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Abstract—Arterial Spin Labelling (ASL) is a perfusion
MRI technique with tremendous applications in the study of
biological markers and prognostic factors of brain tumors and
in the assessment of neural diseases; moreover, it is completely
non-invasive as it uses the magnetically inverted blood of the
patient as an endogenous tracer. Unfortunately this powerful
method is only viable in very limited conditions due to its
extreme sensitivity to artifacts originated by head motion,
that are not effectively addressed by the current software
solutions. This paper presents a motion correction procedure
that addresses this issue and provides improved solutions to
enhance ASL images of the brain in presence of severe head
motion. Experimental results run on a motion-affected pCASL
dataset show the concept and demonstrate the superiority of
our proposed procedure compared to standard 3D registration.

Keywords-Image Processing; Motion artifact correction;
Magnetic Resonance Imaging; fMRI; Arterial Spin Labelling.

I. INTRODUCTION

Arterial Spin Labelling (ASL) is a perfusion MRI tech-
nique that allows to measure cerebral blood flow (CBF) in a
completely non-invasive way, as it uses the inflowing arterial
blood of the patient labelled by magnetic inversion as an
endogenous tracer [1]. The same brain volume is imaged
before and after inverting the longitudinal magnetization of
the arterial blood of the patient just upstream of the region
of interest, generating a pair of control and label images,
respectively; the magnetically inverted blood determines a
localized variation of the MRI signal in the label image,
so that the pairwise image subtraction of corresponding
control and label returns a signal that is proportional to
CBF. ASL has tremendous applications in the assessment of
cerebrovascular disorders, in basic and clinical neuroscience,
as well as in the study of biological markers of brain tumors.
Furthermore, ASL combined with genetic studies provides
new insights into the biological pathways and mechanisms
of neuralgias and psychiatric illness [1] [2].

ASL technology has considerably improved in the past
few years, increasing its utility as a diagnostic and research
tool in neurological applications compared to traditional
fMRI. Nevertheless, it intrinsically suffers from low Signal-
to-Noise-Ratio (SNR) and it is extremely sensitive to ar-
tifacts arising from the head motion of the patient [3];

this dramatically impacts on the effective usability of the
technique in the standard diagnostic applications.

In the usual practice, interleaved control and label pairs
are acquired several times (namely dynamics) with the same
acquisition conditions and then averaged over the dynamics
in order to increase SNR. The CBF is therefore calculated
from the subtraction of the average control and the average
label image. Each image, either a control or a label, is a 3D
volume acquired as a stack of 2D slices (see Figure 1 and
2 for examples).

Before averaging controls and labels over the dynam-
ics, motion correction is usually performed through 3D
rigid body registration of the images, as in BOLD fMRI
scans [3]. A widely used approach is based on six-parameter-
based rigid body transformation that minimizes the distance
between each volume and the reference volume, that is
typically the first image of the ASL series [4]. This approach
suffers from several limitations in ASL images. Firstly,
registration works towards the minimization of the intensity
differences between the image to be registered and the
reference; as a consequence, registering the images, that can
be either controls or labels, against the first acquired image
(generally a control) misinterprets the intensity difference
originated by the ASL magnetic inversion [3]. This might
improperly decrease not just the intensity differences gener-
ated by motion, but also the functional ASL perfusion signal,
with disastrous consequences for the calculation of the CBF
map. Secondly, ASL images are acquired slice by slice with
a non negligible time delay between the acquisition of the
different slices, and therefore they are not immune from
inter-slice motion [5]: as a consequence, the slices of a single
image do not line up as a real 3D volume, which impacts
on the effectiveness of 3D registration.

The main contribution of this paper is to provide a
comprehensive procedure able to address the unsolved issues
in the correction of head motion in ASL brain imaging, over-
coming the limitations of the current software solutions. The
main steps are: (i) realignment of all the acquired volumes
in order to correct the inter-slice motion in each image; (ii)
rigid body registration of the re-aligned volumes, separately
for controls and labels in order to avoid minimization of the
labelling signal; (iii) selective averaging of registered pairs
of controls and labels, removing intensity outliers due to



registration errors.
The effectiveness of our proposed procedure was estab-

lished on ASL images affected by severe head motion and
compared to standard motion correction approach based on
3D rigid registration.

