
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Statistical Reliability Estimation of Microprocessor-Based Systems / Savino, Alessandro; DI CARLO, Stefano; Politano,
GIANFRANCO MICHELE MARIA; Benso, Alfredo; Di Natale, G.; Bosio, A.. - In: IEEE TRANSACTIONS ON
COMPUTERS. - ISSN 0018-9340. - STAMPA. - 61:11(2012), pp. 1521-1534. [10.1109/TC.2011.188]

Original

Statistical Reliability Estimation of Microprocessor-Based Systems

Publisher:

Published
DOI:10.1109/TC.2011.188

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2439063 since:

IEEE Computer Society

Statistical Reliabil ity Estimation of
Microprocessor-Based Systems
Authors: Savino A., Di Carlo S., Politano G., Benso A., Di Natale G., Bosio A.,

Published in the IEEE Transactions on Computers Vol. 61 ,No. 11, 2012, pp. 1521-1534.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6035678

DOI: 10.1109/TC.2011.188

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

1

Statistical reliability estimation of
microprocessor-based systems

A. Savino, S. Di Carlo, Member, IEEE, G. Politano, A. Benso, Senior Member, IEEE, A. Bosio, Member,
IEEE and G. Di Natale, Member, IEEE

Abstract—What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain
working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time
consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at
estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main
ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of
each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software
application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has
the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to
structurally maximize the probability of a correct execution of the target software.

Index Terms—Index Terms— Microprocessor reliability, safety-critical systems, statistical analysis.

✦

1 INTRODUCTION

AS microprocessor technology scales down to the
very deep sub-micron range, high production vari-

ability, voltage scaling and high operating frequency
increase the hardware susceptibility to (soft) errors [1],
[2], [3], [4], [5], [6], [7], [8]. This has a negative impact on
the reliability of a wide range of computer-based applica-
tions which are critical to our health, safety and financial
security. Since 1996 several studies reported cases of
large computer system failures caused by cosmic-ray-
induced soft-errors [9], [10].

Several techniques have been proposed to protect dig-
ital circuits against soft-errors, e.g., radiation-hardened
technologies [11], [12], error detection/correction codes
[13] and redundant architectures [14], [15]. Software
Implemented Hardware Fault Tolerance (SIHFT) also
gained attention in the last decade [16], [17]. These
techniques have a negative impact on systems’ perfor-
mance, power consumption, area and design complexity.
Their application must therefore be carefully evaluated
depending on the soft-error rate of the target system.

Unfortunately, tools and techniques to estimate the
susceptibility of a computer system to soft-errors, tak-
ing into account both the hardware and the software
domain, are not readily available or fully understood.
The execution of a program may mask a large amount
of soft-errors. In fact, at the system level soft-errors do
not matter as long as the final outcome of the program

A. Benso, S. Di Carlo, G. Politano, and A. Savino are with the Department
of Control and Computer Engineering, Politecnico di Torino, Corso Duca
degli Abruzzi 24, I-10129 Torino, Italy. E-mail: {alfredo.benso, stefano.dicarlo,
gianfranco.politano, alessandro.savino}@polito.it.

A. Bosio and G. Di Natale are with the Laboratoire d’Informatique, de
Robotique et de Microelectronique de Montpellier, University of Montpellier
II/CNRS, 161, rue Ada, 34392 Montpellier Cedex 5, France. E-mail: {al-
berto.bosio, giorgio.dinatale}@lirmm.fr.

is correct. To efficiently trade-off between fault tolerance
cost and system reliability one has to ask: what is the
probability of a program P to have a correct execution
state given a certain hardware (raw) soft-error rate? Fault
injection is a viable solution to answer this question [18],
[19], [20]. However, it can be very expensive and time
consuming.

This paper proposes the baseline for a new method-
ology to estimate computer-based systems reliability
against soft-errors. The target microprocessor is first
characterized to profile the probability of successful exe-
cution of each instruction of its Instruction Set Architec-
ture (ISA). A static and very fast analysis of the control
and data flow of the executed software is then performed
to compute its probability of successful execution in case
of soft-errors. The presented method has the potential to
help engineers to choose the best hardware and software
architecture to minimize the impact of soft-errors on the
system’s reliability.

This paper is organized as follows. Section 2 shortly
overviews the related literature, while Sections 3 and 4
present the proposed model whose experimental valida-
tion is given in Section 5. To conclude, Section 6 intro-
duces future improvements and Section 7 summarizes
the main contributions of the paper.

2 RELATED WORKS
Previous works on the estimation of the Soft-Error Rate
(SER) of an IC can be classified into three categories,
namely circuit-level, gate-level, and architectural-level.

Circuit-level SER estimation tries to estimate the prob-
ability of an error (glitch) at the output of a logic gate hit
by a particle. This is mandatory to define technological
mitigation techniques to soft-errors [21], [22].

2

Gate-level SER estimation moves the focus to the
nodes of a netlist [23]. Estimating the error susceptibility
of a node requires computing the probability of sensitiz-
ing the node with an input vector able to propagate the
erroneous value to one of the outputs of the circuit [24].
This however requires the simulation of several random
vectors whose number significantly increases with the
size of the circuit [22], [25], [23], [21], [26], [27].

Only recently the research on SER estimation has
moved from circuit and gate-level to the architectural
level [28], [29], [30], [31], [32]. The Architectural Vulnera-
bility Factor (AVF) expresses the probability of a system
error caused by a raw error in a particular hardware
structure [29]. In fact, several raw errors occurring at the
device/circuit level are masked at the architectural level
(e.g., 85 percent, Wang et al. [31]) due to low resource
utilization and introduction of computational blocks that
affect performance but not correctness (e.g., branch pre-
diction unit). Several publications propose methods to
estimate the AVF of a functional block [28], [29], [30],
[31], [32], [33], [34]. An interesting solution that includes
the software layer is provided by Sridharan and Keli
[35]. They propose to compute a Program Vulnerability
Factor (PVF) for a set of benchmarks that can be then
used to save computation while calculating the AVF of
several microprocessors. Differently to what we propose
in this paper, the final software workload is not explicitly
considered. Only a few publications try to introduce
this concept [36] [37]. However, apart from using fault
injection, to the best of the authors’ knowledge, a very
efficient algorithm to estimate the error probability of
a computer system taking into account its hardware,
architecture, and running software, is still missing, thus
motivating the research proposed in this paper.

3 SOFT-ERROR AND SYSTEM MODELS
This section shortly introduces the soft-error model con-
sidered in this work, together with some basic concepts
required to perform the proposed reliability analysis.

3.1 Soft-errors model
Neutron radiations from cosmic rays, alpha particles
from packaging materials and environmental/design
variations are common causes of perturbations of digital
circuit’s nodes that manifest as current pulses of very
short duration. If this happens in the hold state of a
memory cell or in a flip-flop, the content of the storage
element is flipped, causing a soft-error. This model is
referred to as Single-Event Upset (SEU) and represents
the target error model of this work. Perturbations can
also cause a glitch in a combinational node of a cir-
cuit causing a Single-Event Transient (SET). If a SET is
latched into a sequential logic unit, it then manifests as a
SEU. SETs have been considered for long time negligible
due to different natural masking effects [38], but are
becoming a significant source of errors as technology
nodes scale down below 100nm [38], [39].

