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Microscopically Implicit-Macroscopically Explicit schemes for the

BGK equation ∗

Sandra Pieraccini, Gabriella Puppo †

July 25, 2011

Abstract

In this work a new class of numerical methods for the BGK model of kinetic equations is introduced.

The schemes proposed are implicit with respect to the distribution function, while the macroscopic

moments are evolved explicitly. In this fashion, the stability condition on the time step coincides with

a macroscopic CFL, evaluated using estimated values for the macroscopic velocity and sound speed.

Thus the stability restriction does not depend on the relaxation time and it does not depend on the

microscopic velocity of energetic particles either. With the technique proposed here, the updating of

the distribution function requires the solution of a linear system of equations, even though the BGK

model is highly non linear. Thus the proposed schemes are particularly effective for high or moderate

Mach numbers, where the macroscopic CFL condition is comparable to accuracy requirements. We

show results for schemes of order 1 and 2, and the generalization to higher order is sketched.

Keywords: BGK model, kinetic equations, implicit schemes, hybrid methods.

AMS Subject Classifications: 65M06, 76P05, 82C80.

1 Introduction

This paper presents a new class of numerical schemes for the integration of the BGK model of kinetic
equations. The schemes proposed here evolve implicitly the distribution function, which is the main vari-
able in kinetic models, while computing an explicit evolution of macroscopic variables. Thus the schemes
are explicit in the space time domain, while being implicit in phase space. With this technique, the
Maxwellian equilibrium distribution is evolved explicitly, under a macroscopic CFL stability restriction,
thus eliminating the main non linearity of the BGK model. Next, the evolution of the distribution func-
tion, containing non equilibrium information, is computed implicitly, solving an algebraic linear system
of equations, which turns out to be well conditioned. In this fashion, we remove the stiffness due to small
relaxation times and to high microscopic velocities. In the following, we illustrate the motivation and the
background of the present work.

The BGK model [10] is an approximation to Boltzmann’s equation which is the main tool for modeling
rarefied gas regimes, characterized by a fluid behavior far from equilibrium conditions. In Boltzmann
model, the fluid can be interpreted as a set of particles interacting through collisions. In the rarefied
regime, the Knudsen number Kn, defined as the ratio between the mean free path λ of the particles
and the characteristic dimension of the problem L (Kn = λ/L), is relatively large. Since equilibrium is
approached through collisions, a large Knudsen number indicates a slow relaxation towards equilibrium.
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Traditionally, the main field of application of Boltzmann equation has consisted in rarefied regimes, where
the Knudsen number is large because the mean free path λ ≫ 1, as in the upper layers of the atmosphere.
More recently, rarefied regimes have attracted attention, because kinetic effects cannot be disregarded
when the dimensions of the problem are so small that L ≃ λ, even for a gas in standard conditions, as in
micro and nano devices, see for instance the recent book [30].

The main numerical method to integrate Boltzmann equation is the Direct Simulation Monte Carlo
(DSMC) method, see for instance the classical reference [11]; more recent reviews can be found in [39, 37].
The DSMC scheme is based on the computation of collisions of a large number of sample particles, and
it is exceedingly slow close to hydrodynamic regimes, when the number of collisions becomes very large.
Moreover its results are polluted by stochastic noise and therefore lack smoothness. See [3] for a technique
to reduce stochastic noise in kinetic regimes. On the other hand, in [18] information from the macroscopic
equations is used to damp noise for small Knudsen numbers. Interest has also focused on deterministic
methods, see for instance [38]. A recent review on numerical methods for Boltzmann equation is [40], see
also references therein.

From a numerical point of view, the BGK [10, 13] model approximating Boltzmann equation for
moderate Knudsen numbers is particularly attractive, because the collision integral is simplified. In fact,
only precollisional microscopic velocities are involved, since the postcollisional distribution is assumed
to be Maxwellian. Thus, only a precollisional velocity grid must be defined. It has a strong theoretical
background, see for instance [41]. For the Boltzmann equation, the Chapman-Enskog expansion yields
the system of compressible Euler equations for Kn → 0 and Navier Stokes equations for moderate Kn
[14]. The same asymptotic procedure can be carried out for the BGK equations [47], yielding again the
compressible Euler and the compressible Navier-Stokes equations, although with an incorrect Prandtl
number. If the more sophisticated BGK-ES model [28] is used, the thermal conductivity coefficients can
be recovered, [5, 6]. See also [44] for a recent work on the incompressible Navier Stokes limit of the BGK
model and [48] for numerical applications, translating the BGK kinetic framework in the construction of
reliable numerical schemes for Navier Stokes equations. Finally, Lattice Boltzmann schemes for Navier
Stokes equations are based on a simplified BGK model, [45].

Extensive numerical computations have tested the potential of the BGK model to approximate Boltz-
mann solutions for moderate Kn and Euler solutions for Kn ≪ 1, see [16, 5] and [50]. The BGK model
has also been used to evaluate several flows of physical interest, as gas mixtures, [4], reacting gas mixtures
[36, 12], or phase change in kinetic regimes, [25, 8]. We also mention an application of BGK-like ideas to
the development of models for the behaviour of fluids in nanostructures [27].

The importance of the BGK model in applications has prompted a parallel development of numerical
methods tailored to the particular structure of BGK equations. We start mentioning the first order
numerical scheme proposed in [16], and the linear second order scheme in [7, 8]. We also mention the
third order in space scheme appearing in [50]. The schemes considered so far are not exactly conservative.
This issue has been addressed in [34] and [35]. Exact conservation is obtained computing equilibrium
at the discrete level. This construction requires the solution of a non linear system of 5 equations for
the BGK model and 10 equations for the ES-BGK model at each grid point in space, even for explicit
integration in time. A more recent method is proposed in [49].

All schemes described so far are either explicit or fully implicit. In the first case, the time step can be
severely restricted by a small collision time, close to the hydrodynamic regime. In the second case, the
fully implicit BGK equations result in a highly non linear large system of equations.

In [42] we proposed a high order scheme in both space and time to solve the BGK equations, based
on an Implicit-Explicit Runge-Kutta scheme, see also [43]. In particular, the convective term is treated
explicitly, unlike most numerical schemes for the BGK model in the stiff regime, while the source term
is integrated implicitly, thus resolving the stiffness in the hydrodynamic regime. In the case of the BGK
model, the implicit treatment of the collision term is very simple, because the local Maxwellian can be
evaluated explicitly, see also [16]. This technique has been extended to the ES-BGK model in [24]. The
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main drawback of IMEX schemes for the BGK model is the fact that the stability condition depends on
the fastest microscopic velocities of the grid, the high energy modes of [17]. This paper addresses also
this convective stability restriction. The advantage of such IMEX schemes for the BGK model is that
they can be proven to satisfy the AP (Asymptotic preserving) property defined in [29].

In the methods we propose here, we evolve explicitly in time the macroscopic variables, with a CFL
stability restriction linked to the macroscopic velocity and local sound speed. The fluxes of the macro-
scopic equations are kinetic, but the fast microscopic modes are weighted with the corresponding values
of the distribution function, and therefore their influence is limited, as in [17]. This allows to obtain the
local Maxwellian explicitly, thus removing the non linearity of the BGK model. Once the Maxwellian
is known, the BGK equation is linear in the distribution function f and can be integrated implicitly in
time easily, at least for a first order scheme. At second order, even though the BGK equation is linear in
f , the numerical flux functions are non linear to prevent the onset of spurious oscillations, see [33]. Here
we describe a technique to obtain semi-linear numerical fluxes, which avoids the need to solve non linear
systems of equations, as it occurs in current non oscillatory implicit schemes for conservation laws, see
[22]. See also [20] for splitting fast and slow modes to address the stiffness of weakly compressible flows.

In many flows of physical interest, kinetic and hydrodynamic regimes co-exist, and recent multiscale
approaches seek to solve the whole problem with a domain decomposition technique, where a hydro-
dynamic solver is used in equilibrium regions, while a kinetic solver is switched on in non equilibrium
regimes. In [19] and [21] the kinetic model is given by the BGK equations, while the scheme for the
hydrodynamic region can be any Euler solver. In [2] the ES-BGK model is used as an interface between
equilibrium and highly non equilibrium regions, where the full Boltzmann equation is solved. In these
cases, the present MiMe schemes provide the correct match for the hydrodynamic solver, since they per-
mit to use the same time step all over the computational domain. Moreover, the BGK model can be used
to remove the stiffness of the Boltzmann collision integral for small Knudsen numbers, [23]. In this case
too MiMe schemes could provide a useful computational tool.

Finally, our MiMe schemes present similarities with the Micro-Macro approach of [32]. In that work
the kinetic BGK system is split into an equilibrium (Maxwellian) and a non equilibrium equation, through
the introduction of a projection operator on equilibrium and non equilibrium contributions. In our case,
this projection is not needed, because the whole kinetic BGK equation is evolved, rather than computing
and evolving the non equilibrium part. This permits to match easily the collisionless limit of high Knudsen
numbers.

The paper is organized as follows. In Section 2 the BGK model is reviewed. The new MiMe schemes
are described in Section 3, with details for the first and the second order case. We discuss the asymp-
totic behavior of MiMe schemes and of the IMEX scheme of [42] in §4, presenting also the space-time
discretization of the schemes resulting for small Knudsen numbers, and discussing the AP property of
the time discretization. Numerical results obtained with MiMe schemes are presented in Section 5, with
a discussion on the entropic behavior of the schemes and the condition number of the implicit system.
Finally, we end with a summary and perspectives for future work.

2 The BGK model

In this section, we introduce the equations defining the BGK model, recalling their main properties. For
simplicity, we only consider the classical BGK model introduced in [10], using the notation of [16] and
[34]. The scheme can be easily extended to more general BGK models.

We consider the initial value problem:

∂f

∂t
(x, v, t) + v · ∇xf(x, v, t) =

1

τ
(Mf (x, v, t) − f(x, v, t)) t ≥ 0, x ∈ R

d, v ∈ R
N (1)

f(x, v, 0) = f0(x, v) ≥ 0 given initial data.
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We consider a monoatomic gas, which, in the general case, gives d = 3 and N = 3. In the 1D case, d = 1,
N = 3 and ∇x = (∂x1

, 0, 0). In (1) Mf is the Maxwellian obtained from the moments of f , namely:

Mf (x, v, t) =
ρ(x, t)

(2πRT (x, t))N/2
exp

(
−‖v − u(x, t)‖2

2RT (x, t)

)
.

