end, only kinematic equations are written, namely

hdðiþ1Þ ¼ hdðiÞþvdðiÞþdhðiÞþðphðiÞþaðiÞÞ=2

dhðiþ1Þ ¼ dhðiÞþphðiÞþwdðiÞ

phðiþ1Þ ¼ phðiÞþwpðiÞ

aðiÞ ¼ auðiÞ�gðiÞT2
þdðiÞ, ð32Þ

where au is the commanded acceleration, g is the gravity, d is
due to aerodynamics and T has been defined in Section 2.1.
In (32) the 2nd order stochastic dynamics providing the

0 10 20 30 40 50

-3

-2

-1

0

1

Time [s]

V
el

oc
ity

 [m
/s

]

Terminal logic
True tracking error - Disturbance rejection
True tracking error - Output feedback

Fig. 2. True tracking errors and terminal values.

-0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Velocity [m/s]

Fr
eq

ue
nc

y

Output feedback
Disturbance rejection

Fig. 3. Histograms from 500 Monte Carlo runs.

E. Canuto et al. / Acta Astronautica 72 (2012) 121–131126

6 in Acta Astronautica 72 (2012) 121–131



Author's personal copy

output dh allows for compensation of velocity and altitude
systematic errors. Kinematics in (32) is driven by the ‘dirty’
velocity vd, by the total acceleration a and by the derivative
ph of the velocimeter systematic error, all expressed in
length units.

The total acceleration a and the derivative ph enter (32)
because of discrete-time. As a proof, assuming constant
acceleration a(i) during a generic time step iTrto(iþ1)T
and denoting altitude and velocity with h and v, the
integration of the differential equation

_hðtÞ ¼ vðtÞ=T , hðiTÞ ¼ hðiÞ

_vðtÞ ¼ ðaðtÞþphðtÞÞ=T, vðiTÞ ¼ vðiÞ, ð33Þ

leads to

hðiþ1Þ ¼ hðiÞþvðiÞþaðiÞ=2

vðiþ1Þ ¼ vðiÞþaðiÞ, ð34Þ

whose first equation shows the same form as the upper-
most equation of (32). The same occurs to ph.

According to [10] and [11] the noise estimator must
include a dynamic feedback, since only a pair of noise
components, namely wd and wp, enter (32) despite three
state variables. The fact is that a static feedback could
stabilize a closed-loop system around (32) only by adding
a third noise component to the first equation of (32). The
simplest dynamic estimator holds

wd

wp

" #
ðiÞ ¼ LhehðiÞþMhqhðiÞ

qhðiþ1Þ ¼ ð1�bhÞqh iþ1ð ÞþehðiÞ, ð35Þ

where the gain matrices Lh and Mh, and the parameter bh

are fixed by four eigenvalues lk,k¼ 1,:::,4. Their design is
rather complex as not only must a trade-off be reached
between tracking error bias and dispersion, but also
between tracking error dispersion and command author-
ity. Slowing the eigenvalues, i.e. pushing 9lk9 closer to the
unit, decreases dispersion at the price of a higher terminal
bias because of a finite time. On the contrary, faster
eigenvalues, corresponding to 9lk9 much closer to zero,
leave measurement noise and model error to affect state
variables with the result of a noisy command like the
command profile of the ‘output feedback’ case in Fig. 4.

The control law is similar to (16), except that the
‘corrected’ velocity tracking error ev ¼ vz�vd�dh and the
altitude error eh ¼ h�h are used, and the systematic error
derivative ph is rejected as follows:

auz ¼ auzþkhðh�hÞþkvðvz�vd�dhÞ�d�ph: ð36Þ
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The output feedback law

auz ¼ auzþkhðh�yhÞþkvðvz�yvÞ ð37Þ

is driven by filtered altimeter and velocimeter measures.
Using (32) and (36) similar results to Section 2.4 can

be proven.
Result 7. If limi-1E ehðiÞ

� �
¼ 0, limi-1h ið Þ ¼ 0 and sh(h

¼0)¼bh, the following limit holds:

limi-1EðhðiÞÞ ¼�bh: ð38Þ

The second result accounts for the terminal altitude
being close to, but not at, zero, as it depends on the soft
landing mechanism employed (crushable structure, legs,
air bags and crane [16]). Developing shðhÞ in (31) as
shðhÞffibhþShð

~hÞeh, with ~h ¼ h�aeh, 0rar1, and
assuming 9Shðh ¼ 0Þ9rSh,max51, allows to prove the
following result.