3.2 Soft-error rate and system modelling
The raw soft-error rate (SER) of an electronic component,
also denoted with λcomp(t), is the rate at which the
device encounters or is predicted to encounter soft-
errors. Vendors express the SER either as number of
failures-in-time (FIT) or as mean-time-between-failures
(MTBF). SER can be used together with a probability
distribution to define a reliability function R(t) and a
failure function F(t) providing respectively the probabil-
ity of no error (success) and failure of the component
before time t [40]. Given a constant raw error rate λcomp

the exponential distribution is a good approximation to
model the reliability of an electronic device:

R(t) = e−λcompt (1)

F(t) = 1 −R(t) = 1 − e−λcompt (2)

Other distributions such as the Weibull distribution or
log-normal distribution can be used when raw error rates
are not constant. In practice, λcomp is small enough to
reasonably allow considering these two probabilities as
constants over a period of time as short as the execution
of a program P . In this paper, TM (mission time) denotes
the time during the life of the component at which its
reliability is evaluated, and R(TM) and F (TM) denote
its raw probability of success and failure at that time.

Among the different devices that constitute a com-
puter systems, the microprocessor is by far the most
critical and complex component. A microprocessor can
be split into two set of resources called storage elements
and operators. The set S = {si | i ∈ [1, #S]} of storage
elements includes registers and memory elements where
data processed by instructions are stored. The set OP =
{opi | i ∈ [1, #OP]} of operators contains all remaining
microprocessor blocks (e.g., control state machines, arith-
metical units, branch prediction units, etc.) that are used
during the execution of an instruction to process data
contained into storage elements. Assuming an equal spa-
tial distribution of failures in a component, the raw error
rate of a resource λres is a portion of λcomp proportional
to the fraction of its silicon area Ares over the total area
of the component Acomp: λres = λcomp

Ares/Acomp

According to the models proposed in this section, by
denoting with Cres the not-deterministic event “the re-
source res is correct at time 0 ≤ t ≤ TM”, and with NCres

its complementary event, then the raw probabilities of
success and failure of a resource at TM are:

P (Cres) = R(TM)|λ=λres
= e

−λcomp·
Ares

Acomp
·TM (3)

P (NCres) = F (TM)|λ=λres
= 1 − e

−λcomp
Ares

Acomp
TM (4)

These two probabilities represent the basis of our re-
liability estimation model. As a first approximation, the
set of events {Cres | res ∈ (OP ∪ S)} can be considered
independent. Dependencies are in fact introduced by
the execution of the program, and they will be taken
into account in the model by the introduction of specific
heuristics.

3

4 SOFTWARE RELIABILITY ESTIMATION

In the context of this work, estimating the failure proba-
bility of a computer system running a program P means
estimating the probability of observing an error in the
outcome of the program (assumed bugs-free) running
on a hardware system affected by soft-errors only. Soft-
errors in the hardware may be masked either because
they affect idle resources, or because the program’s
execution somehow overwrites the error. Based on this
assumption, this section introduces an analytical model
to estimate the probability of success of a program in
presence of soft-errors in the hardware.

4.1 Analytical model
Programs are analyzed using the concept of program
traces.

Definition 1. A program trace is an ordered sequence of
k instructions (k-tuple) executed while running a program
P: T = 〈I1, I2, . . . , Ik〉with Ii ∈ ISA, ∀1 ≤ i ≤ k (ISA
identifies the Instruction Set Architecture of the target
microprocessor).

Program traces are a general concept used with many
variants in software engineering whenever the sequence
of instructions executed by a program must be recorded
or statically computed to perform further analysis [41].

The probability of success of a trace T can be predicted
by computing the probability of a correct program’s
outcome during the execution of each instruction of
the trace. The outcome of the program is usually a
portion of the entire state of the system. This is modelled
introducing the concept of active state.

Definition 2. The active state of a program P during the
execution of an instruction I ∈ T , denoted with AT

I ⊆ S,
is the set of storage elements representing the outcome of the
program when executing the instruction I .

Programs whose output is evaluated only once at the
end of the execution have a not-empty active state only
for the last instruction of the trace; programs whose out-
put is continuously evaluated have a not-empty active
state for each instruction of the trace. The definition of
the active state is application dependent and usually
defined by the programmer. In the worst case scenario,
the complete state of the system can be considered as
active.

The execution of each instruction of a trace may prop-
agate or mask errors among resources, thus modifying
their raw probability of success defined in (3). This
propagation must be evaluated by modelling the way
executed instructions react to soft-errors in the hardware.
An instruction I ∈ T can be modeled as a triplet
I = 〈OUTI ,OPI , IN I〉 where:

• OUTI = {out1, . . . , outz | outi ∈ S} is the set of stor-
age elements updated by the instruction (outputs),

• OPI : OUTI)−→ O ⊆ OP is a function that defines,
for each output, the set O of operators required for
its computation, and

• IN I : OUTI)−→ J ⊆ S is a function that de-
fines, for each output, the set J of storage elements
(operands) required for its computation.

All instructions include the program counter into OUTI

since the execution of an instruction always updates this
register. Errors in the control-flow of the program can be
considered including the program counter into the active
state.

Let us denote with ex a stochastic variable indicating
the execution of the instruction Iex ∈ T and with f ∈
[1, k] (k denotes the number of instructions of the trace)
a stochastic variable indicating that a soft-error occurs in
the hardware during the execution of the instruction If ∈
T . The probability of success of each storage element
s ∈ S given that ex = f , i.e., a soft-error manifests in
the hardware while the instruction is executed, can be
computed as follows:

1) the initial probability of success of each storage
element s ∈ S (P ′ (Cs)), is the probability of an
error-free resource (event Cs) or a resource with an
error (event NCs) that is masked by the hardware:

P
′

(Cs) =P (Cs ∪ (Ms ∩ NCs)) =

=P (Cs) + P (Ms)P (NCs)
(5)

Mres is the event: “an error in res is masked” and
P (Mres) is the error masking probability of the
resource;

2) the final probability of success of each output
s ∈ OUTIf

of the instruction (P (Cs | ex = f)), is
computed considering that an output is correct if:
(i) all operators required for its computation are
error-free or able to mask the error (this event is
denoted with COPIf

(s) and its probability defined
in (8)) and (ii) all operands required for the compu-
tation are error-free (events Cin, ∀in ∈ IN If

(s)) or
able to mask the error. This is formally expressed
in the following equation:

P (Cs | ex = f) = P

0

B

@
COPIf

(s)

\

8

>

<

>

:

2

6

4

\

∀in∈IN If
(s)

Cin

3

7

5

[

2

6

4
DMIf

\

0

B

@
1 −

\

∀in∈IN If
(s)

Cin

1

C

A

3

7

5

9

>

=

>

;

1

C

A
=

= P
“

COPIf
(s)

”

·

8

>

<

>

:

Y

∀in∈IN If
(s)

P ′ (Cin) +

+ P
`

DMIf

´

·

0

B

@
1 −

Y

∀in∈IN If
(s)

P ′ (Cin)

1

C

A

9

>

=

>

;

(6)
DMIf

represents the event: “the execution of
If masks an error in one of its operands” and
P

(

DMIf

)

is the probability that an instruction
masks an error in its operands. This probability

4

can be computed either with fault injection exper-
iments or, as explained later in this paper, by an
analytical analysis of each instruction;

3) the final probability of success of all storage el-
ements not in the output set of the instruction
(∀s ∈ S − OUTIf) is not affected by the execution
and is computed as follows:

P (Cs | ex = f) = P ′ (Cs) (7)

P
(

COPIf
(s)

)

used in (6) denotes the probability of

success of all operators used to compute the resource
s. Similarly to (5), it can be computed as the probability
of respecting, for all considered operators, the following
conditions: (i) the operator is error-free or, (ii) the oper-
ator manifests an error but the error is masked. This can
be formalized as follows:

P
(

COPIf
(s)

)

=P

⋂

∀op∈OPIf
(s)

[Cop ∪ (Mop ∩ NCop)]

 =

=
∏

∀op∈OPIf
(s)

[P (Cop) + (P (Mop) · P (NCop))]

(8)

With this model, the contribution of a fault tolerant
operator to (8) is: P (Cop) + (1 · P (NCop)) = Rop(TM) +
(1 −Rop(TM)) = 1. This correctly models that the fault
tolerance mechanism resets the contribution of this op-
erator to the error probability of other resources.