The quantities ρ, u and T are respectively the macroscopic density, velocity and temperature of the gas,
and they are obtained from the moments of f , defined below. Given any function g : R

N 7→ R, let 〈g〉 be
the quantity

∫
RN g(v) dv; if g : R

N 7→ R
p, p > 1, we still denote by 〈g〉 ∈ R

p the vector whose components
are given by 〈gi〉. The moments of f are defined by




ρ
m
E



 (x, t) = 〈f(x, v, t)φ(v)〉 , with φ(v) =




1
v

1
2‖v‖2



 . (2)

Here m is momentum, so that the macroscopic velocity is simply u = m/ρ, while E is the total energy,
and the temperature is obtained from the internal energy e, through the relations: ρe = E− 1

2ρ||u||2, e =
NRT/2. In many applications, N = 3 which corresponds to a monoatomic gas with three translational
degrees of freedom. In our tests, for simplicity, we will choose instead N = 1, as in [16]. This corresponds
to a gas with a single degree of freedom, so that e = RT/2. The only difference with respect to a physical
monoatomic gas appears in this rescaling of the temperature, which results, at equilibrium, in a γ-law
gas, with γ = 3, where γ is the ratio of the specific heats. With this choice, all velocity integrals will be
evaluated in R instead of R

3. Another approach to reduce the computational complexity of the velocity
integrals, while maintaining the physical properties of the gas, has been introduced in [15] and used,
among others, in [8] and [50].

The parameter τ is the relaxation time, and it is a macroscopic quantity, i.e. τ = τ(x, t). The collision
frequency is τ−1. In [8], τ−1 = Acρ, where Ac is a given constant. In [34] the relaxation time is given by
τ−1 = CρT 1−ω where ω is the exponent of the viscosity law of the gas (for example, for argon one has
ω = 0.81).

In our tests, we will consider the adimensional case, for which:

τ−1 =
C

Kn
, (3)

and we will take C = 1 as in [16]. However, we will write the scheme allowing for a dependence of τ on
macroscopic variables.

The first macroscopic moments of f are conserved, in the sense that:

∂t 〈f〉 + ∇x · 〈fv〉 = 0, (4a)

∂t 〈fv〉 + ∇x · 〈v ⊗ vf〉 = 0, (4b)

∂t

〈
1

2
‖v‖2f

〉
+ ∇x ·

〈
1

2
‖v‖2vf

〉
= 0. (4c)

Moreover, it is well known that for the BGK model an entropy principle holds, namely:

∂t 〈f log f〉 + ∇x 〈vf log f〉 ≤ 0, ∀f ≥ 0, (5)

the equality holding only for f = Mf .
A numerical scheme for (1) should be able not only to yield an accurate solution to equation (1), but

also to satisfy the conservation equations and the entropy principle in some discretized form. Moreover, it
is important that the scheme preserves the asymptotic limits of the BGK model. For τ → 0, f → Mf , and
the conservation laws (4) decay to the closed system of the compressible Euler equations of gas-dynamics.
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For small values of τ , non equilibrium effects are still present, but a Chapman Enskog expansion shows
that the asymptotic limit in this case coincides with the Compressible Navier-Stokes (CNS) equations,
although the standard BGK model does not provide the correct Prandtl number. The correct asymptotic
ratio between viscous and thermal effects is recovered by the ES-BGK model, see [5]. We will show that
the scheme we propose naturally preserves the Euler limit of the BGK model and is consistent with the
CNS asymptotics in §4, see also [9].

The BGK equation (1) is stiff if the relaxation time τ is small. Thus an explicit time integration
of (1) would require very small time steps close to the hydrodynamic limit. On the other hand, the
equation is highly non linear, so that an implicit solver might be computationally expensive. In [42] we
have proposed an effective way to circumvent the stiffness of the collision term computing the Maxwellian
explicitly and thus reducing the source term in (1) to a linear operator on f that can therefore be easily
treated implicitly. This result has been obtained exploiting the properties of Implicit-Explicit (IMEX)
schemes [31]. The application of IMEX schemes to the BGK equation is quite natural if the main stiffness
of the problem is due to the relaxation term. This is the case of small relaxation times, when the flow is
close to the hydrodynamic regime.

Another source of stiffness in (1) is due to the presence of high velocity modes in the convective term.
The present work wishes to address both the convective and the relaxation stiffness of (1), without loosing
the computational efficiency of [42]. The schemes outlined in [42] derive their time step restriction from
the explicit part of the IMEX pair. Since the explicit part solves a linear convection problem, the time
step restriction is given by the fastest modes in the convective terms, and these are given by the fastest
microscopic velocity in the velocity grid. On the other hand, the fastest modes correspond to small values
for f , thus it is quite natural to suppose that the macroscopic flow will not depend strongly on the fast
velocity modes, see also [17]. For this reason, we would like to have a less severe CFL restriction, linked
only to the macroscopic scales of the BGK equation. Furthermore, we want to keep the simplicity of the
BGK-IMEX schemes [42] in the evaluation of the Maxwellian. More precisely, we want to build schemes
which are AP (Asymptotic Preserving) in the sense of [29], i.e. schemes which are linear in the stiff
non-linear terms, and that satisfy the correct asymptotics for small Knudsen numbers.

3 MiMe implicit schemes

The system (4) forms a non closed system of conservation laws, because the fluxes cannot be written as
functions of the conserved variables. For the simple case of N = 1 (one degree of freedom in velocity
space), the conservation laws can be written as:

∂tρ + ∇x · m = 0, (6a)

∂tm + ∇x · (2E) = 0, (6b)

∂tE + ∇x ·
〈

1

2
‖v‖2vf

〉
= 0. (6c)

These equations are not closed, because the energy flux depends on the unknown distribution f . For the
case N > 1, even the momentum flux cannot be written as a function of conserved variables, but still
the structure of the system is similar. Note that the dependence on the high velocity modes is weighted
by the distribution f , which decays fast for large values of |v|. Thus we expect that the evolution of the
macroscopic variables depends only weakly on the fast velocity modes. We rewrite the system above as:

∂tU + ∇xF = 0, U =




ρ
m
E


 , F = F(U, q) =




m
2E
q


 , with q =

〈
1

2
‖v‖2vf

〉
. (7)
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Since U and f are known at the beginning of each time step, we can integrate (7) using any available
scheme for conservation laws, as long as we are able to estimate a stability condition and write a consistent
numerical flux.

To achieve this goal, we note that the eigenvalues of the Jacobian of this system of equations will
converge to the eigenvalues of the Euler equation, as τ → 0. To quantify this statement, we write f as a
micro-macro decomposition, namely f = Mf + εg, where Mf is as usual the Maxwellian corresponding
to f , ε is a parameter of the same size of the Knudsen number, measuring the size of the relaxation time,
and thus εg is the non equilibrium correction to Mf , which is not necessarily small, see for instance [9].
Introducing the peculiar velocity c, such that v = u+ c, the last component of the flux can be written as:

〈
1

2
‖v‖2vf

〉
= uE + ρuRT +

〈
1

2
‖c‖2cf

〉
= uE + ρuRT + ε

〈
1

2
‖c‖2cg

〉
,

since the third order moment of the Maxwellian is zero. It follows that the flux can be written as:

F =




m
2E

uE + ρuRT


+ ε




0
0〈

1
2‖c‖2cg

〉


 = JF ·U + ε




0
0〈

1
2‖c‖2cg

〉


 (8)

where JF is the Jacobian of F computed with respect to the variables U only. Thus the eigenvalues of
the Jacobian can be computed as in the compressible Euler equations, within an approximation of order
ε, as:

λ = u, u ± C, where C =
√

γRT

is the local speed of sound, where in our simplified case γ = 3. Thus the approximation to the macroscopic
CFL will be given by α = maxx(|u| + C), and the stabilization of the numerical fluxes will rely on the
estimate of the Jacobian of F, based on JF.

To construct a numerical flux function for equation (7), we need details on the solution of the Riemann
problem for our kinetic flux function. A simpler approach is to use an approximate Riemann solver, which
allows to construct a numerical flux, without the need to actually solve the Riemann problem. Some
simple choices for the numerical flux will be given below.

Once the macroscopic equation has been integrated, the updated values of the moments are available.
With these, we can compute the Maxwellian at the new time level. Note that in this fashion, the
Maxwellian at the time tn+1 is computed with the macroscopic CFL, without solving non linear equations.

We now turn to the equation for f . We consider a generic implicit numerical scheme, such that the
evolution of f will be computed as:

fn+1 = H∆t(f
n, Mn

f , fn+1, Mn+1
f ). (9)

We note that we have already computed Mn+1
f . For a first order scheme, this is enough to provide

a linear dependence of H∆t on fn+1. For a higher order scheme, H∆t can depend non-linearly on fn+1,
but more details will follow. For the time being, we are ready to outline the structure of MiMe schemes
for the BGK equation:

1. Solve the macroscopic equation (7) with any explicit Runge-Kutta scheme, using the stability
estimate α for the CFL. Obtain the macroscopic moments U at the new time tn+1.

2. Compute the updated Maxwellian Mn+1
f , using the new moments Un+1.

3. Solve for fn+1 the time-discretized equation for f , (9).

Note that, unlike [9], we solve the macroscopic equation and the full kinetic equation for f . This avoids
the need to compute the linearized collision operator and its projections.
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Before describing the complete structure of the schemes we propose, we first define the computational
grid. We consider a velocity grid defined on Gauss Hermite nodes, centered around typical values of the
macroscopic variables appearing in the initial condition. In this case, the grid is non uniform, and the
quadrature for the velocity integrals is a Gaussian quadrature; for the details, see [1]. We will denote
by vk, k = 1, . . . , Nv the generic velocity node of the velocity grid. The discretization in space is based
on a uniform discretization, with mesh spacing h. We will not address the difficult problem of boundary
conditions in this work, but we will consider compactly supported initial data, with free flow boundary
conditions. The generic node in space will be labelled as xj , j = 1, . . . , Nx. The grid value of a macroscopic
variable will be denoted as U(xj , t

n) = Un
j , while the function f in phase space evaluated at a grid node

will be written as f(xj , vk, tn) = fn
kj . The moments of f computed with the velocity quadrature rule will

be written as:
〈φf〉Nv

(x, t) =
∑

k

wkφ(vk)f(x, vk, t),

where vk and wk are the nodes and weights of the quadrature rule. Finally, λ = ∆t/h will denote the
mesh ratio.

First order MiMe scheme
We start from the first order MiMe scheme. The integration of (7) is carried out with the explicit Euler
scheme while the space discretization is written in conservation form. Thus:

Un+1
j = Un

j − λ
[
Fj+1/2 −Fj−1/2

]
, (10)

where Fj+1/2 is the numerical flux function, which is a function of the values of the solution across the
interface Fj+1/2 = F(Uj+1, qj+1;Uj , qj). With this formulation, the macroscopic moments computed in
(10) are exactly conserved, because they are computed with a conservative scheme. So, provided that
the numerical solution converges under grid refinement, then the limit solution is a weak solution of (7)
by the Lax-Wendroff theorem.