II. MATERIALS AND METHOD

pCASL (pseudo-continuous ASL) brain imaging of a
healthy volunteer was performed on a 3 T Achieva scanner
(Philips) with a scan time of 4 min and 8 s, single shot
echo planar imaging (EPI). Each scan included 17 slices of
7 mm thickness each with 3×3mm2 resolution, sensitivity-
encoded (SENSE), time of echo (TE) of 12.2 ms, repetition
time (TR) of 4000 ms, slice-time 35 ms. The anonymized
dataset was exported in Dicom from the MR scanner and
loaded into our fully-automated motion correction program;
this is implemented in ImageJ [6], a public domain and
platform independent image processing program, extending
the Imagej libraries [6] [7] with our own classes. The main
steps of the proposed procedure are the following:

Inter-slice realignment of volumes. In order to correct
inter-slice motion, each volume undergoes realignment. In
turn, each slice of the volume is used as the reference with
respect to which the next slice is rigidly aligned, so that the
alignment proceeds by propagation. The central slice of the
volume (the one with the highest amount of signal) is taken
as anchor for the alignment technique, that proceeds from
the center towards the extremes of the volume (first and last
image of the stack, respectively). The 2D registration of each
slice with respect to the propagating reference is based on
a coarse-to-fine optimization strategy (pyramid approach),
performing minimization of the difference of intensities of
the two images according to a variation of the iterative
Marquardt-Levenberg algorithm for non-linear least-square
optimization (MLA) [8].

3D registration of realigned volumes. After realignment,
the first control and label pair is co-registered and taken
as a reference for the 3D registration of the images of
the following dynamics. In order to preserve the intensity
difference between control and label that is on the base of
CBF calculation, in our approach the registration of the label
against the control is limited to the first image pair; then all
the controls are registered against a control reference and
all the labels against a label reference, respectively. This
is different from the standard registration procedures, that
register all the images of the series (either controls and
labels) against the first volume.

In order to minimize the influence of small intensity
differences generated by noise, we applied an edge-based
approach that takes into account only the most relevant
signals of the images: first the edges of the images are
detected through Sobel filtering, then 3D registration is
applied to minimize the differences between each image
and the corresponding reference. The technique applies a

conjugate direction search to align the 3D volumes rigidly,
adjusting the translation and rotation parameters towards the
minimization of the difference between the volumes. The
difference is measured in terms of intensity correlation.

Selective averaging In order to increase the Signal-to-
Noise-Ratio (SNR), it is common practice to repeat the
acquisition of control and label pairs several times (i.e.
dynamics) and then average controls and labels over the
dynamics; this increases the Signal-to-Noise-Ratio of a
factor

√
N , where N is the number of averaged dynamics.

After 3D registration, mismatch of control and label im-
ages due to residual head motion typically generates signal
outliers consisting in high and low signal spikes [3]. In our
proposed procedure this issue is addressed by detecting pixel
by pixel the signal outliers over the dynamics; the outliers
are removed during the selective averaging procedure. First,
the average avg and the standard deviation std of the signal
over the N dynamics is calculated per each pixel of the
image. Then, the outliers in the distribution of the pixel’s
signal over the dynamics are recognized as the values that
are not included in the range avg ± 3 · std and replaced by
the value avg. The averaging of labels and controls is finally
repeated without including the outliers.

III. EXPERIMENTAL VALIDATION

To quantitatively assess the effect of motion correction,
we examined the pCASL dataset described in Section II
and we extracted a limited number of temporally adjacent
label and control scans that we could reasonably assume
as not affected by head motion. As the reliability of this
assumption decreases with time acquisition, we extracted
4 control/label pairs of 17 slices each, for a total number
of 136 images. This motionless set of images was used as
the ground truth for our validation. Then the motionless set
was used to build a second set, where severe head motion
was artificially introduced to simulate a subject moving the
head from side to side during acquisition. The generation
of artificial motion is necessary for a quantitative validation
of the motion correction procedure, since it makes sure that
the intensity difference between the motion affected and the
motionless images is entirely due to head motion.