Similarly to the case ex = f , the probability of success
of each resource at the end of the execution of an
instruction Ij ∈ T following If (i.e., ex = j > f) is
computed taking into account that an error in one of
the operands can be propagated to one of the outputs:

1) the probability of success of each storage element
not in OUTIj (∀s ∈ S − OUTIj) is constant

P (Cs | ex = j ∧ j > f) = P (Cs | ex = j − 1) (9)

2) the probability of success of each storage element
s ∈ OUTIj is the probability that all operands of Ij

are correct or that at least one operand of Ij is not
correct but the error is masked by the execution of
the instruction:

P (Cs | ex = j ∧ j > f) = P

0

B

@

2

6

4

\

∀in∈IN Ij
(s)

Cin

3

7

5

[

2

6

4
DMIj

\

0

B

@
1 −

\

∀in∈IN Ij
(s)

Cin

1

C

A

3

7

5

1

C

A

=
Y

∀in∈IN Ij
(s)

P (Cs | ex = j − 1) +

+ P
`

DMIj

´

·

0

B

@
1 −

Y

∀in∈IN Ij
(s)

P (Cs | ex = j − 1)

1

C

A

(10)

When evaluating the execution of a trace T , soft-errors

may manifest during any of the k instructions of the
trace (i.e., 1 ≤ f ≤ k). According to our model, the
correctness of a resource s ∈ S during the execution
of an instruction Ij (ex = j) depends on the instant
the soft-error manifests in the hardware (If). A set of j
error conditions must therefore be analyzed: 1) the error
manifests during the first instruction of the trace (f = 1),
2) the error manifests during the second instruction of
the trace (f = 2) and so on until the case (f = j).
The probability of success of the resource for each error
condition can be computed according to (6), (7), (9) and
(10). Since all error conditions have the same probability
and represent disjoint events, the probability of success
of a resource after the execution of a generic instruction
Ij can be computed as follows:

P (Cs | ex = j, ∀1 ≤ f ≤ j) =

= P (

[

j−1
⋃

x=1

((f = x) ∩ (Cs | ex = j ∧ j > f))

]

∪

[(f = j) ∩ (Cs | ex = f)]) =

=
j−1
∑

x=1

(

1

j

)

· P (Cs | ex = j ∧ j > f)+

+

(

1

j

)

· P (Cs | ex = f) (11)

The jth instruction Ij of a program trace T is con-
sidered correctly executed if all storage elements of its
active state AT

Ij
are error-free. Denoting CIj the non-

deterministic event “the instruction Ij is correctly exe-
cuted”, the probability of success of the instruction given
that AT

Ij
-= . is defined as

P (CIj) = P

⋂

∀s∈AT
Ij

(Cs | ex = j, ∀1 ≤ f ≤ j)

(12)

Computing (12) is not trivial, since the execution of
an instruction introduces dependencies among storage
elements. Alg. 1 proposes an heuristic to evaluate these
dependencies. It produces a subset of the active state
containing independent resources that can be used to
compute equation (12). In Alg. 1, D is a integer matrix
with each row corresponding to an instruction of T
and each column to one of the storage elements. The
condition D[j][i] -= 0 indicates that, during the execution
of the jth instruction, the resource i must be discarded
when computing (12) since its contribution has already
been taken into account in a different set of resources. On
the other hand, D[j][i] = 0 denotes that the resource must
be considered since its contribution was not considered
before. When the program starts (j = 1) all resources are
independent (Alg. 1, row 2). For a generic instruction Ij ,
the status of each resource in D is initially set to those of
the previous instruction (Alg. 1, row 5), and then the
outputs of the instruction are considered. The overall
idea is that each output already includes the contribution

5

of the corresponding operands that can therefore be
excluded from the set of resources to consider (Alg. 1,
row 14-16). If more than one output is computed based
on the same set of operands, only one of these outputs
must be considered (Alg. 1, row 18-25). Whenever a
storage element is written, the operands used during
the last instruction targeting the same resource must
be considered again (Alg. 1, row 14-16). The array LW
stores, for each storage element, the index of the last
instruction of the trace where the resource was written.
Alg. 1 is an approximated approach to take into account
dependencies among resources; however, the experimen-
tal results of Section 5 will show that it is able to provide
estimations with a reasonable level of confidence.

Algorithm 1 Algorithm to compute the subset of independent
resources for an instruction
Require: j: index of the evaluated instruction
1: if j = 1 then
2: D[j]=(0,. . .,0)
3: LW=(0,. . .,0)
4: else
5: D[j]=D[j− 1]
6: end if
7: for i = 1 to count

“

OUTIj

”

do

8: s = OUTIj
[i]

9: if LW[s]<>0 then
10: for all r in IN ILW[s]

(s) do
11: D[j][r]=D[j][r]-1
12: end for
13: end if
14: for all r in IN Ij

(s) do
15: D[j][r]=D[j][r]+1
16: end for
17: LW[s]=j
18: D[j][s]=0
19: for k = 1 to i− 1 do
20: x = OUTIj

[k]
21: if IN Ij

(x) = IN Ij
(s) then

22: D[j][s]=1
23: break
24: end if
25: end for
26: end for

Based on Alg. 1, the probability expressed in (12) can
be estimated as follows:

P (CIj) ∼=
∏

∀s∈AT
Ij

|D[j][s]=0

P (Cs | ex = j, ∀1 ≤ f ≤ j) (13)

Given that equation (13) provides the probability of
success of each instruction of a trace, the probability of
success of the full trace T (P (CT)) can be approximate as
the average probability of success of those instructions
characterized by a not empty active state:

P (CT) ∼=
1

count(Ii | AT
Ii

-= .)

∑

∀Ii|AT
Ii
%=&

P (CIi) (14)

Several traces can be generated by the execution of
a program, depending on the specific workload. Let us
denote with TP the complete set of possible traces of
a program P , with each trace T ∈ TP an independent
event characterized by an execution probability P (T)

and
∑

∀T∈TP
P (T) = 1. The probability of success of

the program P (P (CP)), can be computed as a weighted
average of the probability of success of each trace:

P (CP) =
∑

∀T∈TP

P (T) · P (CT) (15)

Generating the full set of traces of a real application
is obviously often not feasible in a reasonable compu-
tational time. A subset of all possible traces (TS), must
therefore be sampled in order to statistically represent
a significant group of execution alternatives. The more
traces are sampled, the better (15) will estimate the
reliability of the system as the probability of success of
the program in presence of soft-errors in the hardware.
In order to take into account the contribution of all traces
not included in TS, (15) can be rewritten as follows:

P (CP) ∼=
∑

∀T∈TS

(P (T) · P (CT))+

+(1 −
∑

∀T∈TS

P (T)) · R (TM)|λ=λcomp

(16)

The first portion of (16) computes (15) on TS. The
second portion of the formula considers that in all
situations not included in TS the probability of success
of the program can be approximated to the worst-case
represented by the raw reliability of the component
defined in (1).

4.2 Program traces generation
Two approaches can be followed to obtain a relevant set
of traces for the proposed reliability estimation model.