The simplest numerical flux function is based on Lax Friedrichs flux splitting:

Fj+1/2 = F(Uj+1, qj+1;Uj , qj) = F+(Uj , qj) + F−(Uj+1, qj+1). (11)

The functions F+ and F− are estimates of the positive and negative parts of the flux and are given by:

F+(U, q) =
1

2
(F(U, q) + αU) , F−(U, q) =

1

2
(F(U, q) − αU) . (12)

In this fashion, the simple estimate α for the local CFL will also provide the means to write a numerical
flux function for the kinetic flux. Here, α can be computed as a function of x and t as α(x, t) =
|u(x, t)| + C(x, t), giving the Local Lax Friedrichs flux splitting, or we can choose a global value for α as
α(t) = maxx(|u(x, t)| + C(x, t)), yielding the Global Lax Friedrichs flux splitting, which will be used in
most of our tests. Lax Friedrichs numerical flux is very robust and simple, but it is quite diffusive.

In this work we also considered the less diffusive HLL flux, see for instance [46]. In this case:

F(Uj+1, qj+1;Uj , qj) =






F(Uj , qj) s−j+1/2 > 0
s+

j+1/2
F(Uj ,qj)−s−

j+1/2
F(Uj+1,qj+1)

s+

j+1/2
−s−

j+1/2

− s+

j+1/2
s−

j+1/2

s+

j+1/2
−s−

j+1/2

(Uj+1 − Uj) s−j+1/2 < 0 < s+
j+1/2

F(Uj+1, qj+1) s+
j+1/2 < 0

(13)

where s+
j+1/2 and s−j+1/2 are estimates of the local characteristic speeds, namely:

s+
j+1/2 = max(uj + Cj , uj+1 + Cj+1) s−j+1/2 = min(uj − Cj , uj+1 − Cj+1).
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The literature on numerical flux functions is huge [46], and many other choices are possible. Another
interesting possibility is the kinetic flux splitting used, among others, in [9] or [48].

Once the updated macroscopic moments are available, we compute a discrete Maxwellian as:

(MU )n+1
kj = M(Un+1)(xj , vk, tn+1) =

ρn+1
j

(2πRT n+1
j )N/2

exp

(
−
‖vk − un+1

j ‖2

2RT n+1
j

)
. (14)

This is an approximate Maxwellian in the sense that 〈φMU 〉Nv
≃ U, with an error depending on the

accuracy of the quadrature rule. To achieve the equality sign, it is necessary to compute an exact
discrete Maxwellian as in [34]. However, in general the difference between the approximate and the exact
discrete Maxwellians are much below the truncation error of the scheme, expecially when the moments are
computed with Gauss-Hermite quadrature, see also [1] and Tables 4 and 5. From the updated moments,
we also compute the new relaxation time τn+1

j = τ(Un+1
j ).

We can now integrate the equation for f . We obtain a system of Nv partial differential equations.
Note that only the equations corresponding to high velocity nodes, i.e. values of vk such that |vk| > α
need to be integrated implicitly. Accordingly, let θk = 0 if |vk| ≤ α while θk = 1 if |vk| > α. The discrete
(in time and velocity) equation for f is:

fn+1
k (x) = fn

k (x) − ∆tθk∂x(vkfn+1
k ) − ∆t(1 − θk)∂x(vkfn

k ) +
∆t

τn+1
j (x)

(Mn+1
k (x) − fn+1

k (x)). (15)

Finally, the space discretization is given by first order upwinding. Let v+
k = max(vk, 0) and v−k =

min(vk, 0). Then the first order scheme for f takes the form:

fn+1
kj = fn

kj − λθk

(
v+

k (fn+1
kj − fn+1

k,j−1) + v−k (fn+1
k,j+1 − fn+1

kj )
)

+

−λ(1 − θk)
(
v+

k (fn
kj − fn

k,j−1) + v−k (fn
k,j+1 − fn

kj)
)

+
∆t

τn+1
j

(Mn+1
kj − fn+1

kj ).

The implicit scheme is linear in fn+1 and can be rewritten as:

(
1 +

∆t

τn+1
j

+ λθk|vk|
)

fn+1
kj − λθkv+

k fn+1
k,j−1 + λθkv−k fn+1

k,j+1 = (16)

fn
kj − λ(1 − θk)

(
v+

k (fn
kj − fn

k,j−1) + v−k (fn
k,j+1 − fn

kj)
)

+
∆t

τn+1
j

Mn+1
kj

Thus the coefficient matrix of the algebraic system is tridiagonal. Its structure will be more complex in
the general N > 1 case, but it still enjoys a high degree of sparsity. We will see in the numerical results
section that the condition number of the matrix arising from system (16) is small, so that an iterative
linear solver will converge in a few iterations. Note also that the implicit equations will be solved only
for the fast microscopic velocities, for the first order scheme.

Second order MiMe scheme
To extend these ideas to higher order schemes, we will illustrate mainly the second order case, where
most of the difficulties already appear. For simplicity, we will suppose that the time integration will be
implicit for all velocity nodes. The integration of the macroscopic equation (7) will be carried out with
a ν stages explicit Runge-Kutta scheme:

Un+1
j = Un

j − λ

ν∑

i=1

bi

[
F (i)

j+1/2 −F (i)
j−1/2

]
, (17)

8



where the numerical fluxes at the i-th stage require the predictor steps:

U
(i)
j = Un

j − λ
i−1∑

l=1

ail

[
F (l)

j+1/2 −F (l)
j−1/2

]
, (18)

where the coefficients bi, i = 1, . . . , ν and ai,l, i, l = 1, . . . , ν define the ν stages of the Runge-Kutta scheme.
Here we are using an explicit Runge-Kutta scheme, so ai,l = 0 for l ≥ i. The evaluation of the numerical
flux F at the i-th stage requires knowledge of the distribution function f (i), which is not available. It is
well known, see [26], that each explicit Runge-Kutta scheme can be written as a combination of explicit
Euler steps:

U
(1)
j = Un

j

U
(i+1)
j =

i∑

l=1

αi,l

(
U

(l)
j + ∆t

βi,l

αi,l

1

h

[
F (l)

j−1/2 −F (l)
j+1/2

])
, i = 1, . . . , ν (19)

Un+1
j = U

(ν+1)
j ,

where the coefficients αi,l ≥ 0 and βi,l ≥ 0 can be computed from the coefficients bi and ai,l of the usual
Butcher tableaux. Clearly, for consistency,

∑
l αi,l = 1, so (19) shows that each U(i) is obtained as a

convex combination of i forward Euler steps. It is the particular combination of these Euler steps that
yields the desired accuracy, see [26]. In our case, we are interested in a second order scheme. In particular
we choose the TVD second order Heun scheme which can be written in the form (19) as follows:

U
(1)
j = Un

j

U
(2)
j = U

(1)
j + ∆t

1

h

[
F (1)

j−1/2 −F (1)
j+1/2

]
(20)

Un+1
j = U

(3)
j =

1

2
U

(1)
j +

1

2

[
U

(2)
j + ∆t

1

h

[
F (2)

j−1/2 −F (2)
j+1/2

]]
.

To compute U(2) we need only information available from the previous time step. Note that U(2) is
obtained evolving U(1) for a single Forward Euler step with time step ∆t. Then from U(2) we compute
M (2) = M(U(2)), and we evaluate f (2) with Backward Euler as:

f (2) − fn

∆t
= −v∂xf (2) +

1

τ

(
M (2) − f (2)

)
.

Now f (2) is available at the same time level of U(2). With this information, the numerical kinetic
fluxes F (2) can be computed giving the macroscopic moments Un+1 through the last equation of (20),
completing the update of macroscopic variables.

The space discretization is again based on the construction of a numerical flux except that the nu-
merical flux is now applied to reconstructed values at the cell edges, namely:

Fj+1/2 = F(U+
j+1/2, q

+
j+1/2;U

−

j+1/2, q
−

j+1/2). (21)

where U+
j+1/2 and U−

j+1/2 are the solution values extrapolated to the cell edges, with, for instance, a

piecewise polynomial reconstruction, matching the accuracy of the Runge-Kutta scheme. For second
order accuracy, we use a piecewise linear reconstruction:

U+
j+1/2 = Uj +

1

2
σj U−

j+1/2 = Uj −
1

2
σj , (22)
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where σj is a non oscillatory reconstructed slope, for instance:

σj = MM (Uj+1 − Uj ,Uj − Uj−1) ,

where MM denotes the MinMod function, see [33]. The same reconstruction is applied on q. This
piecewise linear reconstruction is second order accurate on smooth flows and away from extrema, where
the limiter built in the MinMod function degrades accuracy to first order. This mechanism prevents the
onset of spurious oscillations, which might develop with shock formation, see again [33]. In conservation
laws, one would reconstruct only conserved variables, namely, density, momentum and total energy. Here
however these variables are not enough to define the flux, and a new macroscopic variable needs to be
reconstructed, in this case, the heat flux.

To update the distribution function, we distinguish between the stage values of f which must be
computed during the advection of macroscopic variables, and the actual update of f after the new
Maxwellian has been computed, at the end of the integration of the macroscopic conserved variables.
Again, we consider the second order case.

The stage values are computed with the implicit Euler scheme. This scheme is highly diffusive and
limiting may not be necessary. When this is the case, as for the smooth test used for the convergence
history of the scheme, the slopes are obtained with central differences:

σj =
fj+1 − fj−1

2
.

Then, using second order implicit upwinding, and recalling that v+
k − v−k = |vk| and v+

k + v−k = vk, we
find the linear system:

(
1 +

3

4
λ|vk| +

∆t

τ
(2)
j

)
f

(2)
kj + λ

(
v−k +

1

4
vk

)
f

(2)
k,j+1 − λ

(
v+

k +
1

4
vk

)
f

(2)
k,j−1 (23)

+
λ

4
v+

k f
(2)
k,j−2 −

λ

4
v−k f

(2)
k,j+2 = fn

kj + ∆t
(MU )

(2)
kj

τ
(2)
j

.

Thus f (2) is first order accurate in time and second order accurate in space. Note that the coefficient
matrix is now pentadiagonal: as usual, when accuracy increases, the sparsity of the system decreases.
This approach however may lead to spurious oscillations when discontinuities in space arise. To prevent
this problem slopes should be limited; however, the use of slope limiting introduces nasty non linearities
which require a non linear solver for the resulting system of equations, see [22]. To avoid this problem,
we first estimate f (2) with f̃ (2) computed with a first order accurate in space upwind scheme. Thus, f̃ (2)

is non oscillatory but it is only first order accurate. We use this estimate to compute the stencil used
by the MinMod function applied to f̃ (2). In this fashion we obtain a semi-linear recipe to compute the
limited slopes. More precisely, let f be the unknown function for which the limited slopes are needed,
and let f̃ be the predicted value of f which is used to compute the stencil. We construct the limited
slopes as follows:

σj(f, f̃) =






0 if sj = (f̃j+1 − f̃j)(f̃j − f̃j−1) ≤ 0

fj − fj−1 if sj > 0 and |f̃j+1 − f̃j| > |f̃j − f̃j−1|
fj+1 − fj if sj > 0 and |f̃j+1 − f̃j| < |f̃j − f̃j−1|.