In order to simulate the worst motion conditions, both
inter-slice and inter-volume motion were simulated [5]. In
particular, we generated: (i) a 0.05 degrees rotation between
each of the 136 slices; (ii) a 0.3 degrees rotation between
each control and label volume. Therefore the resulting set
was affected by an overall rotation of 9.2 degrees propagat-
ing from the first to the last acquired slice. Figure 1 shows
a montage of some of the images of this set.

The validation procedure consisted in the following steps:
(i) we run our motion correction algorithm, consisting
on inter-slice realignment, 3D registration of labels and
controls and selective averaging with outliers filtering, on
the motion affected dataset. The output of this step, as



Figure 1: Motion simulated dataset, slice 1 to 50 of 136.

already explained, is a pair of motion corrected control and
label images, of 17 slices each. These images are shown
in Figure 2; (ii) we applied simple averaging of controls
and labels to the motionless dataset and used the resulting
averaged control and label pair as the ground truth of our
evaluation; (iii) we assessed the success of motion correction
pixel by pixel in terms of absolute difference between the
corresponding motion corrected and motionless images, as
it is reported in the following equation:

d =

∣
∣
∣
∣

Imagemotion − Imagemotionless

Imagemotionless

∣
∣
∣
∣

(1)

The value d is calculated for each pixel as the absolute
difference of the pixel’s intensity in the motion corrected
and the motionless image, respectively. This is a measure of
the residual motion in the corrected images: the lowest d,
the highest the success of the motion correction routine.

The obtained results, grouped for the control and the

label, are reported in the first two boxplots of Figure 3. Our
motion correction procedure was successful, with median
value of the residual motion below 3%. The most of the
residual motion values (three quarters of the total values,
which corresponds to the highest horizontal line of the box),
were below 22%.

Our proposed procedure was compared to the standard
routine for fMRI motion correction; as already mentioned in
Section I, this routine is based on 3D registration of all the
images (controls and labels) against a reference consisting
in the first volume of the time series [9], followed by simple
averaging of all the label and control images separately, as
in the standard practice for ASL. As for our technique,
we first applied the standard registration routine to the
simulated motion dataset and then measured the residual
motion against the motionless images. Residual motion was
calculated again on the same validation dataset used for our
proposed procedure.

Figure 2: Output of the proposed motion correction procedure: averaged control image (first 17 slices of the sequence) and
average label image.
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Figure 3: Residual motion of the average control and label
image, respectively after applying our motion correction
procedure and standard 3D rigid registration.

The obtained results are reported in the last two boxplots
of Figure 3, separately for control and label. As shown
by the boxplots, rigid registration performed worse than
our technique: while the results on the control (that is less
affected by motion since it temporally precedes the label)
are quite comparable, the performance of rigid registration
on the label was much lesser, with median residual motion
above 4% and range of residual motion values upto 30%
higher than our proposed procedure.

As explained in Section I, a map of the cerebral blood
flow (CBF) of the patient is generated by the subtraction
of the control and the label image. Figure 4 reports the
residual motion calculated on the CBF maps respectively
after applying our motion correction technique and after
applying the routine based on rigid registration.
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Figure 4: Residual motion of CBF map, respectively after
applying the proposed motion correction procedure and a
motion correction routine based on 3D rigid registration.

As it is visible from the figure, our technique obtained

the best results, with median residual motion of about 0.8%
and range of residual motion values upto 60% lower than
the rigid registration routine.

IV. CONCLUSION AND FUTURE WORK

This paper presented an automated motion correction
technique for ASL images that addresses issues that are
generally overlooked by the current software solutions; in
particular: (i) rigid realignment of the slices of each acquired
volume, in order to correct inter-slice motion; (ii) volumetric
rigid registration of the realigned volumes, separately for
controls and labels in order to avoid the improper minimiza-
tion of the ASL labelling signal; (iii) improved averaging
with selective filtering of intensity outliers. Experimental re-
sults on a pCASL dataset with severe head motion artificially
generated demonstrate that our solution outperforms the
traditional motion correction technique based on volumetric
rigid registration.

As a future work, we plan to extend our proposed proce-
dure taking into account an estimation of the movement of
the head during image acquisition.
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