Whenever a strong, statistically relevant set of inputs
for the target software is available, it can be exploited
to derive a corresponding set of traces. Several runs of
the program are executed, each with a different input,
and run-time information about executed instructions
and accessed data are recorded to compose each trace.
The probability assigned to each trace (P (T) in (16))
can be uniformly distributed or calculated based on
the knowledge of the probability of occurrence of the
corresponding inputs. However, in several situations in
which very early design exploration is performed, a
statistically relevant set of inputs might not be available,
or it might be difficult to estimate how much it covers
the set of possible executions. For these situations, this
paper presents an algorithm that generates a set of traces
by performing a static analysis of the program’s binary
code. The goal of this algorithm is to cover as many parts
as possible of the control-flow graph of the application,
providing also a metric to measure how many of the
possible paths have been covered.

The control-flow graph of a program P , is a labeled
directed graph CFGP = (Instr, A, L) where:

• Instr = {Ii | Ii ∈ ISA} is the set of nodes of the
graph, with each node representing a single instruc-
tion of the program,

6

• A = {(Ii, Ij) | Ii, Ij ∈ ISA} is the set of arcs mod-
elling allowed sequences of instructions, and

• L : A → labels is a function that maps each arc to a
label.

Each CFG has two special nodes denoted with Istart

and Iend representing the entry point and the exit point
of the program. Multiple exit points are connected to a
single node. In our model, the label of an arc (Ii, Ij)
is the probability pi,j of crossing the arc during the
execution of the program. pi,j can be assigned applying
the following policies:

1) If Ij is the only direct successor of Ii, and therefore
it is not a branch instruction, the probability of
crossing the arc (Ii, Ij) is equal to 1;

2) If Ii has m direct successors on the graph, i.e.,
there are m arcs directed from Ii, and no run-
time information about the probabilities of crossing
each arc is available, then each arc is assigned a
probability equal to 1

m
;

3) If Ii has m direct successors, and from the knowl-
edge of the program or from run-time information
it is possible to conclude that some of the arcs are
less probable than others (e.g., arcs that terminate
the program in case of errors), custom probabilities
can be assigned given that the sum of the prob-
abilities of the arcs directed from the node must
be equal to 1. Variable probabilities can be also
assigned, modelling for instance loops that start
with a high probability that decreases when the
number of iterations increases.

The control-flow graph of a program can be automat-
ically generated by statically analyzing its binary code
with tools such as Diablo [42].

A modified depth-first search algorithm on the CFG of
the program named Traces Generation Algorithm (TGA)
is used to statically compute a set of execution traces
(Alg. 2). The main problem of this approach is that, in the
case of loops, the number of traces that can be generated
is theoretically infinite. A set of terminating conditions is
therefore introduced to stop the generation either when
the computed traces provide the desired coverage of the
CFG, or when a maximum number of traces has been
generated.

TGA is a recursive algorithm that requires the follow-
ing set of global variables:

• TS: the set of generated traces. It is an empty set
when the algorithm starts;

• TARGET_CEP: according to (15), each trace is as-
sociated with an execution probability P (T). If all
possible traces of a program can be generated, their
cumulative execution probability (CEP) is equal to
1, thus guaranteeing the full coverage of all execu-
tion paths. When instead, the number of possible
traces is theoretically infinite, TARGET_CEP is the
minimum cumulative execution probability that has
to be reached before stopping the trace generation.
This value is also used as a metric of the complete-

Algorithm 2 Traces Generation Algorithm

Require: TS ← #,
TARGET_CEP ← [0,1],
MAX_T,
CEP ← 0,
STOP_IF_ALL_ARCS_COVERED ← {true,false}

1: TGA (node = Istart , T = #, prob=1)
2: T ← T ∪ node
3: if node = vend then
4: TS ← TS ∪ T
5: CEP ← CEP + prob
6: mark all arcs traversed by T as visited
7: if all_arc_visited AND

STOP_IF_ALL_ARCS_COVERED=true then
8: exit
9: end if

10: if |TS| = MAX_T then
11: exit
12: end if
13: if CEP >= TARGET_CEP then
14: exit
15: end if
16: return
17: else
18: for all I in directed_successors(node) do
19: newprob ← newprob * pnodo,v

20: TGA (v,T,newprob)
21: end for
22: end if

ness of the generated set of traces;
• MAX_T: is an upper bound on the number of gen-

erated traces. It forces the algorithm to stop even if
TARGET_CEP has not been reached;

• STOP_IF_ALL_ARCS_COVERED: if set to true, this
flag allows to stop the generation when all arcs of
the CFG have been traversed at least once. This
represents the minimum set of traces that must be
considered to analyze a program. It can be used for
early and very fast evaluations.

TGA begins the generation considering the starting node
Is and an empty trace T with execution probability equal
to 1 (Alg. 2, row 1). It adds the current node to the
trace (Alg. 2, row 2) and then checks if the current node
corresponds to Iend to detect whether the end of a trace
has been reached (Alg. 2, row 3).

In case the current trace is not complete (Alg. 2, rows
18-21), the algorithm selects iteratively each direct suc-
cessor of the current node and, for each corresponding
arc, it generates a new trace by recursively calling itself
(Alg. 2, row 20). The probability of the new trace is the
product of the current probability by the probability of
execution of the arc (Alg. 2, row 19).

In case the current trace is complete (Alg. 2, rows 4-
16), it is added to the set TS (Alg. 2, row 4). CEP (Alg.
2, row 5) and the set of arcs traversed at least once (Alg.
2, row 6) is updated. The different terminating condi-
tions are then evaluated. Rows 7-9 terminate the gener-
ation if all arcs have been traversed at least once and
STOP_IF_ALL_ARCS_COVERED is set to true. Rows
10-12 stop the generation if MAX_T traces have been
generated and, finally, rows 13-15 stop the generation if
target TARGET_CEP has been reached. If none of these

7

conditions are true, the generation continues exploring
additional paths on the graph.

Listing 1 shows a simple example of a program, coded
for the Intel 8088™ microprocessor, counting the number
of elements of an array. Items are stored in memory at
address 0100h and range boundaries are passed through
the stack. The program loops until all items are evaluated
(CX is used to count the number of items in the array
passed in the stack). In order to simplify the example,
the program omits any context saving operation .

1 pop cx ; c o u n t e r
2 pop ax ; g e t upper & l o w e r
3 pop bx ; l i m i t s in ax & bx
4 mov si , 0 ; number c o u n t e r
5 mov di , 0100h ; g e t i n i t i a l l o c a t i o n
6 lp : mov dx , word p tr [di] ; g e t t h e c o n t e n t
7 cmp dx , ax ; c h e c k t h e upper
8 j l e lw ; i f number i s l o w e r
9 jmp nxt ; i f number i s l a r g e r

10 lw : cmp dx , bx ; c h e c k l o w e r l i m i t
11 jge lim ; i f number i s l a r g e r
12 jmp nxt ; i f number i s l o w e r
13 lim : inc s i ; i n c r e m e n t c o u n t e r
14 nxt : add dx , 2 ; g e t next l o c a t i o n
15 loop lp ; r e p e a t u n t i l i t e m s

Listing 1. Intel 8088 example program

The CFG of the program is summarized in Fig. 1. No
run-time information about the probability of traversing
each arc is available. In case of branches, all arcs directed
from the node have been assigned with the same ex-
ecution probability (policies 1 and 2). The CFG shows
different paths and a loop.