(24)

Note that σ(f, f̃) is linear in f and it is a first order accurate approximation of the slope of f away from
extrema.
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We introduce the space difference operator Lh(f, σ(f, f̃ )) which approximates hv · ∇xf :

Lh(f, σ(f, f̃ ))
∣∣∣
kj

= |vk|fkj − v+
k fk,j−1 + v−k fk,j+1 +

1

2

(
vkσkj − v+

k σk,j−1 − v−k σk,j+1

)
. (25)

We are now ready to compute the stage value f (2) which is given by the linear system:

(
1 +

∆t

τ (2)

)
f (2) + λLh

(
f (2), σ(f (2), f̃ (2))

)
= fn +

∆t

τ (2)
M

(2)
U . (26)

This completes the second order space-time discretization of the scheme for macroscopic variables.
Next, the update values fn+1 are computed with Crank-Nicolson scheme, which has a small amplitude

error even at high CFL’s. Since this scheme has no dissipation, limiting the slopes is recommended, and
the limited slopes are computed via (24) using the already available f (2) as predictor, namely σ =
σ(fn+1, f (2)). Therefore,

(
1 +

∆t

2τn+1

)
fn+1 +

λ

2
Lh

(
fn+1, σ(fn+1, f (2))

)
=

(
1 +

∆t

2τn

)
fn − λ

2
Lh (fn, σ(fn, fn) )

+
∆t

2

(
1

τn+1
Mn+1

U +
1

τn
Mn

U

)
. (27)

In this fashion, we still obtain a linear system of equations for the grid values of fn+1.

Remark 3.1 (Limiting) Limiting is necessary for the piecewise linear reconstruction of macroscopic
moments in the second order scheme, while integrating the macroscopic equations. If limiters are omitted,
spurious oscillations do develop in the presence of singularities in space in the solution. In our tests,
limiting is not crucial in the evaluation of the slopes of the distribution function f in the Crank Nicolson
update of fn+1, although this might be problem dependent, while in our experience limiting is not
necessary in the Backward Euler step to compute f (2), because the implicit Euler scheme provides enough
dissipation to contrast the onset of oscillations.

Remark 3.2 (Higher order) To achieve high order, we must match the order of the space and time
discretizations. High order explicit Runge-Kutta can be used for macroscopic variables, in the form (19),
finding the corresponding values of f (l) through Backward Euler integration with suitable time steps
depending on the coefficients of the scheme. The numerical kinetic fluxes F (l) will be computed using
high order non oscillatory space reconstructions, such as WENO or ENO. Finally fn+1 can be computed
through a BDF or a Diagonally Implicit Runge-Kutta scheme.

Realigning moments
In regimes close to equilibrium, when τ ≪ 1, the microscopic equation for f reduces to a relaxation
to the local Maxwellian. Thus, the macroscopic equations become a closed system of equations for the
moments U. When we are far away from equilibrium the moments U do depend on f and not only on
the Maxwellian. However, in the schemes described so far we have

Un+1 = U(fn,Un).

To force dependence of Un+1 on fn+1, we correct the moments obtained by the macroscopic equations
by computing the moments of the new distribution function. Namely:

Un+1 =
〈
fn+1φ

〉
. (28)
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This operation will be called moments realignment and it enforces a stronger coupling between f and its
moments. Since this operation is necessary only away from equilibrium, we perform moments realignment
following an adaptive strategy. We define the local Knudsen number as in [11]:

Knloc(x, t) =
λ

L(x, t)
, L(x, t) =

ρ

ρx
(x, t) (29)

and we set
K(t) = max

x
Knloc(x, t). (30)

When K(t) is larger than a given tolerance TOL, moments realignment is performed. A local in space
adaptive strategy would introduce spurious singularities in the moments and therefore it might produce
small oscillations.

We end this section reporting a sketch of the two algorithms just described.

Algorithm 1 MiMe1

1. Given f0, compute U0 using quadrature, τ0 and the Maxwellian M0
f .

2. For n = 0, 1, ...

• Compute qn =
〈

1
2‖v‖2vfn

〉

• Compute Un+1 integrating (7) with (10)

• Update the relaxation time τn+1 and the Maxwellian Mn+1
f .

• Compute fn+1 via (16)

• If needed, realign moments: Un+1 =
〈
fn+1φ

〉
.
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Algorithm 2 MiMe2

1. Given f0, compute U0 using quadrature, τ0 and the Maxwellian M0
f .

2. For n = 0, 1, ...

• Compute qn =
〈

1
2‖v‖2vfn

〉

• Compute Un+1 integrating (7) with (20) (Heun RK scheme):

– Compute boundary extrapolated data U(1),+ and U(1),−, q(1),+ and q(1),− with
(22)

– Compute new stage values U(2) via (20) with F (1) =
F(U(1),+, q(1),+;U(1),−, q(1),−) as in (21)

– Update the relaxation time τ (2) and the Maxwellian M
(2)
f

– Predict the stage value f (2) with the implicit Euler scheme and second order
implicit upwinding (23) or (26)

– Compute q(2) =
〈

1
2‖v‖2vf (2)

〉

– Compute boundary extrapolated data U(2),+ and U(2),−, q(2),+ and q(2),− with
(22)

– Compute the new moments Un+1
j via (20)

• Update the relaxation time τn+1 and the Maxwellian Mn+1
f .

• Compute fn+1 via (27)

• If needed, realign moments: Un+1 =
〈
fn+1φ

〉

4 BGK schemes and Navier-Stokes asymptotics

In this section we wish to prove that the schemes proposed in this work become schemes for the Com-
pressible Euler equation for Kn → 0, while they are consistent with the Compressible Navier Stokes
(CNS) equations for small Kn. The key aspect here is the time discretization, since it is at this level
that the macroscopic and the microscopic equations are coupled. Thus, for simplicity, we will compute
the asymptotics for the semidiscrete in time version of the scheme. More precisely we will compute the
asymptotic behavior for the first order in time IMEX scheme of [42], since this was not considered in our
previous work, and for the first order in time MiMe scheme, with and without moments realignement.
For completeness, we will also compute the space discretization the scheme reduces to for small Knudsen
numbers, and the behavior for time steps much larger that the relaxation time, when the initial layer is
not resolved.

As in [9], we consider a constant relaxation time, and we write instead of τ , ετ , where ε = Kn is the
small parameter. In this section, for simplicity, we will take the gas constant R = 1. With this notation,
the CNS equations corresponding to one degree of freedom in the microscopic velocity are:

∂t




ρ
m
E


+ ∂x




m
2E

m
ρ (E + ρT )


 = ε∂x




0
0

3
2τρT∂xT


 (31)
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BGK-IMEX scheme
The first order in time semidiscrete BGK-IMEX scheme of [42] can be written as:

fn+1 = fn − ∆tv∂xf (1) +
∆t

ετ

(
M (1) − f (1)

)
(32)

f (1) = fn +
∆t

ετ

(
M (1) − f (1)

)
. (33)

From this, we find that the evolution equation for the macroscopic moments is obtained computing
moments of (32), which gives:

Un+1 = Un − ∆t
〈
vφ∂xf (1)

〉
. (34)

We define the kinetic correction g(1) to the Maxwellian M (1) as: f (1) = M (1) + εg(1). Note that〈
φ(v)g(1)

〉
= 0. Substituting this expression in (32), we find the first order Chapman-Enskog correc-

tion to the Maxwellian, namely:

g(1) = − τ

∆t

(
Mn+1 − Mn

)
− τv∂xMn + O(ε) (35)

since M (1) = Mn for this scheme, and the macroscopic equation (34) becomes:

Un+1 = Un − ∆t 〈vφ∂xMn〉 + ετ∆t

(
∂x

〈
vφ

Mn+1 − Mn

∆t

〉
+ ∂2

xx

〈
v2φMn

〉)
+ O(ε)2. (36)

Clearly, as ε → 0, eq. (36) becomes a semidiscrete approximation of the Compressible Euler equations,
since 〈vφMn〉 is the macroscopic equilibrium flux. Denote with CE the vector of the Chapman-Enskog
correction defined by the expression inside the parenthesis in the equation above. For the first component,
φ = 1 and we find:

CE1 = ∂x
mn+1 − mn

∆t
+ ∂2

xx(2En) = 0,

thanks to (34). The second component of CE has φ = v and we find:

CE2 = 2∂x
En+1 − En

∆t
+ ∂2

xx

〈
v3Mn

〉
,

using the semidiscrete energy equation, we find:

CE2 = −2∂2
xx

〈
1

2
v3Mn

〉
− ε∂2

xx

〈
v3g(1)

〉
+ ∂2

xx

〈
v3Mn

〉

which now gives an O(ε) correction:

CE2 = −ε∂2
xx

〈
v3g(1)

〉
. (37)

Finally, the third component has φ = 1
2v2, and we note that there is no conservation law for

〈
1
2v3M

〉
, so

we will expand this expression in time, namely:

CE3 = ∂x

〈
1

2
v3 Mn+1 − Mn

∆t

〉
+ ∂2

xx

〈
1

2
v4Mn

〉

=
1

2
∂x

(ρu3 + 3ρuT )n+1 − (ρu3 + 3ρuT )n

∆t
+

1

2
∂2

xx

(
3ρT 2 + 6ρu2T + ρu4

)

=
1

2
∂x

[
∂t

(
ρu3 + 3ρuT

)n
+ ∂x

(
3ρT 2 + 6ρu2T + ρu4

)n]
+ O(∆t),
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where we have used the fact that
〈
v3M

〉
= ρu3 + 3ρuT and

〈
v4M

〉
= ρu4 + 6ρu2T + 3ρT 2. Expanding

the time derivatives, and using the evolution equation of conserved quantities, we find:

CE3 =
3

2
∂x (ρT∂xT ) − ε3u∂x

〈
v3g(1)

〉
+ O(∆t). (38)

Thus the semidiscrete first order in time IMEX scheme is consistent with the equations:

Un+1 − Un

∆t
+ ∂x




m
2E

m
ρ (E + ρT )


 = ε∂x




0
0

3
2τρT∂xT


+ O(ε∆t) + O(ε2) (39)

which is consistent with the correct equation as ∆t → 0, within O(ε2) terms.