Result 8. If 9Efehðif Þg9¼ e, hðif Þ ¼ hf 40 and 9Shð9e9Þ9r
Sh,max, the following inequalities hold:

9bh9�ð1þSh,maxÞðeþhf Þr9Efhðif Þg9r9bh9þð1þSh,maxÞðeþhf Þ:

ð39Þ

3.2. Monte Carlo results

The same conditions as in Section 2.6 have been simu-
lated, except for the feedback control gains kh and kv in (36)
and (37), that have been fixed to appropriate values so that
the control law (37) does not saturate the command as a
result of a high altimeter noise. To the same goal and to make
a fair comparison possible, the RMS of the altimeter noise has
been lowered to about 25% (0.2 m) of the typical value of
0.8 m, so that the output feedback control (37) does not
saturate the command due to unfiltered measurements.
Needless to say, the ‘disturbance rejection’ law (36), driven
by the navigation filter consisting of (32) and of the noise
estimator (35) is somewhat insensitive to the worst-case
altimeter noise as it can be evinced by comparing the
commanded acceleration profiles in Figs. 1 and 4. On the
contrary, in the worst-case noise, the output feedback
command saturates most of the descent time as Fig. 4 shows.

The Monte Carlo histograms in Fig. 5 show the ‘true’
terminal velocity has become slightly biased (about 0.02 m/s,
absolute value), corresponding to 9e940 in (24), also in the
case of the disturbance ‘rejection’ law (36). The terminal
velocity RMS is slightly greater (0.07 m/s) than in the value of
0.06 m/s Section 2.6 because of the altimeter noise. The
terminal altitude RMS (Fig. 6) is around 0.05 m compared
to the reference altitude of 2 m, which is fully acceptable to
any landing mechanism. The terminal error statistics is worse
in the ‘output feedback’ case, becoming biased and wide-
spread as shown in Fig. 5 for the terminal velocity and in
Fig. 6 for the terminal altitude. Fig. 7 shows the terminal
convergence of the ‘true’ altitude tracking error; the initial
error (outside of Fig. 7) is about 30 m.

To further corroborate the weaker sensitivity to the
altimeter noise of the ‘disturbance rejection’ case, velocity
and altitude histograms for the worst-case noise (0.8 m) and
for the 25% noise (0.2 m) are compared in Figs. 8 and 9.

The gains of the noise estimator in (35) have been slightly
modified from one case to another so as to take the terminal
altitude bias close to zero. The amplification factor of the
velocity dispersion is about 1.35 in the presence of a noise
amplification from 25% to 100%. The amplification of the
altitude dispersion through reaching 2.5 remains lower than
the fourfold noise factor.

4. Attitude control of drag-free satellites

This section is presented without proof. Details can be
found in [11] and [17]. An alternative version including
neglected dynamics is presented in [12].

4.1. State equations and requirements

Drag-free satellites, like the operating Gravity field and
steady state Ocean Circulation Explorer (GOCE) [17], need
to be accurately aligned to some reference attitude,
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which, in the case of GOCE, is given by the local orbit
frame, having the first axis aligned with the spacecraft
velocity and the second one orthogonal to the current
orbit plane. When the spacecraft is low-Earth-orbit
(around 300 km in height), the reference quaternion q
can be obtained from the spacecraft CoM position and
velocity vectors provided by on-board GPS (Global Posi-
tioning System) receivers. Attitude kinematics can be
written in the ‘dirty’ tracking error qd (a three-dimen-
sional vector), defined by the error quaternion

qd ¼ q�1 � qs ¼ qd0
1 qT

d=2
h iT

, ð40Þ

where qs ¼ qI � sq is the product of the inertial quaternion
qI and of the star-tracker systematic error sq. In other
terms qs is the measured quaternion free of random
errors. When the error quaternion qd in (40) can be
considered small, the entries qdk,k¼ 1,2,3 of the vector
qd approximate the 1-2-3 Euler angles, and qd can be
referred to as the attitude vector. The angular rate error in
body coordinates is defined by

Dx¼x�ð 0 o 0
h i

RðqÞÞT , ð41Þ

where o is the angular rate of the orbit frame, R is the
body-to-orbit transformation, q¼ q�1 � qI is the ‘true’
attitude quaternion and q is the corresponding vector
similar to qd in (40).

The discrete-time state equations are of the same kind
as (32) and (11), and are weakly coupled through gyro
and gravity-gradient torques [17].