Figure 1. Control-Flow graph statically computed from the
binary code of Listing 1

By executing Alg. 2 with
STOP_IF_ALL_ARCS_COVERED set to true, the
following set of traces is generated:

• T 1 =< Istart, I1, I2, I3, I4, I5, I6, I7, I8, I9,

I14, I15, Iend >(PT1 = 0.25)
• T 2 =< Istart, I1, I2, I3, I4, I5, I6, I7, I8, I10,

I11, I12, I14, I15, Iend >(PT2 = 0.125)
• T 3 =< Istart, I1, I2, I3, I4, I5, I6, I7, I8, I10,

I11, I13, I14, I15, Iend > (PT3 = 0.125)
• T 4 =< Istart, I1, I2, I3, I4, I5, I6, I7, I8, I9,I14,

I15, I6, I7, I8,I9, I14, I15, Iend >(PT4 = 0.0625)

This set allows to reach a CEP equal to 0.5625. Fig. 2
plots how CEP increases by increasing the number of
generated traces. By traversing the loop multiple times ,
i.e., arc (I15, I6), additional execution alternatives can be
evaluated reaching, with about 40 traces, a CEP almost
equal to 1.

Figure 2. Plot of the cumulative trace execution probability vs.
the number of generated traces

5 EXPERIMENTAL MODEL VALIDATION
This section presents the experimental setup used to
validate the model proposed in the previous sections.
It covers three main aspects: the microprocessor char-
acterization, the statistical reliability estimation, and the
validation and discussion of the results.

5.1 Microprocessor characterization
The microprocessor characterization is a key operation
that must be performed only once, independently from
the program that will be executed in the system. Two
microprocessor cores have been characterized in this
paper: the Intel 8088™ and the OpenRISC1200.

The Intel 8088™ (hereinafter referred to as 8088) has
the same architecture of the more famous Intel 8086™
with the only difference being that the external data
bus width is reduced from 16-bit to 8-bit. It is a CISC
microprocessor with a very simple two-stage pipeline.

8

It is equipped with 16-bit registers grouped as follows:
four general purpose registers (AX, BX, CX, DX) also
accessible as eight 8-bit registers; four memory indexing
registers (stack-pointer SP, base-pointer BP, source-index
SI, destination-index DI); four segment registers (code
segment CS, data segment DS, stack segment SS, extra
segment ES) and two registers for controlling the exe-
cution flow (program counter PC, status flags SF). The
8088 ISA contains 111 instructions without floating-point
support. The microprocessor model is provided by the
HT-LAB toolkit [43]. This toolkit, distributed under the
GNU license, includes the VHDL code of a complete
8088 based system: the processor, the ROM and the
RAM, some peripheral devices, and a set of facilities to
convert assembly code in a format that can be directly
included and executed in the VHDL code.

The OpenRISC1200 (hereinafter referred to as OR1200)
is a 32-bit scalar RISC microprocessor with Harvard
architecture and 5 stage integer pipeline. It has 32 general
purpose 32-bit registers, caches, virtual memory support
and basic DSP functions. It supports the ORBIS32 in-
struction set for a total of 215 instructions. The instruc-
tion set includes 32-bit integer instructions, basic DSP
instructions, 32-bit Load and Store instructions, program
control flow instructions and some special instructions.
The VHDL model of the OR1200 is freely available on
the OpenCores website (http://www.opencores.org) .

Both processors have been synthesized using Synop-
sis Design Compiler with the AMS 350nm technology
library. The choice of the target library could lead to
small fluctuations in the reliability results, but this issue
is beyond the scope of this paper. Fig. 3 provides a sum-
mary of the area occupation of the two cores that gives
an idea of the complexity of the two microprocessors.
The 8088 accounts for a total of 652 flip-flops while the
OR1200 accounts for a total of 1891 flip-flops, all of them
considered as potential target SEU locations.

Figure 3. Microprocessors area summary provided in equiva-
lent gates

The microprocessor characterization process estimates
the masking probabilities P (COPI) and P (DMI) re-
quired to compute equations (6) and (10).

The most efficient way to compute P (COPI
) is to

setup a fault injection campaign. For each instruction
<INSTR> of the ISA, and for each possible combination
of operands, fault injection has been performed with the
microprocessor executing a simple program composed
of the target instruction preceded and followed by a
set of NOP instructions. This solution guarantees that
<INSTR> traverses all stages of the pipeline (2 for the
8088 and 5 for the OR1200) without other instructions
interfering with its operations. The same instruction is
simulated several times with different operands in order
to explore different execution conditions. An average of
10,000 SEUs for the 8088 and 30,000 SEUs for the OR1200
has been injected for each variant of each instruction.
At this stage, fault injection only targets operators and
it does not include flip-flops associated with operands
and output registers that will be considered instead
when estimating P (DMI). Obviously, the size of the
fault list, and therefore the length of the fault injection
experiment, heavily depends on the number of registers
and instructions of the microprocessor.

The effort required to perform this part of the charac-
terization can be extremely variable depending on sev-
eral factors. The most important ones are the available
computational resources, which impact the time required
to perform the experiments and elaborate the results,
the level of detail of the microprocessor model, which
directly affects both the confidence in the generated
the fault list and the reliability of its injection, and the
chosen Fault Injection mechanism (hardware, software,
or simulation-based), which determines the cost and
precision of the injection results. Nevertheless, it is worth
reminding that having to consider only the microproces-
sor without any workload but the individual instructions
of its ISA, the fault list generation is faster, easier, and
more complete because it can be exhaustively generated
with a simple software program.

Differently from P (COPI
), P (DMI) can be analyti-

cally computed by analyzing the behaviour of each in-
struction without the need of performing VHDL simula-
tions. Instead, a set of C programs exhaustively performs
this analysis simulating the behavior of each instruction
in presence of faults in its operands. Let’s take as an
example two instructions, ADD and CMP (compare) for
the 8088:

• ADD computes the sum of two 16-bit operands
and stores it into a new 16-bit word. Regardless of
their value, any error in one of the operands will
generate an error in the output result. P (DMADD)
is therefore equal to 0.

• CMP compares two 16-bit operands. The result in
this case heavily depends on the value of the com-
pared data. By analyzing all possible combinations
and errors, a P (DMCMP) = 0.95 is obtained. This
means that 5% of the errors in the operands will be
masked by the instruction itself.

Fig. 4 reports an example of the characterization of a sub-

9

set of instructions for the two considered processors. For
each instruction, the figure reports: 1) the operators area
ratio (i.e., the number of flip-flops of the used operators
over the total number of flip-flops) required to compute
equations (3) and (4) for the operators; 2) the overall
operators masking probability P (COPI) and 3) the data
masking probability P (DMI). The figure highlights that
the 8088 has a lower capability of masking errors in
the hardware compared to the OR1200. As shown in
the following sections, this will negatively reflect on the
reliability at the system level.

5.2 Experiments and validation
Experiments have been conducted on three application
programs, two of them (QSORT and AES) obtained from
the MiBench Ver. 1.0 benchmarks [44]:

1) HUFFMAN: performs Huffman encoding applied
to a list of 16 symbols. The result is the Huffman
code associated to each symbol.

2) QSORT: sorts a given array of integer numbers
stored in the main memory using the quick sort
algorithm.

3) AES: performs AES encryption of a 138-Bytes mes-
sage.

The reliability of the two microprocessors while run-
ning these three benchmarks has been assessed both by
applying the proposed estimation model, and by exe-
cuting a very extensive fault injection campaign aimed
at confirming the estimated results. In order to reduce
the complexity of the fault injection experiments, the
three benchmarks do not contain I/O instructions and
all input data are predefined and stored in the RAM
along with the program’s binary code.

All experiments have been performed on a worksta-
tion equipped with a dual Intel Xeon@3.16GHz quad
core processor and 32GB of RAM.