MiMe scheme
We consider the first order in time semidiscrete MiMe scheme. In the first time step, we set U0 =

〈
φf0

〉
,

where f0 = f(·, ·, t = 0). We write Mn = M(Un), where M(U) is the Maxwellian built with the moments
U. Then the semidiscrete in time first order scheme can be written as:

Un+1 − Un

∆t
= −∂x




mn

2En
〈

1
2v3fn

〉




Mn+1 = M(Un+1)

fn+1 − fn

∆t
= −v∂xfn+1 +

1

ετ

(
Mn+1 − fn+1

)
.

In this case, Mn and fn do not have exactly the same moments, but as ε → 0, fn → Mn. Thus we can
still decompose f in its equilibrium and kinetic part: fn = Mn + εgn, but this time 〈φg〉 6= 0. Still, we
can compute the first order kinetic correction starting from the equation for f , finding:

gn+1 = − τ

∆t

(
Mn+1 − Mn

)
− τv∂xMn+1 + O(ε) (40)

Substituting the kinetic correction in the equation for the macroscopic quantities, we find that the first
two components are exact, while for the third component:

CE3 = ∂x

〈
1

2
v3 Mn − Mn−1

∆t

〉
+ ∂2

xx

〈
1

2
v4Mn

〉
= ∂x∂t

〈
1

2
v3Mn

〉
+ ∂2

xx

〈
1

2
v4Mn

〉
+ O(∆t),

so that we find the same expression of eq. (38) within O(∆t) terms. So again the semidiscrete scheme is
consistent with the CNS equations for small ε.

MiMe scheme with moments realignement
This time, we consider the first order in time semidiscrete MiMe scheme with moments realignement. In
this case, we are only given fn. The scheme can be written as:

Ũn = 〈φfn〉

Un+1 − Ũn

∆t
= −∂x




m̃n

2Ẽn
〈

1
2v3fn

〉





Mn+1 = M(Un+1)

fn+1 − fn

∆t
= −v∂xfn+1 +

1

ετ

(
Mn+1 − fn+1

)
.
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Again, Mn and fn do not have exactly the same moments, but as ε → 0, fn → Mn. Thus we can still
decompose f in its equilibrium and kinetic part: f = M + εg, but recalling that 〈φg〉 6= 0. Still, we
can compute the first order kinetic correction starting from the equation for f , and we find the same
expression of (40). Substituting the kinetic correction in the equation for the macroscopic quantities, we
find:

Un+1 − Un

∆t
= −〈vφ∂xMn〉 + ετ

(
∂x

〈
vφ

Mn − Mn−1

∆t

〉
+ ∂2

xx

〈
v2φMn

〉)
+

Ũn − Un

∆t
+ O(ε)2

We need to evaluate Ũn − Un. To this end, we compute moments of the evolution equation for fn+1,
and we subtract the result from the evolution equation for Un+1, finding:

Un+1 − Ũn+1

∆t
=

ετ

ετ + ∆t
∂x

〈
vφ
(
fn+1 − fn

)〉
. (41)

Substituting this information in the equation for the macroscopic variables, we have:

Un+1 − Un

∆t
= −∂x 〈vφfn〉 − ετ

ετ + ∆t
∂x

〈
vφ(fn − fn−1)

〉
. (42)

Since the kinetic correction g still has the same form as for the original MiMe scheme, the first term is
consistent with the CNS equations for small ε, while the second term is O(∆t) and thus is of the same
order as the truncation error of the scheme. On the other hand, if we consider the evolution equation for
Ũ, we have:

Ũn+1 − Ũn

∆t
= −∂x

〈
vφfn+1

〉
+

∆t

ετ + ∆t
∂x

〈
vφ(fn+1 − fn)

〉
. (43)

In other words, if ε → 0, we recover the evolution equation of MiMe scheme. If on the other hand ε is
not too small, then the effect of realignement is to add an implicit term to the integration of the equation
for macroscopic moments, thus increasing its stability region.

Space discretization and Chapman-Enskog expansion
In this subsection, we analyze the space discretization induced by MiMe first order scheme on the macro-
scopic equations, when ε is small. We rewrite the first order MiMe scheme with the Lax-Friedrichs
numerical flux for the macroscopic equation, and the upwind discretization for the kinetic equation, i.e.

Un+1
j − Un

j

∆t
= − 1

∆x

(
Fn

j+1/2 −Fn
j−1/2

)
(44)

fn+1
j − fn

j

∆t
= − v+

∆x

(
fn+1

j − fn+1
j−1

)
− v−

∆x

(
fn+1

j+1 − fn+1
j

)
+

1

ετ

(
Mn+1

j − fn+1
j

)
, (45)

where the index j denotes the j-th space cell. Write f separating its equilibrium part as f = M + εg,
supposing again that g is bounded, so that as ε → 0, f decays to its corresponding equilibrium Maxwellian.
Then, the Lax-Friedrichs numerical flux can be written as:

Fj+1/2 =
1

2

(
〈φ(v)vM〉j+1 + 〈φ(v)vM〉j − α(Uj+1 − Uj)

)
+

ε

2

(
〈φ(v)vg〉j+1 + 〈φ(v)vg〉j

)
,

where α is the discretization parameter of the Lax-Friedrichs flux, and φ(v) is the vector of collision
invariants. Clearly, as ε → 0, the expression above reduces to the usual Lax-Friedrichs flux of the
compressible Euler equations, irrespective of the kinetic equation. Thus, we recover, even at the level
of the space discretization, a scheme for the compressible Euler equations. Note also that an analogous
behavior would hold for the other numerical fluxes considered before. Let us split the macroscopic flux
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into its equilibrium and kinetic correction as Fj+1/2 = FE
j+1/2 + εFK

j+1/2, where FE is clearly the part

that depends only on the Maxwellian, while FK is the part depending on g,
Now, we wish to study the first order in ε kinetic correction. Substituting f = M + εg in (45), we

find the first order kinetic correction:

gn
j = τ

Mn
j − Mn−1

j

∆t
+

τv+

∆x
(Mn

j − Mn
j−1) +

τv−

∆x
(Mn

j+1 − Mn
j ) + O(ε2) (46)

Then the kinetic correction to the numerical flux can be written as:

FK
j+1/2 =

1

2

(〈
φ(v)v

Mn
j+1 − Mn−1

j+1

∆t

〉
+

〈
φ(v)v

Mn
j − Mn−1

j

∆t

〉)
(47)

+
1

2

(〈
φ(v)vv+

Mn
j+1 − Mn

j

∆x

〉
+

〈
φ(v)vv−

Mn
j+2 − Mn

j+1

∆x

〉)

+
1

2

(〈
φ(v)vv+

Mn
j − Mn

j−1

∆x

〉〈
φ(v)vv−

Mn
j+1 − Mn

j

∆x

〉)

In our approach, the first two components of the flux can be written entirely in terms of macroscopic
variables. However, if we wish to emphasize the kinetic correction, we would have, for φ(v) = 1:

FK
1,j+1/2 =

1

2

(
mn

j+1 − mn−1
j+1

∆t
+

〈
vv+

Mn
j+1 − Mn

j

∆x

〉
+

〈
vv−

Mn
j+2 − Mn

j+1

∆x

〉)

+
1

2

(
mn

j − mn−1
j

∆t
+

〈
vv+

Mn
j − Mn

j−1

∆x

〉
+

〈
vv−

Mn
j+1 − Mn

j

∆x

〉)

The two parenthesis are both first order discretizations of the momentum equation with an upwind kinetic
flux, computed respectively in the cell j+1 and in the cell j. So both terms are O(∆t)+O(∆x). When we
add this contribution to the macroscopic equation for the density, we must consider the flux difference, so
that the kinetic contribution to the macroscopic equation is O(ε((∆t) + (∆x)2)) + O(ε2). An analogous
argument holds for the momentum equation, except that, in this case, the kinetic correction contains
discretizations of the energy equation.

The energy equation has a kinetic correction to the numerical flux given by:

FK
j+1/2 =

1

4

(〈
v3

Mn
j+1 − Mn−1

j+1

∆t

〉
+

〈
v3

Mn
j − Mn−1

j

∆t

〉)
(48)

+
1

2

(〈
v3v+

Mn
j+1 − Mn

j

∆x

〉
+

〈
v3v−

Mn
j+2 − Mn

j+1

∆x

〉)

+
1

2

(〈
v3v+

Mn
j − Mn

j−1

∆x

〉〈
v3v−

Mn
j+1 − Mn

j

∆x

〉)

The evaluation of the integrals above is quite cumbersome. However it is easy to get a representation of
the terms discretized by the expressions above. The second and the third line of the equation are first
order discretizations of

〈
∂xv4Mj+1

〉
and

〈
∂xv4Mj

〉
respectively, obtained with a kinetic flux splitting.

Expanding Mn−1 in time, we find:

FK
j+1/2 =

1

4

(〈
∂tv

3Mj+1

〉
+
〈
∂xv4Mj+1

〉
+
〈
∂tv

3Mj

〉
+
〈
∂xv4Mj

〉)
+ O(∆t) + O(∆x). (49)

We recall that, for one degree of freedom in velocity space,
〈
∂tv

3M
〉

+
〈
∂xv4M

〉
= 3ρT∂xT . Thus the

kinetic correction to the evolution of the energy equation is:

ε
(
FK

j+1/2 − FK
j−1/2

)
=

ε

2

(
3

2
ρT∂xT

∣∣∣∣
j+1

− 3

2
ρT∂xT

∣∣∣∣
j−1

)
+ O(ε2) + O(ε∆t) + O(ε∆x)2 (50)
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which amounts to a first order in time, second order in space central discretization of the CNS heat flux.

AP property and large integration time steps
In this section we wish to investigate the convergence to the relaxed state, when the time step is much
larger than the relaxation time.

We start from the space homogeneous case, since this property is essentially determined by the time
discretization of the scheme. In this case, the BGK equation reduces to:

∂tf =
1

ετ
(Mf − f) , (51)

where again we have emphasized the dependence on the small parameter ε In the space homogeneous case,
the moments are conserved, so Un+1 = Un, so that the Maxwellian is also conserved: Mf

n+1 = Mf
n.

The first order scheme can be written as:

fn+1 =
1

1 + ∆t
ετn+1

fn +
∆t

ετn+1

1 + ∆t
ετn+1

Mf
n+1.

For ∆t >> ε, we expand in power of ε, obtaining:

fn+1 =
ετn+1

∆t

(
1 − ετn+1

∆t
+ O(

ετn+1

∆t
)2
)

fn +

(
1 − ετn+1

∆t
+ O(

ετn+1

∆t
)2
)

Mf
n+1

= Mf
n+1 + O(ε),

independently of the initial data. Thus, when the time step is too large to resolve the relaxation process,
the distribution function decays on the Maxwellian even for not well prepared data.

For the second order case, the macroscopic moments are still conserved, together with all macroscopic
dependent quantities. Starting again from (51), MiMe scheme reduces to:

1

1 + ∆t
2ετn+1

fn+1 =
1

1 − ∆t
2ετn+1

fn +
∆t

ετn+1
Mf

n+1.