Only a single generic entry qd¼qdk of the attitude
vector qd defined in (40) is taken into consideration.
Cross-coupling terms are accounted for by a known
disturbance term h which is a function of the attitude
and rate vectors. Kinematic, dynamic and disturbance
state equations take the form

x

d

� �
ðiþ1Þ ¼

A H

0 F

� �
x

d

� �
þ

B

0

� �
auþ

G

E

� �
wþ

N

0

� �
hðq,DxÞ,

ð42Þ

where

x¼

qd

Do
xa

2
64

3
75, d¼

ds

da

" #
, A¼

1 1 0

0 1 0

0 0 0

2
64

3
75, F ¼

1 0

0 1

� �

ð43Þ

and

N¼ B¼

1=2

1

1

2
64

3
75, H¼

1=2 1=2

1 1

0 1

2
64

3
75, G¼

0 0 0 0

1 0 0 0

0 0 1 0

2
64

3
75

wT ¼ wu ws wa wd
� 	

, E¼
0 1 0 0

0 0 0 1

� �
: ð44Þ

The entries of x in (43) are the ‘dirty’ attitude qd, the
rate error Do, and the ‘dirty’ acceleration xa, the latter
including the systematic error sa as in (7). The input au is
the command acceleration to be dispatched to actuators
(inertia wheels, thrusters, magnetic torquers). The com-
ponents of d and w have the same meaning as in (11),
except that they are now scalars. Specifically, ds and da

include opposite values of sa as in (12). A similar deriva-
tion as in Section 3.1 explains the direct contribution of
the acceleration terms au, da and ds to the attitude qd, as
shown by the first non zero rows of B and H in (44).

Measurements are provided by ultra-fine acceler-
ometers sampled at 10 Hz and by a single 3D star tracker,
sampled at 2 Hz. Accelerometer and star tracker measure-
ments ya and yq, respectively, are affected by errors and
noise as

yaðiÞ ¼ xaðiÞþeaðiÞ,

yqðikÞ ¼ qdðikÞþeqðikÞ, ð45Þ

where ik¼kNq, Nq¼Tq/T¼5,Tq¼0.5 s is the star tracker
sampling time, and the systematic errors sa and sq are
encoded in the ‘dirty’ variables xa and qd. The star tracker
error is written as sq¼Sqqþbq, sum of scale error and bias.

In drag-free missions, the ‘true’ attitude, that is q¼qd�sq

must be accurate (aligned with the orbit frame) only in a
limited frequency bandwidth, say, above the orbit frequency
fOffi0.2 mHz (GOCE mission). Accuracy can be expressed
either through the (unilateral) spectral density S2

qðf Þ of the
‘true’ attitude, or through the RMS of the attitude in the
mission frequency band, say

sqrsqr10mrad, s2
q ¼

Z f 1

f 0

S2
qðf Þdf , ð46Þ

where f0¼1 mHz and f1¼0.1 Hz are fixed by the mission
requirements.

The same applies to the residual acceleration
a¼dþuþwu as follows:

sarsar50nrad=s2, s2
a ¼

Z f 1

f 0

S2
aðf Þdf : ð47Þ

4.2. Noise estimator

The noise estimator is decoupled as in the soft landing
case, except that only acceleration and attitude are mea-
sured rather than the angular rate. Measurement sampling
is multi-rate. As shown in [12] and [11], multi-rate noise
estimator easily follows from the noise concept of the
embedded model: (i) wa and wd in (44) are retrieved as
in (14) by the model error ea¼ya�xa, defined in (45), at the
faster rate 1/T¼10 Hz, (ii) wu and ws in (44) are set to zero
except when attitude measurements are available, i.e. at
i¼ ik. The latter updating process implies that attitude and
angular rate in (42) are open-loop propagated between
successive star tracker samples as in Kalman filter. The
faster noise estimatorof wa and wd is static, whereas the
slower one, estimating wu and ws through the model error
eq in (45), must be dynamic as in (35), since the size of the
noise components is inferior to that of the state variables qd,
Do and ds in (43). The complete noise estimator is found to
be

wa

wd

" #
ðiÞ ¼ LaeaðiÞ

wu

ws

" #
ðikÞ ¼ LqeqðikÞþMqpðikÞ

pðikþNqÞ ¼ 1�bq


 �
pðikÞþeqðikÞ: ð48Þ
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The gain vectors La, Lq and Mq are fixed by the state
predictor eigenvalues. The acceleration predictor bandwidth
fa imposed by the gains of La in (48) is wider than f1 in (47)
(Z0.5 Hz) so as to accurately retrieve the acceleration
disturbance to be rejected. The attitude and rate predictor
bandwidth fq must be narrower than fa so as to filter the star
tracker noise down to the accelerometer level.