The proposed estimation model has been coded in a
C program. The tool includes a library of parsers for
the assembly language of the two considered micropro-
cessors, and it implements a multi-thread architecture
to fully exploit the parallelism offered by the available
workstation. Experiments only focused on faults in the
microprocessor. For this reason, each instruction that
writes data outside the microprocessor (e.g., any instruc-
tion storing data in the memory) has a not empty active
state. When generating program traces using Alg. 2, the
knowledge of the source code is used to assign custom
variable probabilities to the different branch instructions.
Several golden runs of the program with random data
have been performed to obtain an estimation of the most
probable branches of the program. This makes it possible
to reduce the number of traces required to reach the
desired CEP level.

The fault injection campaign has been performed re-
sorting to a custom fault simulation environment devel-
oped at LIRMM [45]. To fairly compare performances,
the fault injector proposed in [45] has been extended to

allow multiprocess simulations. Fault injection experi-
ments have been setup as follows:

1) The overall system, including the microprocessor,
RAM, ROM, etc., is simulated and all activities over
the primary inputs and outputs of the processors
(control signals, data and address buses) are logged
in an external file. A table mapping each instruc-
tion of the target program to its execution time
expressed in terms of clock cycle is also generated.

2) Fault simulation of SEUs in the microprocessor’s
flip-flops is performed while applying the inputs
stored in step 1. An exhaustive fault injection cam-
paign is performed. All possible clock cycles as
well as all possible flip-flops have been considered
as target fault locations. This makes it possible to
reach 100% of confidence in the simulated results.

3) A report is generated starting from the results of
the fault simulations. This report summarizes, for
each instruction, how many faults are detected and
how many are masked.

Fig. 5 compares the performance of the proposed method
compared to fault injection in terms of CPU time. Results
are provided in hours of CPU time using a logarithmic
scale. It is evident how the proposed model outper-
forms fault injection, reducing the computation time
by several orders of magnitude. When considering the
fault injection campaign, the 8088 is the most critical
core in terms of computation time. This is due to the
fact that instructions of the 8088 ISA usually require
multiple clock cycles to be executed, strongly increasing
the simulation time of the synthesized core. For the
proposed method the situation is instead inverted. The
computation time is mainly affected by the number of
instructions composing the program. The OR1200, which
like all RISC processors only implements simple instruc-
tions, requires more instructions to code a program (see
Table 1), therefore making the reliability analysis more
time consuming.

Fig. 6 compares the storage requirement for the two
methods. Storage requirement is reduced compared with
fault injection, especially considering the 8088 whose
fault injection requires saving long simulations in terms
of clock cycles. Overall, the amount of data to store is
quite small and does not represent a critical issue for the
analysis.

To conclude the description of the experimental setup,
Table 1 summarizes the information about the complex-
ity of the different benchmarks in terms of number of
instructions and average number of clock cycles for an
execution (CC). It also reports the number of traces that
have been simulated along with the reached CEP. For
all experiments the trace generation algorithm has been
executed with a TARGET_CEP=0.95

5.3 Results
Fig. 7 proposes six plots that summarize the results of
the reliability analysis performed on the six case studies.
Each plot reports the following three curves:

10

(a) OR1200 (b) 8088

Figure 4. Characterization of a subset of instructions of the (a) OR1200 and (b) 8088 microprocessors.

Figure 5. Comparison of the computation time between the
proposed model and the fault injection analysis. Time is ex-
pressed in hours of CPU and reported using a logarithmic scale.

Table 1
Summary of the experimental setup.

Processor Benchmark Instructions CC Traces CEP

HUFFMAN 285 13,273 ~1,000 0,95

8088 QSORT 112 26,891 ~5,000 0,95

AES 3,163 32,652 ~2,000 0,95

HUFFMAN 453 1,405 ~1,000 0,95

OR1200 QSORT 180 2,301 ~5,000 0,95

AES 5,758 7,606 ~2,000 0,95

• Raw rel. fun.: it is the raw reliability function of
the microprocessor computed according to (1) for
a mission time TM of 6 years and an error rate
λ = 0.019 · 10−6 for both the 8088 and the OR1200

Figure 6. Comparison of the storage requirement between
the proposed model and the fault injection analysis. Results are
expressed in MBytes using a logarithmic scale.

(the specific value of λ characterizes the technology
and does not influence the accuracy of the predic-
tion).

• FI based rel. fun.: it is the reliability function esti-
mated considering the results of the fault injection
as: R(TM) = e−λTM + (1 − e−λ8088TM) · Pmask. This
function takes into account the probability of having
a fault free device at time T M , and the probability of
having a faulty device whose error is masked with
a given probability. The masking probability for the
given benchmark, reported in Table 2, has been
computed according to the fault injection results as
the number of masked faults over the total number
of injected faults.

• Estimated rel. fun.: it is the reliability function esti-
mated with the proposed model considering differ-

11

ent values of TM .

Table 2
Summary of fault injection experiments in terms of injected and

masked SEUs.

Benchmark Benchmark Injected Masked Mask Prob

HUFFMAN 8,627,450 4,296,779 ~0.49

8088 QSORT 17,479,150 8,835,476 ~0.51

AES 21,289,114 7,876,973 ~0.37

HUFFMAN 2,656,855 2,098,916 ~0.79

OR1200 QSORT 3,560,753 2,892,176 ~0.81

AES 14,382,946 11,362,528 ~0.79

Fig. 7 clearly shows that the estimated reliability
function is in general able to approximate the fault
injection based reliability function, thus confirming the
capability of the proposed method to efficiently estimate
the reliability of the target microprocessor considering
the running program. This can be better appreciated
looking at Fig. 8 that reports the error between the esti-
mated reliability function and the fault injection curve.
With a reasonable number of traces this error is always
lower than 7% guaranteeing a good confidence in the
prediction.

Looking at the experimental results, one can notice
that the estimation error increases with the increment
of the mission time. A portion of this error can be
accounted to the approximated characterization of the
microprocessor, and to the impossibility of exploring
the complete set of possible traces and reaching CEP=1.
However, by analyzing the way our model works, the
majority of the error is probably introduced by the
heuristic used to take into account resources dependen-
cies. This introduces a certain error in the estimation that
becomes evident when the the missione time TM , and
consequantly the fault probability of the single resources,
increases.

To conclude, Fig. 9 shows how the proposed method
can be used to perform very fast early design explo-
ration. It reports the estimated reliability function of the
8088 running HUFFMAN with four different fault toler-
ant configurations of the microprocessor: (i) all ALU’s
internal flip-flops are fault-tolerant (ALU-FT), (ii) all
microprocessor’s user registers are fault-tolerant (REG-
FT), (ii) both the ALU and the registers are fault-tolerant
(ALU+REG-FT), (iv) all resources of the microprocessor
are fault-tolerant (ALL-FT). The four configurations can
be easily analyzed by changing the masking probabilities
of the different resources. Even if working with a simple
microprocessor, Fig. 9 clearly demonstrates the potential
of the proposed tool. In this specific case study, intro-
ducing a fault tolerant ALU has a minimal impact on the
overall reliability of the system (8088 vs. ALU-FT), while
protecting the registers provides a major improvement.
Although this is somehow expected, it is interesting to
note that protecting the whole processor provides a min-
imal improvement in the overall reliability with respect

Figure 8. Plot of the error between the fault injection
based reliability function and the estimated reliability func-
tion for the considered benchmarks and microprocessors

to protecting only the registers. It is worth remembering
here that, according to (16), even if all resources of the
processor are fault tolerant the estimated probability
decreases with TM every time the CEP of the generated
traces is not equal to one, confirming the estimation of
Fig. 9.