Expanding again in ε, we have:
fn+1 = 2Mn+1 − fn + O(ε).

For well prepared data fn = Mn + O(ε) = Mn+1 + O(ε), so that the scheme satisifes the weak AP
property of [29]. The stronger AP property can be obtained using an L-stable time integrator, such
as a DIRK scheme, instead of the Crank-Nicolson scheme. Note that moments realignement does not
help. On the other hand, in the space non homogeneous case, extra diffusion in time is provided by the
backward Euler advancement of f in the prediction of macroscopic variables, which drives the system
towards equilibrium. As a matter of fact, well prepared data are not needed in the solution of Riemann
problems with MiMe2 to converge to the correct compressible Euler solution, even for ∆t >> ε.

5 Numerical results

In this section we illustrate the characteristics of MiMe schemes using a few benchmark problems. We
consider a smooth test problem, where the distribution function is locally Maxwellian, but with a macro-
scopic velocity depending on x (Test 1), see also [42]. Next we consider three Riemann problems. The
first one (Test 2) was proposed in [16]. The second Riemann problem is Lax’ Riemann problem, with
γ = 3, which is a quite hard classical test problem in gas dynamics. In this case, we will also investigate
the collisionless limit of the numerical solution. The third problem [9] yields a stationary shock, and it is
useful to compute the shock structure and compare the kinetic and Compressible Navier Stokes solutions.
Finally, a space homogeneous problem is considered, in order to investigate the dependence of the initial
layer on Kn.
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MiMe1 BGK1
Kn = 10−1

Nx ρ u T ρ u T
40 1.868e-03 2.243e-03 1.720e-03 2.640e-03 2.211e-03 4.731e-03
80 1.102e-03 1.088e-03 1.666e-03 1.488e-03 1.217e-03 2.675e-03
160 4.821e-04 5.460e-04 1.332e-03 7.834e-04 6.381e-04 1.437e-03
320 2.433e-04 3.080e-04 8.125e-04 4.014e-04 3.262e-04 7.486e-04
640 1.217e-04 1.716e-04 4.509e-04 2.032e-04 1.651e-04 3.825e-04

Kn = 10−2

Nx ρ u T ρ u T
40 1.781e-03 1.936e-03 2.315e-03 2.628e-03 2.282e-03 5.494e-03
80 1.034e-03 8.771e-04 1.470e-03 1.486e-03 1.261e-03 3.171e-03
160 4.368e-04 3.883e-04 7.254e-04 7.844e-04 6.645e-04 1.706e-03
320 2.207e-04 2.045e-04 4.027e-04 4.025e-04 3.403e-04 8.903e-04
640 1.104e-04 1.091e-04 2.128e-04 2.041e-04 1.725e-04 4.556e-04

Kn = 10−5

Nx ρ u T ρ u T
40 1.639e-03 1.750e-03 3.271e-03 2.593e-03 2.508e-03 6.620e-03
80 9.250e-04 8.357e-04 1.839e-03 1.475e-03 1.414e-03 3.941e-03
160 3.786e-04 3.464e-04 7.470e-04 7.841e-04 7.602e-04 2.155e-03
320 1.952e-04 1.749e-04 3.837e-04 4.041e-04 3.952e-04 1.130e-03
640 9.892e-05 8.803e-05 1.943e-04 2.054e-04 2.020e-04 5.798e-04

Table 1: Test 1, absolute errors under grid refinement in space and time, MiMe1 vs BGK1

Test 1 Smooth test. We start with an initial distribution of the kind [42]:

f(x, v, 0) =
ρ√

2πRT
· exp

(
− (v − u0(x))2

2RT

)
, x ∈ [−1, 1],

with constant density ρ = 1 and temperature T = 1 and with

u0(x) =
1

σ

(
exp

(
− (σx − 1)

2
)
− 2 exp

(
− (σx + 3)

2
))

with σ = 10. Thus initially the distribution function f is smooth, with a localized perturbation in
velocity, in a gas with a uniform density and temperature.

Test 2 Coron-Perthame Riemann problem. We take as initial data a distribution which is discon-
tinuous in space:

f(x, v, 0) =

{
ρL(2πRTL)−1/2 · exp(− (uL−v)2

2RTL
), 0 ≤ x ≤ 0.5,

ρR(2πRTR)−1/2 · exp(− (uR−v)2

2RTR
), 0.5 < x ≤ 1

(52)

with (ρL, uL, TL) = (2.25, 0, 1.125) and (ρR, uR, TR) = (3/7, 0, 1/6). This test is derived from [16].

Test 3 Lax’ Riemann problem. Again, we take as initial data a distribution discontinuous in space
of the form (52), on the interval −3 < x < 3 and with the discontinuity located in the mid-
dle. In this case, the parameters in (52) are given by: (ρL, (ρu)L, EL) = (0.4450, 0.311, 8.928),
(ρR, (ρu)R, ER) = (0.5, 0, 1.4275), p = (E − 1

2 (ρu)2/ρ)(γ − 1) and T = p/(Rρ). This test corre-
sponds to Lax’ problem, with γ = 3.
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MiMe2 BGK2
Kn = 10−1

Nx ρ u T ρ u T
40 1.379e-03 1.908e-03 1.594e-03 1.467e-03 1.560e-03 2.895e-03
80 2.878e-04 4.615e-04 5.967e-04 3.847e-04 4.463e-04 9.384e-04
160 1.933e-05 2.130e-05 4.981e-05 8.545e-05 1.164e-04 2.476e-04
320 5.799e-06 5.225e-06 9.207e-06 1.837e-05 3.181e-05 6.012e-05
640 1.737e-06 1.311e-06 1.884e-06 6.464e-06 1.138e-05 1.630e-05

Kn = 10−2

Nx ρ u T ρ u T
40 1.339e-03 1.811e-03 2.473e-03 1.445e-03 1.698e-03 3.260e-03
80 2.627e-04 4.861e-04 5.496e-04 3.816e-04 4.941e-04 1.080e-03
160 6.292e-05 1.272e-04 1.429e-04 9.446e-05 1.469e-04 2.977e-04
320 1.672e-05 2.671e-05 4.019e-05 2.233e-05 4.003e-05 7.647e-05
640 4.630e-06 5.728e-06 1.131e-05 5.469e-06 1.060e-05 1.922e-05

Kn = 10−5

Nx ρ u T ρ u T
40 1.394e-03 2.092e-03 2.891e-03 1.506e-03 1.911e-03 4.148e-03
80 2.998e-04 7.053e-04 6.189e-04 4.765e-04 6.303e-04 1.305e-03
160 7.194e-05 2.221e-04 1.480e-04 1.612e-04 2.622e-04 4.050e-04
320 1.703e-05 5.685e-05 3.485e-05 4.745e-05 8.113e-05 1.110e-04
640 4.126e-06 1.428e-05 8.412e-06 1.240e-05 2.184e-05 2.779e-05

Table 2: Test 1, absolute errors under grid refinement in space and time, MiMe2 vs BGK2

Nx MiMe1 BGK1 MiMe2 BGK2
Gauss-Hermite quadrature, Nv = 21

40 0.0388 0.0557 0.0711 0.0996
80 0.0826 0.1815 0.2155 0.3548
160 0.2101 0.7174 0.7837 1.4137
320 0.8955 3.3577 4.2644 7.2667
640 5.2198 21.2364 29.7991 42.8896

Gauss-Hermite quadrature, Nv = 41
40 0.0626 0.1147 0.1270 0.2159
80 0.1349 0.3786 0.3808 0.7536
160 0.3771 1.6872 1.4869 3.4321
320 1.5795 9.0798 9.0705 17.6198
640 8.8954 53.4511 61.9136 108.7406

Table 3: Test 1, CPU times.

Test 4 Stationary shock problem. In this Riemann problem the initial data are chosen in order to
yield a single stationary shock, [9]. The left and right data are respectively (ρL, uL, TL) = (1, 1.2, 0.1)
and (ρR, uR, TR) = (1.655, 0.725, 0.405).

Test 5 Space homogeneous problem. This test problem is designed to estimate the duration of
the initial layer. The initial data are a space homogeneous distribution f(x, v, t = 0) = M1(v) +
M2(v)+M3(v), where the functions Mi are Maxwellians defined through the following macroscopic
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Kn = 10−1

Nv ρ u T
21 0.5798631023e-05 0.5224619275e-05 0.9207048671e-05
26 0.5783314271e-05 0.5218811861e-05 0.9203535516e-05
31 0.5795008211e-05 0.5222206621e-05 0.9206687934e-05

Kn = 10−2

Nv ρ u T
21 0.1671999661e-04 0.2671395061e-04 0.4019432389e-04
26 0.1671992934e-04 0.2671382107e-04 0.4019444948e-04
31 0.1671996246e-04 0.2671388763e-04 0.4019438255e-04

Kn = 10−5

Nv ρ u T
21 0.1702841179e-04 0.5684926667e-04 0.3485306677e-04
26 0.1702841172e-04 0.5684926655e-04 0.3485306678e-04
31 0.1702841175e-04 0.5684926661e-04 0.3485306678e-04

Table 4: Test 1, absolute errors under velocity grid refinement, MiMe2, Nx = 320

variables:

(ρ1, u1, T1) = (2,−3, 0.9) (ρ2, u2, T2) = (3, 0.1, 0.3) (ρ3, u3, T3) = (7, 4, 0.24).

The final distribution is the Maxwellian corresponding to the triplet (ρ∞, u∞, T∞) = (12, 1.8583, 7.7476).

All computations performed here with MiMe schemes, have a time step given by

∆t = 0.9
h

α

where α(t) = maxx(|u| + C). We recall that IMEX schemes of [42] are affected by a more severe CFL
restriction, as there the time step is given by

∆t = 0.9
h

vM

vM being the largest microscopic velocity used in the computations. Finally, the CNS solver uses a time
step given by

∆t = 0.9 min

(
h

α
,

h2

3KnTMρM

)
,

since, for Kn not too small the CNS solver becomes unstable unless the more restrictive parabolic CFL
is used. Here TM and ρM are the maximum temperature and density at a given time.

