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Content Replication in Mobile Networks
Chi-Anh La, Student Member, IEEE, Pietro Michiardi, Member, IEEE, Claudio Casetti, Member, IEEE,

Carla-Fabiana Chiasserini, Senior Member, IEEE, and Marco Fiore, Member, IEEE

Abstract—Performance and reliability of content access in
mobile networks is conditioned by the number and location of
content replicas deployed at the network nodes. In this work, we
design a practical, distributed solution to content replication that
is suitable for dynamic environments and achieves load balancing.
Simulation results show that our mechanism, which uses local
measurements only, approximates well an optimal solution while
being robust against network and demand dynamics. Also, our
scheme outperforms alternative approaches in terms of both
content access delay and access congestion.

Index Terms—Content replication, mobile networks, node
cooperation, distributed algorithms.

I. INTRODUCTION

ACADEMIC and industrial research in the networking
field is pursuing the idea that networks should provide

access to contents, rather than to hosts. Recently, this goal has
been extended to wireless networks as well, as witnessed by
the tremendous growth of services and applications offered to
users equipped with advanced mobile terminals.
The inexorable consequence of a steady increase in data

traffic exerted by mobile devices fetching content from the
Internet is a drainage of network resources of mobile opera-
tors. A promising approach to solve this problem is content
replication, i.e., to create copies of information content at
user devices so as to exploit device-to-device communication
for content delivery. This approach has been shown to be
effective especially in wireless networks with medium-high
node density, where access congestion is the main limiting
factor to the performance of content delivery (see, e.g., [1] for
a survey on the topic).
In this paper, we consider a mobile network and explore the

concept of content replication in a cooperative environment:
nodes can fetch content from the Internet using a cellular
network, store it, and possibly serve other users through
device-to-device communication (e.g., IEEE 802.11) [2]. Our
scenario accommodates the possibility for content to exhibit
variegate popularity patterns, as well as to be updated upon
expiration of a validity-time tag, so as to maintain consistency
with copies stored by servers in the Internet.
The scenario we target introduces several problems related

to content replication. Our endeavor is to build upon the
theoretic works that have flourished in the Location Theory
literature and address the joint problem of content replication
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and placement, with the goal of designing a lightweight,
distributed mechanism. Our main contributions are as follows:
(i) we revisit traditional Location Theory and propose a

distributed mechanism inspired by local search approximation
algorithms (Sec. II). Our solution exploits a formulation of a
multi-commodity capacitated facility location problem to com-
pute a solution based on local measurements only (Sec. III);
(ii) through an extensive simulation study, we show that

our scheme well approximates an optimal solution when
both network and content dynamics are considered (Secs. IV
and V). Our mechanism achieves load balancing across the
network and scales well with the network size, making it
suitable for scenarios in which access congestion may appear;
(iii) we compare our content replication scheme with ex-

isting mechanisms, and show under which conditions our
approach yields better performance (Sec. V).

II. NETWORK SCENARIO AND PROBLEM STATEMENT

We first detail the system model we refer to. Then, we
inherit the problem of replication typical of the wired Internet
and we discuss the new challenges introduced by the dynamic
nature of wireless networks.
System model: We investigate a scenario including mobile
users (i.e., nodes), equipped with devices offering 3G/4G
Internet connectivity as well as device-to-device communi-
cation capabilities (e.g., IEEE 802.11). Although we do not
concern ourselves with the provision of Internet access in ad
hoc wireless networks, we remark that broadband connectivity
allows new content to be fetched and, possibly, updated.
We denote the set of mobile nodes by V , with V = |V|, and

we consider that they may be interested in a set of information
items, I (|I| = I). Each item i ∈ I, of size s(i), is tagged
with a validity time and originally hosted on a server in the
Internet, which can be accessed through the broadband access
we hinted at. We define the content popularity level of the
generic item i, π(i), as the fraction of nodes interested in
such an item. Thus, we have 0 ≤ π(i) ≤ 1, with π(i) = 1
when all nodes in the system are interested in content i.
We focus on a cooperative environment where a node j ∈ V