Figure 9. Early design exploration for the implementation of
fault-tolerant resources. The graphs shows the estimated relia-
bility function of the 8088 running HUFFMANwith four different
fault tolerant configurations of the microprocessor

12

6 FUTURE IMPROVEMENTS
The reliability analysis proposed in Sections 4.1 and 4.2
is clearly limited by the complexity of the analyzed
software, and in particular by the complexity of the
corresponding CFG. This section discusses how this
complexity could be managed by exploiting the intrinsic
hierarchy of a program. Considering the simple CFG
including a call to a function F reported in Fig. 10-a,
the CFG can be clearly partitioned into two portions: (i)
the main program, and (ii) the function F (gray part of
Fig. 10-a).

Figure 10. Control Flow Graph Reduction

The full portion of the graph modelling the func-
tion F can be collapsed into a single node (Node F of
Fig. 10-b), defining a new high level instruction. The
new instruction will be characterized by a set of input
operands including all function parameters, a set of
output values corresponding to the return values of the
function, and finally, a single operator corresponding to
the actual computation performed by the function with
a probability of success computed using equation (15)
by considering the CFG of the function in isolation. The
state of this instruction will contain both local and global
variables of the program, but in general, the active state
of the function will include the function return values
only. This collapsing technique has the potential to re-
duce the complexity of the CFG by analyzing portions
of it in isolation. This will allow the reduction of the
amount and complexity of the traces to analyze, thus
allowing the management of very complex applications.

7 CONCLUSION
This paper proposed a new reliability evaluation
methodology targeting microprocessors running a soft-
ware application. Compared to fault injection, the pro-
posed approach makes it possible to save a considerable
amount of time: fault injection is used only once for
a one-time, reusable, characterization of the micropro-
cessor in terms of probability of success of each of
its instructions in the presence of a soft-error in the
hardware. The overall reliability of the microporocessor

running a given workload is then computed with a
purely probabilistic approach. The same characterization
can then be reused every time the same CPU is used
to build a new system or a new application software
needs to be evaluated. The proposed method makes it
possible to perform early exploration of design alter-
natives giving the possibility of comparing the system
reliability using different processor architectures, even
before the actual system’s design is available. In the
long run, the diffusion of this approach could lead to
the availability of libraries of microprocessor charac-
terizations (freely available or proprietary) that would
allow users to evaluate the reliability of microprocessor-
based systems without the need of neither a single
fault-injection campaign, nor a deep knowledge of the
microprocessor architecture (usually proprietary).

There is still room for several improvements. Simu-
lation and computational constraints do not allow to
manage more than one program at a time, or to consider
the introduction of operating system code. In order to
manage very complex applications, further optimiza-
tions such as the one proposed in Section 6 must be im-
plemented to brakedown the complexity into more man-
agable subproblems. Since the execution time is not part
of the model, in its current form the proposed approach
does not allow the targeting of real-time constraints. In
order to obtain an even more precise reliability estima-
tion, the proposed heuristic for the computation of the
dependency among resources, which represents one of
the most critical elements of the model, can be further
refined.

Experimental results performed on the Intel 8088™
and the OpenRISC1200 microprocessors are very promis-
ing. All the presented experiments show very small
differences in the reliability estimation between this ap-
proach and a traditional fault injection experiment, but
with a huge saving in computation time. The complexity
of the microprocessors used for the experiments is not
very high, but they nevertheless include several of the
most critical functionalities of state-of-the-art devices
(e.g. pipelines, floating-point units, etc...). The results
suggest that there is no reason to believe that the pro-
posed methodology would not be applicable to more
complex microprocessors, provided that the resources to
characterize them are available. It should also be consid-
ered that if the complexity of a modern microprocessor
does not allow its characterization as proposed in this
paper, it would neither allow a reliable fault injection
campaign.

REFERENCES
[1] S. Kumar and A. Aggarwal, “Self-checking instructions: reducing

instruction redundancy for concurrent error detection,” in Pro-
ceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques, 2006, pp. 64–73.

[2] A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors, “Plr:
A software approach to transient fault tolerance for multicore ar-
chitectures,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135–148, April-June 2009.

13

[3] R. Baumann, “Technology scaling trends and accelerated testing
for soft errors in commercial silicon devices,” in Proceedings of the
IEEE International On-Line Testing Symposium, 2003, p. 4.

[4] B. R., “Soft errors in advanced computer systems,” IEEE Design
and Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[5] S. Borkar, “Tackling variability and reliability challenges,” IEEE
Design and Test of Computers, vol. 23, no. 6, p. 520, 2006.

[6] ——, “Thousand core chips: a technology perspective,” in Pro-
ceedings of the 44th annual Design Automation Conference, 2007, pp.
746–749.

[7] P. Dodd, “Physics-based simulation of single-event effects,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
343–357, Sept. 2005.

[8] S. Mitra, M. Zhang, T. Mak, N. Seifert, V. Zia, and K. S. Kim,
“Logic soft errors: a major barrier to robust platform design,” in
IEEE International Test Conference, 2005. Proceedings, Nov. 2005, pp.
10 pp.–696.

[9] E. Normand, “Single event upset at ground level,” IEEE Transac-
tions on Nuclear Science, vol. 43, no. 6, pp. 2742–2750, Dec 1996.

[10] R. Baumann, “Soft errors in commercial semiconductor technol-
ogy: Overview and scaling trends,” in IEEE Reliability Physics
Tutorial Notes, Reliability Fundamentals, Apr. 2002, pp. 121_01.1–
121_01.14.

[11] S. Krishnamohan and N. R. Mahapatra, “Analysis and design of
soft-error hardened latches,” in Proceedings of the 15th ACM Great
Lakes symposium on VLSI, 2005, pp. 328–331.

[12] M. Hosseinabady, P. Lotfi-Kamran, G. Di Natale, S. Di Carlo,
A. Benso, and P. Prinetto, “Single-event upset analysis and pro-
tection in high speed circuits,” in Eleventh IEEE European Test
Symposium, 2006. ETS ’06. IEEE, 21-24 May 2006, pp. 29–34.

[13] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa,
K. Morita, T. Muta, T. Motokurumada, S. Okada, H. Yamashita,
Y. Satsukawa, A. Konmoto, R. Yamashita, and H. Sugiyama, “A
1.3ghz fifth generation sparc64 microprocessor,” in Proceedings of
the 40th annual Design Automation Conference, June 2003, pp. 702–
705.

[14] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “A watchdog
processor to detect data and control flow errors,” in 9th IEEE On-
Line Testing Symposium, 2003. IOLTS 2003. IEEE, 7-9 July 2003,
pp. 144–148.

[15] S. D. Carlo, G. D. Natale, and R. Mariani, “On-line instruction-
checking in pipelined microprocessors,” in Asian Test Symposium,
2008. ATS ’08. 17th, Nov. 2008, pp. 377–382.

[16] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri,
“Control-flow checking via regular expressions,” in 10th Asian Test
Symposium, 2001. Proceedings. IEEE, 12-21 Nov. 2001, pp. 299–303.

[17] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, and
C. Tibaldi, “Promon: a profile monitor of software applications,”
in 8th IEEE International Workshop on Design and Diagnostics of
Electronic Circuits and Systems 2005. DDECS 2005. IEEE, 13-16
April 2005, pp. 81–86.

[18] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Seu effect
analysis in a open-source router via a distributed fault injection
environment,” in Proceedings Design, Automation and Test in Europe,
2001. Conference and Exhibition 2001. IEEE, 13-16 March 2001, pp.
219–223.

[19] A. Benso, S. Di Carlo, G. Di Natale, L. Tagliaferri, and P. Prinetto,
“Validation of a software dependability tool via fault injection
experiments,” in Proceedings Seventh International On-Line Testing
Workshop, 2001. IEEE, 9-11 July 2001, pp. 3–8.