The α values and the largest microscopic velocities for the tests considered here are summarized in
the following table:

Test ♯ α vM r = vM/α
1 1.9330 7.8494 4.0607
2 2.8371 6.0801 2.1431
3 9.1485 33.3021 3.6402
4 2.4247 4.1535 1.7130
5 6.6788 7.4466 1.1150

21



Kn = 10−1

Nv ρ u T
21 1.7373903651e-06 1.3113135547e-06 1.8843548732e-06
26 1.7361755930e-06 1.3105948862e-06 1.8841892660e-06
31 1.7371437792e-06 1.3110141697e-06 1.8843907424e-06

Kn = 10−2

Nv ρ u T
21 4.6295513156e-06 5.7279642337e-06 1.1310876938e-05
26 4.6295460494e-06 5.7279480114e-06 1.1310891562e-05
31 4.6295486217e-06 5.7279564543e-06 1.1310883646e-05

Kn = 10−5

Nv ρ u T
21 4.1261908489e-06 1.4276614164e-05 8.4119019834e-06
26 4.1261908401e-06 1.4276614148e-05 8.4119019814e-06
31 4.1261908451e-06 1.4276614157e-05 8.4119019820e-06

Table 5: Test 1, absolute errors under velocity grid refinement, MiMe2, Nx = 640

Therefore r measures the advantage in terms of number of time steps when MiMe scheme is used
instead of a scheme such as BGK-IMEX which is explicit in the convective step. This gain is even more
noticeable if one used a trapezoidal rule for quadrature in velocity space, since then the values of vM

would be much larger. In fact, it is worth recalling that the use of a trapezoidal rule for computing
integrals over R, requires a preliminar approximation of R with a finite interval, sufficiently large to
disregard the tails of the distribution falling outside this computational domain. On the contrary, Gauss
Hermite quadrature is already built for computing integrals over such an infinite domain, and this cut-off
is not required.

Regarding the parabolic CFL restriction for the CNS solver, we remark that it becomes more and
more restrictive as h decreases and/or Kn increases. For example, for the stationary shock (test 4): here,
on a space grid with Nx = 800, the time step for MiMe schemes is ∆t = 0.0070 independently of the
Knudsen number, whereas for the CNS solver it is ∆t = 0.0070 for Kn = 0.01 and ∆t = 0.0012 for
Kn = 0.1.

Test 1 permits to assess the convergence rate of MiMe schemes. As reference solution, we use the
third order BGK3 scheme of [42] with 1280 intervals, and 21 nodes for the Hermite quadrature in velocity
space. The results appear in Table 1 for the first order scheme, and Table 2 for the second order scheme.
For a comparison, the tables contain also the corresponding errors obtained with the implicit-explicit
(IMEX) first and second order BGK1 and BGK2 schemes respectively, from [42]. In the tables, the
errors are measured with the L1 norm; we find similar results with the L∞ norm, see also Figure 1. The
IMEX schemes use the microscopic CFL, which is given by the fastest microscopic velocity in the Hermite
grid, see the table above. The completely implicit MiMe schemes use the macroscopic CFL, which, for
this test problem, allows to use time steps approximately 4 times larger. Even though the time step is
considerably larger, the errors of MiMe schemes are definitely smaller than for the IMEX case in Table
1. For the second order scheme, we use the adaptive strategy for moments realignment, which acts on
the finest grids, only in the last time steps, when the density profiles become sharper. Also in this case
the errors obtained with the second order MiMe scheme are considerably smaller than in the IMEX case.
In Table 3 we report the corresponding CPU times. It is clear that MiMe schemes provide smaller CPU
times than the IMEX BGK schemes, using the same space and velocity grid, thanks to the fact that a
larger time step can be chosen.
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Nx Mass Momentum Energy
Kn = 10−1

40 1.11e-17 2.33e-19 3.78e-07
80 4.18e-11 1.48e-09 2.25e-08
160 4.10e-12 5.78e-11 6.05e-10
320 5.87e-14 5.18e-13 4.04e-12
640 7.06e-16 4.07e-15 2.40e-14

Kn = 10−5

40 1.11e-17 2.33e-19 5.55e-18
80 2.77e-17 2.42e-19 1.11e-17
160 1.11e-17 3.43e-19 9.02e-18
320 9.02e-18 2.08e-19 0.00e-00
640 3.46e-18 3.08e-19 1.11e-17

Table 6: Test 1, errors in conservation, MiMe1

Nx Mass Momentum Energy
Kn = 10−1

40 2.91e-11 9.51e-10 3.34e-09
80 3.28e-12 1.24e-11 6.99e-11
160 2.10e-15 1.24e-14 2.67e-14
320 1.53e-15 3.35e-18 9.74e-16
640 3.26e-15 1.30e-15 1.86e-15

Kn = 10−5

40 2.01e-11 3.50e-11 3.05e-11
80 2.10e-16 3.23e-16 2.92e-16
160 5.55e-18 4.61e-17 6.93e-19
320 4.99e-17 2.88e-17 4.16e-18
640 1.52e-17 3.88e-17 1.17e-17

Table 7: Test 1, errors in conservation, MiMe2

In these tables the error due to quadrature in velocity is much below the error due to the space and
time discretization, even though the velocity nodes are relatively few. This is due to the high convergence
rate of Gauss-Hermite quadrature formulas. To illustrate this fact, we include two tables reporting the
behavior of the error on the finest grids in space and time, under velocity grid refinement. Tables 4 and
5 are computed for Nx = 320 and Nx = 640 respectively, refining only the grid in velocity space, i.e.
increasing both the degree of the Gauss Hermite polynomials and the number of grid nodes on which
the quadrature is based. They show that the refinement in velocity space acts only on the third digit of
the error for Kn = 10−1, and its impact is even lower on smaller Knudsen numbers. The same behavior
occurs for both values of Nx shown. Thus, even on the finest space grids we are considering, the error
due to space and time truncation is much larger than the error due to quadrature in velocity. For this
reason, in all the following tests we will use a Gauss-Hermite formula with 21 nodes. We will further
explore the behavior of the error under velocity grid refinement in the space homogeneous case in Fig.
5.1.

Tables 6 and 7 contain the errors in conservation for the first and the second order schemes respectively,
for Kn = 10−1 and Kn = 10−5. Results for Kn = 10−2 are similar. The errors in conservation are
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Figure 1: Test 1, errors on the macroscopic quantitites as a function of h, L∞ norm (left: Kn = 10−1,
right: Kn = 10−5), MiMe1 and MiMe2. The thin lines represent the reference slopes for first and second
order convergence.

computed evaluating the difference between total mass, momentum and energy at the initial and final
times. Note that in all cases the errors in conservation are by far below the truncation errors of the
scheme, and very close to machine precision. Thus, even though we are not using the exact discrete
Maxwellian of [34], we do not need a large number of velocity nodes to ensure conservation. This is again
a consequence of the high accuracy of the Gaussian-Hermite quadrature used here, see also [1], and of
the discretization of the macroscopic equations with conservative numerical fluxes.

Figure 1 shows the convergence history in the L∞ norm on Test 1, under grid refinement in space and
time, with Nv = 21 nodes in velocity space. It is clear that both schemes have the expected order as the
grid is refined, even though the accuracy of the quadrature formula in velocity space is fixed. Again, we
note that, with these parameters, the error due to velocity quadrature is lower than the error in space
and time.

Figure 2 illustrates the influence of moments realignment. We plot for both the first and the second
order schemes the temperature profiles for Test 2 for a large Knudsen number, Kn = 10−1. For the first
order scheme moments realignment enhances convergence and reduces artificial diffusion (see top of Figure
2). For the second order scheme, the lack of moments realignment results in spurious oscillations on finer
grids where gradients are sharper and therefore rarefaction effects are stronger. For smaller Knudsen
numbers the influence of moments realignment is less evident and therefore is not plotted. From now on,
we consider only moments realignment with TOL = 0.01.

Figure 3 shows the temperature profiles on Test 2 for the first and second order schemes. The
enhancement of the solution obtained with the second order scheme is evident for all grids. Also note
the sharpness of the shock profiles in the hydrodynamic limit for the second order scheme.

We have observed that the distribution function f remains positive for both MiMe1 and MiMe2 on
the smooth test. In tests involving Riemann problems, the second order scheme MiMe2 may exhibit
small undershoots in f in the first time steps, when the discontinuities in the initial data are still strong.
Figure 4 exibits the evolution of the negative minima of f with time for the second order scheme, and
for relatively high Knudsen numbers. The spurious minima have maximum amplitude of order 10−6 and
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Figure 2: Test 2, temperature profiles, Kn = 10−1. Top: MiMe1, bottom: MiMe2. Left: with moments
realignment, right: without moments realignment.

it is clear that they are absorbed by the flow quite fast, and do not seem to depend strongly on the grid
spacing. For smaller Knudsen numbers the decay of the spurious minima to zero may be slower, but on
the other hand, the macroscopic behavior at this stage is mainly dictated by the local Maxwellian. The
solution f obtained with MiMe1 instead has never exhibited spurious negative minima in the tests we
tried, and in fact it is easy to prove from (16) that fn+1 remains positive, if fn is positive.

An interesting quantity to monitor is the entropy, which gives indications on the dissipative properties
of the schemes. Since the definition of the entropy requires, of course, a non-negative f , we must clip the
spurious negative undershoots of f . Thus the entropy will be defined with the following relations:

Let: f̃ = max(f, 0) ⇒ H(f) =
〈
f̃ ln f̃

〉
,

so that f̃ ln f̃ is set to zero where f is negative.
Figures 5 and 6 show the entropy decay in time for the first and the second order schemes in a smooth

test (Test 1) and on a Riemann problem (Test 2).
In the smooth case (Figure 5) the entropy decay is purely numerical in the hydrodynamic limit (see

right of Figure 5). The decay is approximately linear in h for the first order scheme and clearly converges
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Figure 3: Test 2, temperature profiles. Top: MiMe1, bottom: MiMe2. Left: Kn = 10−2, right: Kn =
10−5.

to zero faster for the second order scheme. In the kinetic regime the entropy dissipation converges from
below to its asymptotic limit, again with a faster convergence in the second order case. The extra entropy
dissipation with respect to the asymptotic solutions is due to the numerical dissipation of the scheme.

For the Riemann problem entropy dissipation is nonzero even in the hydrodynamic regime due to
entropy production across shocks. This appears clearly in Figure 6 in which the scale on the y axis has
a wider range than in the smooth case. Still convergence occurs from below indicating that the schemes
are entropy stable.

Figure 7 contains the density profiles for the Lax shock tube problem in the hydrodynamic regime.
This test is a classic benchmark for computational gasdynamic and it is known to be quite a hard problem.
Both the first and the second order schemes reproduce the solution remarkably well even on the extremely
coarse Nx = 40 grid. The presence of small oscillations whose amplitude decreases under grid refinement
is well known also for high order Euler solvers.