A quasi-optimal design (in terms of variance) is pur-
sued by designing the ratio f q=f a of the state predictor
bandwidths to be bounded by the signal-to-noise ratio r.
The latter is defined as the standard deviation ratio
r¼ saq=sq between the attitude disturbance aq, which is
obtained by doubly integrating the residual acceleration
a¼ dþuþwu, and the star tracker random noise eq in (45)
having standard deviation sqZ20mrad. The standard
deviation saq at the numerator of r assumes the residual
acceleration bound in (47) and a double integration along
a closed-loop time constant tqr3s, which is compatible
to the frequency upper bound f 1 in (49). As a result the
following inequality is obtained

f q=f arr¼ sa

ffiffiffiffiffiffiffiffiffiffi
t3

q=3
q

=sqffi0:0025: ð49Þ

Since the bandwidth f qr1:5mHz of the attitude pre-
dictor which results from (49) is rather narrow, gain
scheduling has been adopted as in [11]. During the early
phase of the accelerometer bias estimation (calibration
phase, tr3000s in Figs. 11 and 12) a bandwidth wider
than that imposed by (49) is adopted, such to mitigate the
attitude drift owing to a partly identified bias (see the
onset of Fig.11). As soon as mission accuracy is requested
(science phase), the narrow bandwidth imposed by (49) is
adopted.

The control law, assuming zero reference for attitude
and rate, is computed and dispatched at the faster rate
(10 Hz). It is similar to (36) and holds

auðiÞ ¼�kqqd�koDo�ds�da�hðq,DxÞ, ð50Þ

where ds cancels the accelerometer bias/drift and da

cancels disturbance torques due to gravity gradient,
aerodynamic forces, the Earth’s magnetic field and thrus-
ter misalignment. Star tracker scale error has no effect
due to zero reference; bias cannot be eliminated.

4.3. Simulated results

Simulated runs have been carried out under a simpler
spacecraft and in a simpler environment than in [11] and
[17]. A single degree of freedom has been simulated, free
of cross-coupling. Calibration phase until 3000 s and the
subsequent science phase have been simulated. Attitude
acquisition to below 1 arcminute is assumed having been
performed in a previous phase.

Fig. 10 shows the attitude drift under different ver-
sions of the control law (50). The dashed line is obtained
by dropping all components in (50) except da (disturbance
rejection): the drift is due to the accelerometer bias that
has been fixed to a small value, 0.1 mrad/s2, to allow for
comparison. The dotted line lacks the feedback terms in
(50): bias compensation greatly abates the drift, which is
now due to acceleration residuals as a result of an

imperfect disturbance rejection. The solid line refers to
the full control law: attitude is biased because of the star
tracker bias around 40 mrad. Fig. 11 proves optimality of
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the narrow-band noise estimator, as the same attitude
RMS, r10 mrad as requested by (46), is obtained for
tZ3000 s under accurate (dashed line) and inaccurate
star trackers. The role of the dynamic noise estimator
(second and third rows of (48)) in achieving the target
RMS in (46) during the science phase, can be better
appreciated from Fig. 13 where the angular rate Do is
plotted. Indeed, the latter fluctuations appear, as
expected, greatly attenuated passing from calibration
(wide-band estimator) to science phase (narrow-band
estimator) especially in the case of an inaccurate star
tracker. The fact is that the spectral density of the angular
rate is dominated by mid-frequency components, close to
the mission frequency band in (46). On the contrary,
integration of the angular rate brings the frequency
components below f 0 ¼ 1mHz to dominate the attitude
spectral density As a matter of fact attitude fluctuations in
Fig. 12 become more widespread but smoother passing
from calibration to science phase. Fig. 12 shows the
disturbance profile (dashed line) and the residual accel-
eration (the zero line). The latter RMS satisfies (47) for
tZ3000 s, when the narrow-band noise estimator is
applied.

5. Conclusions

This paper shows how disturbance and noise modeling,
as part of the embedded model of a control unit, allows not
only the embedding of systematic errors in an appropriate
disturbance dynamics in a more generic way than does
standard navigation, but also allows us to prove and achieve
their real-time compensation. As a consequence, rejection of
smooth and trajectory-dependent systematic errors can be
feasible also without supplementary sensors, but conver-
gence of the reference trajectory and back-stepping of the
error derivative up to command channels are necessary
conditions. Supplementary sensors become necessary for
the estimation and rejection of DC errors (bias). Disturbance
and noise modeling allow to deal with multi-rate measure-
ments, since the driving noise is estimated and the dis-
turbance state variables are updated only at every

measurement occurrence. Problem formulation and solu-
tions were illustrated with the help of three study cases
taken from space applications.
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Fig. 13. Angular rate under different star tracker accuracies.
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