[20] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri,
“Software dependability techniques validated via fault injection
experiments,” in 6th European Conference on Radiation and Its Effects
on Components and Systems, 2001. IEEE, 10-14 Sept. 2001, pp. 269–
274.

[21] M. Omana, G. Papasso, D. Rossi, and C. Metra, “A model for
transient fault propagation in combinatorial logic,” in Proceedings
of the 9th IEEE On-Line Testing Symposium, 2003, pp. 111–115.

[22] A. Maheshwari, I. Koren, and W. Burleson, “Techniques for
transient fault sensitivity analysis and reduction in vlsi circuits,”
IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, p. 597, 2003.

[23] H. Nguyen and Y. Yagil, “A systematic approach to ser estimation
and solutions,” in IEEE International Reliability Physics Symposium
Proceedings, March-April 2003, pp. 60–70.

[24] K. Mohanram and N. Touba, “Partial error masking to reduce soft
error failure rate in logic circuits,” in IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems, 2003, p. 433.

[25] ——, “Cost-effective approach for reducing soft error failure rate
in logic circuits,” in Proceedings of the IEEE International Test
Conference, vol. 1, 2003, pp. 893–901.

[26] M. Sonza Reorda and M. Violante, “Accurate and efficient analysis
of single event transients in vlsi circuits,” in Proceedings of the IEEE
International On-Line Testing Symposium, 2003, p. 101.

[27] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proceedings of the International Conference
on Dependable Systems and Networks, 2002, pp. 389–398.

[28] S. Kim and A. K. Somani, “Soft error sensitivity characterization
for microprocessor dependability enhancement strategy,” in Pro-
ceedings of the International Conference on Dependable Systems and
Networks, 2002, pp. 416–428.

[29] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor,” in Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, 2003, p. 29.

[30] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin,
“Measuring architectural vulnerability factors,” IEEE Micro,
vol. 23, no. 6, pp. 70–75, Nov.-Dec. 2003.

[31] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel, “Characterizing
the effects of transient faults on a high-performance processor
pipeline,” in Proceedings of the International Conference on Depend-
able Systems and Networks, 2004, p. 61.

[32] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Tech-
niques to reduce the soft error rate of a high-performance micro-
processor,” in Proceedings of the 31st annual international symposium
on Computer architecture, 2004, p. 264.

[33] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation
of architectural vulnerability factor for soft errors,” in Proceedings
of the 35th International Symposium on Computer Architecture, 2008,
pp. 341–352.

[34] X. Li, S. Adve, P. Bose, and J. Rivers, “Softarch: an architecture-
level tool for modeling and analyzing soft errors,” in Proceedings.
International Conference on Dependable Systems and Networks, 2005,
pp. 496–505.

[35] V. Sridharan and D. R. Kaeli, “Using pvf traces to accelerate
avf modeling,” in Proceedings of the IEEE Workshop on Silicon
Errors in Logic - System Effects, Stanford, California, March 23-24
2010. [Online]. Available: http://web.me.com/vilas.sridharan/
Vilas_Sridharan/Publications_files/3_Sridharan_P.pdf

[36] T. M. Jones and M. F.P., “Evaluating the effects of compiler opti-
mization on avf,” in Workshop on the Interaction between Compilers
and Computer Architecture (INTERACT), 2008.

[37] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Static
analysis of seu effects on software applications,” in Proceedings
of the International Test Conference, 2002, pp. 500–508.

[38] T. Karnik and P. Hazucha, “Characterization of soft errors caused
by single event upsets in cmos processes,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 2, pp. 128–143, April-
June 2004.

[39] S. Mitra, T. Karnik, N. Seifert, and M. Zhang, “Logic soft errors in
sub-65nm technologies design and cad challenges,” in Proceedings.
42nd Design Automation Conference, June 2005, pp. 2–4.

[40] NIST/SEMATECH. e-handbook of statistical methods. [Online].
Available: http://www.itl.nist.gov/div898/handbook/

[41] J. Larus, “Efficient program tracing,” Computer, vol. 26, no. 5, pp.
52 –61, may 1993.

[42] J. Maebe and B. De Sutter. Diablo. [Online]. Available:
http://diablo.elis.ugent.be/

[43] HT-LAB. Cpu86 cpu86 8088 fpga ip core. [Online]. Available:
http://www.ht-lab.com/freecores/cpu8086/cpu86.html

[44] University of Michigan at Ann Arbor. Mibench version 1.0.
[Online]. Available: http://www.eecs.umich.edu/mibench/

[45] A. Bosio and G. Di Natale, “Lifting: A flexible open-source fault
simulator,” in Proceedings of the 17th IEEE Asian Test Symposium,
2008, pp. 35–40.

14

Alessandro Savino received the MS degree
in computer engineering and the PhD degree in
information technologies from the Politecnico di
Torino, Italy, where he has been a postdoc in the
Department of Control and Computer Engineer-
ing since 2009. His main research topics are
microprocessor test and software-based self-
test.

Stefano Di Carlo received the MS degree in
computer engineering and the PhD degree in
information technologies from the Politecnico di
Torino, Italy, where he has been an assistant pro-
fessor in the Department of Control and Com-
puter Engineering since 2008. His research in-
terests include DFT, BIST, and dependability. He
is a golden core member of the IEEE Computer
Society and a member of the IEEE.

Alfredo Benso received the MS degree in
computer engineering and the PhD degree in
information technologies, both from Politecnico
di Torino, Italy, where he is working as a tenured
associate professor of computer engineering.
His research interests include DFT, BIST, and
dependability. He is also actively involved in
the Computer Society, where he has been a
leading volunteer for several projects. He is a
Computer Society Golden Core Member, and a
senior member of the IEEE.

Gianfranco Politano received the MS degree
in computer engineering and the PhD degree in
information technologies from the Politecnico di
Torino, Italy, where he has been a postdoc in
the Department of Control and Computer En-
gineering since 2011. His main research topics
are system reliability and machine learning tech-
niques. He is a student member of the IEEE and
the IEEE Computer Society.

Giorgio Di Natale received the PhD in Com-
puter Engineering from Politecnico di Torino in
Italy in 2003. Currently he is a researcher for
the National Research Center of France at the
LIRMM laboratory in Montpellier. He has pub-
lished articles in publications spanning diverse
disciplines, including memory testing, fault tol-
erance, and secure chips design and test. He
is a Golden Core member of the IEEE Com-
puter Society and he serves the European Test
Technology Technical Council (eTTTC) of IEEE

Computer Society as vice-chair.

Alberto Bosio received the MS degree in com-
puter engineering and the PhD degree in in-
formation technologies from the Politecnico di
Torino, Italy. He is currently an associate profes-
sor in the Laboratoire d’Informatique, de Robo-
tique et de Microelectronique de Montpellier,
University of Montpellier II/CNRS, Montpellier,
France. His main research activity are method-
ologies and tools to improve the development of
highly dependable systems, at different levels:
for basic digital components, for systems on

chip, up to microprocessor-based systems. He is a member of the IEEE.

15

(a) OR1200 executing AES (b) 8088 executing AES

(c) OR1200 executing QSORT (d) 8088 executing QSORT

(e) OR1200 executing HUFFMAN (f) 8088 executing HUFFMAN

Figure 7. Result of the reliability analysis for the two microprocessors running the three considered benchmarks. Each plot shows
the raw reliability function of the microprocessor (raw rel. fun.), the reliability function estimated through fault injection (FI based rel.
fun.) and the reliability function estimated with the proposed model (Estimated rel. fun.).