Figures 8 and 9 show the density, macroscopic velocity, temperature and entropy decay for Kn = 10−1

and Kn = 10−2, respectively, for the second order scheme on Test 3. The coarse grid clearly gives very
inaccurate results, which however improve if moments realignment is applied with a stricter tolerance.
The bad behavior of the coarse grid is not surprising: a typical number of grid points for gas dynamics
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Figure 4: Test 2, minima of f over x and v as a function of time, MiMe2, Kn = 10−1 (left) and Kn = 10−2

(right)
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Figure 5: Test 1 (smooth case), entropy decay as a function of time for several grids. Top: MiMe1,
bottom: MiMe2. Left: Kn = 10−1, right: Kn = 10−5.
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Figure 6: Test 2 (Riemann problem), entropy decay as a function of time for several grids. Top: MiMe1,
bottom: MiMe2. Left: Kn = 10−1, right: Kn = 10−5.
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Figure 7: Test 3, density profiles, Kn = 10−5. Left: MiMe1, right: MiMe2.
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Figure 8: Test 3, Kn = 10−1, MiMe2. Left to right and top to bottom: ρ, u, T , and entropy decay for
several grids.
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Figure 9: Test 3, Kn = 10−2, MiMe2. Left to right and top to bottom: ρ, u, T , and entropy decay for
several grids.
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Figure 10: Free advection of the Riemann problem of Test 2. Solution on a fine grid (left) and projection
on the coarse velocity grid used by MiMe schemes (right).

computations of this test is above 100 nodes. The plots give indications on the evolution of Lax initial
data for a rarefied gas. It is interesting to see that the solution exhibits a rich structure which shows the
need of limiters even in the rarefied regimes, and in fact the solution becomes unstable if the limiters are
turned off.

We also explore the high Knudsen behavior of MiMe schemes. Fig. 10 shows the collisionless solution
of the Riemann problem of Test 2, in the limit of Kn → ∞. Note the presence of discontinuities in f
which is particularly apparent on a fine velocity grid. The left panel of Fig. 11 shows the collisionless
solution computed with a second order upwind flux which is clearly the solution that MiMe schemes will
converge to for high Kn. On the right, we plot the solution computed by MiMe2 for Kn = 1. Since the
computational domain is L = 1, this value of the Knudsen number corresponds roughly to one collision
per unit time, and thus relaxation effects are negligible. It is apparent that MiMe2 is able to capture the
correct free flow limit without oscillations. We think that the schemes easily capture the correct limit,
because the whole distribution function is evolved with time, rather than only the kinetic projection, as
occurs for instance in [9].

In all the tests shown above, the numerical flux was the Lax Friedrichs numerical flux, given by (12).
This numerical flux is known to be robust, but highly diffusive. In Figure 12 we compare the solutions
obtained with the Lax Friedrichs numerical flux in the macroscopic equations, with the solution obtained
using the HLL flux (13), which is less diffusive, for several Knudsen numbers and two values of Nx. The
figure shows that the profiles almost coincide in kinetic regimes, while the HLL flux gives distinctively less
diffusive profiles for smaller Knudsen numbers. We will use the HLL flux for studying the approximation
of the Navier Stokes regime, where a good resolution is a key aspect. However note that even the Lax
Friedrichs flux gives good results.

5.1 Shock structure, CNS asymptotics and initial layer

In this section we study the behavior of MiMe kinetic schemes in the asymptotic regime of small, but
not vanishing, Knudsen numbers. Figure 13 shows the shock thickness of the shock wave contained in
the numerical solution of Test 2. To evaluate the shock thickness, we measure the length of the interval
along which the central 80% of the jump in the shock is spread. On the left of Figure 13, we plot the
shock thickness as a function of the Knudsen number for several grid values. The vertical lines correspond
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Figure 11: Free flow solution for Test 2 computed with a second order upwind flux (left). Corresponding
computed f for Kn = 1 with MiMe2 (right).
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Figure 12: Test 4, comparison of Lax-Friedrichs (solid lines) and HLL (dashed line) numerical fluxes on
the density profiles, MiMe2, for Kn = 0.1, 0.05, 0.02, 0.01 and Nx = 200 (left) and Nx = 400 (right). The
direction of the arrows indicates values of Kn decreasing.
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Figure 13: Test 2, shock thickness as a function of Kn for several values of Nx, MiMe2 (left). Right:
zoom of the case Nx = 400 with the corresponding linear regression line. The vertical lines correspond
to the different values of h.

to the values of h used, and they represent the limit under which the corresponding grid is not able to
resolve the shock structure. It is apparent that the shock thickness decreases approximately linearly, as
Knudsen is decreased below a certain threshold. The right of Figure 13 shows the linear regression line
superposed to the data given by the finest grid. The agreement is excellent, and shows that the shock
thickness is indeed a linear function of the Knudsen number in this regime.

Figure 14 shows a comparison between the distribution function and the local Maxwellian, as a
function of v within the three waves of the solution of the Riemann problem of Test 2. Results are
obtained with MiMe2 on a space grid with Nx = 320. In the most rarefied regime, top left, it is clear
that the gas is still not in equilibrium in all cases. For Kn = 10−2 the gas is almost at equilibrium in
the rarefaction and contact waves, but still far from equilibrium within the shock. Local equilibrium
in all three waves, with these data and with the resolution power of the grid used, is achieved only for
Kn = 10−5 (bottom right), when f coincides with the local Maxwellian even in the shock.

We also explore the time length of the initial layer. We consider a space homogeneous problem
(Test 5), and we plot the distance of f from the final steady Maxwellian M∞ as a function of time,
namely ||f(., ., t) − M∞(., ., t)||, for several values of the Knudsen number. The results shown in Figure
15 correspond to data obtained with MiMe1 and MiMe2 on a space time grid with Nx = 200 and
∆t = 6.6667 · 10−4, and are very similar. From each curve, it is possible to derive the corresponding
half-life of the transient, which is approximately linear in the Knudsen numbers, as long as the Knudsen
number is large enough to be resolved by the time step used.

In this test problem, the dependence on the velocity grid can be studied, without the influence of the
space discretization error, which in our tests, is always larger. Fig 5.1 shows the convergence of the error
under velocity grid refinement. As expected, the rate is exponential, as shown by the excellent fit with
an exponential rate on the right of the figure.

Finally, we compare the results obtained by the kinetic scheme, with a Compressible Navier Stokes
solution on a stationary shock. In Figure 17, the dashed line represents the shock solution given by the
Compressible Euler equations, the solid line is the numerical solution of the CNS equations (31), obtained
with an explicit discretization based on the HLL flux for the convective terms, and a centered formula
for the diffusive term. The remaining curves are obtained with MiMe2, also with the HLL flux, on the
BGK equations, for several grids. For Kn = 0.1, the solution is still kinetic, and converges towards a
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Figure 14: Test 2, distribution function f (solid line) and local Maxwellian (dotted line) versus v, MiMe2.
Left to right and top to bottom: Kn = 10−1, Kn = 10−2, Kn = 10−3, Kn = 10−5
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Figure 15: Test 5, relaxation to equilibrium as a function of time. Left: MiMe1; right: MiMe2
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Nv ρ u T vM

16 7.9415e-03 7.0111e-04 6.2624e-03 5.5478
21 2.1884e-04 1.8900e-05 2.7746e-04 6.5673
26 7.4381e-06 1.9639e-06 3.1381e-06 7.4656
31 9.2759e-09 5.5894e-08 2.7967e-07 8.2774
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Figure 16: Space homogeneous problem (Test 5), absolute errors versus number Nv of velocity grid
nodes, MiMe2. Left, actual errors and maximum grid velocity. Right, convergence speed (log scale): the
continuous straight line corresponds to an exponential rate.
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Figure 17: Test 4, convergence to Compressible Navier-Stokes, density profiles, MiMe2. Left to right, top
to bottom: Kn = 0.1, Kn = 0.05, Kn = 0.02 and Kn = 0.01
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Figure 18: Condition number of the matrix defining the linear systems (16) and (23) versus v for Nx = 320
(left) and versus h for v = maxk |vk| (right)

profile which is far from both Euler and CNS solutions. Reducing Kn we clearly see that the MiMe
solution approaches the CNS profile, which, in turn, is converging towards Euler solution. These profiles
correspond to values of Kn which are still away from the hydrodynamic regime. It is clear that the
solutions obtained with MiMe2 are closer to the Navier Stokes profile rather than to the Euler shock
wave.

5.2 Condition number

Finally, Figure 18 shows the behavior of the condition number of the matrices defining the linear systems
(16) and (23) as a function of microscopic velocity values for a fixed h (Nx = 320, left) and as a function
of h for a fixed v (v = maxk |vk|, right), for several Knudsen numbers and for both the first and the
second order schemes. Here both schemes are fully implicit, with θk ≡ 1. It is clear that, for a fixed space
grid, the condition number increases as v increases, but still remaining small in all cases, and actually
approaching 1 in the hydrodynamic regime. On the other hand, for a fixed value of v, the conditioning
of the matrix gets worse as the grid is refined, though the increase is by far sub-linear, and again the
actual values remain small. Despite these data are obtained on problems with one degree of freedom in
velocity, these results can be generalized to fully 3D problems simulating a real monoatomic gas. In fact
the general case contains the sum of three velocity operators which have the same structure and therefore
the same eigenvalues of the 1D problem. The coefficient matrix for the fully 3D case will have a banded
structure requiring the use of iterative solvers. However these results show that the resulting matrix is
well-conditioned and therefore the system is easily solvable e.g. with a few GMRES iterations.

6 Conclusions and perspectives

In this work, we have presented first and second order accurate schemes to integrate the BGK kinetic
model. The schemes proposed are characterized by evolving the macroscopic variables explicitly and the
distribution function implicitly (MiMe schemes). With the technique proposed, the evolution of the local
Maxwellian is computed explicitly, and therefore the system of equations for the implicit values of the
distribution function becomes linear. Moreover, the whole construction is subject to a stability restriction
linked to the macroscopic velocity and sound speed, which coincides with the classical CFL condition
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of Euler equations. For this reason, the schemes proposed are particularly indicated for hybrid schemes
based on a domain decomposition in which the BGK model is used to solve the problem in rarefied
regimes, while Navier-Stokes or Euler are used for small Knudsen numbers [19, 21, 2]: MiMe schemes
allow to use the same time step in the whole computational domain, thus minimizing spurious interface
effects.

Another aspect we wish to underline is the treatment of implicit limiting in the second order MiMe
scheme. It is well known that second and higher order schemes must be non linear, even for the linear
advection equation, to prevent the onset of spurious oscillations in the presence of discontinuities. This
fact has always hindered the application of implicit time integration for conservation laws, since non
linear limiting would result in a non linear system of equations, see for instance [22]. We believe that the
technique adopted here, based on lower order prediction to determine non oscillatory stencils, might be
of interest also to develop implicit schemes for conservation laws with stiff propagation speeds, as in low
Mach number gas dynamics, see for instance [20]. A work in this direction is in preparation.

Further investigation will involve two dimensional problems and a more realistic 3D space for the
microscopic velocities, taking into account the reduction of variables found in [15], and the extension
of the scheme to the ES-BGK model, where the stiffness due to the relaxation term has already been
addressed in [24] and [2].
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