wishing to access the content first tries to retrieve it from other
devices. If its search fails, the node downloads a fresh content
replica from the Internet server and temporarily stores it for
a period of time τj , termed storage time. For simplicity of
presentation, we assume τj = τ, ∀j ∈ V . During the storage
period, j serves the content to other nodes upon receiving
a request for it and, possibly, downloads from the Internet
server a fresh copy of the content if its validity time has
expired. We refer to the nodes hosting an information copy
at a given time instant as replica nodes. We denote the set of
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nodes storing a copy of item i at time t by Ri(t), and define
R(t) = ∪i∈IRi(t), with R = |R|. Also, we associate to each
replica node j a capacity value cj , which, as we shall see later,
relates to the capability of the node to serve content requests.
A node, which is interested in a generic information item i

and does not store any copy of it, issues queries for such
an item at a rate λ. Replica nodes, receiving a query for
an information item they currently store, will reply with a
message including the requested content.
In the following we model the network topology at a given

time instant t through a graph G(t) = (V , E(t)), whose set of
vertices coincides with the set of nodes V and the set of edges
E(t) represents the set of links existing between the network
nodes at time t.
Problem statement: Both content replication and caching
have received significant attention in the literature, however
they differ since replication is an independent process aimed
at creating copies of a content at the network nodes, regardless
of whether they asked for it or not. Caching, instead, is a by-
product of the content query mechanism as only nodes that
retrieved the content have the possibility to cache it [1], [2].
Our claim, confirmed by simulation results presented in the

paper, is that, in the above context, content replication is to be
preferred to caching. Indeed, given that the storage capacity
at the nodes can be considered as unlimited and the content
request rate is known, replication can effectively address the
scarcity of radio resources and the need for an even traffic
load distribution. Caching instead may lead to the creation of
a large number of copies in the network, especially for popular
content. In medium-high dense networks, this may raise the
problems of: (i) large overhead due to multiple replies to a
single query, (ii) energy depletion of a large fraction of nodes
acting as content providers, (iii) congestion in accessing the
cellular network.
We therefore deal with content replication and design

a mechanism to determine how many replicas should be
created in the network and where, under dynamic, realistic
conditions. Traditionally, a similar problem, although in a
simpler scenario, has been studied through the lenses of
Location Theory, by considering replicas to be created in
the network as facilities to open. Then, as the first step to
understand the problem under study, we restrict our attention to
a simplified network setting and revisit a centralized approach
for facility location problems. We assume static nodes and
constant demand, hence we drop the time dependency from our
notation. Furthermore, we drop the load balancing requirement
we previously outlined, and assume that content queries are
directed to the closest replica node. Finally, for simplicity, we
let all users be interested in every content i (i = 1, . . . , I).
Given such a simplified scenario, we formulate content

replication as a capacitated facility location problem where
the set of replica nodes R = ∪iRi corresponds to the set
of facilities that are required to be opened, nodes requesting
a content are referred to as clients and items correspond to
the commodities that are available at each facility. We model
the capacity of a replica node as the number of clients that
a facility can serve. The goal is to identify the subset of
facilities that, at a given time instant, can serve the clients

so as to minimize some global cost function while satisfying
the facility capacity constraints. Note that, in our scenario,
both clients and facilities lay on the same network graph
G = (V , E). The problem can be defined as follows:
Definition 1: Given the set V of nodes with pair-wise

distance function d and the cost fj of opening a facility at
j ∈ V , select a subset of nodes as facilities, R ⊆ V , so as to
minimize the joint cost C(V , f) of opening the facilities and
serving the demand while ensuring that each facility j can
only serve at most cj clients. Let C(V , f) be:

C(V , f) =
∑

i∈I

∑

j∈Ri

fj(i) +
∑

i∈I

∑

h∈V

d(h, mh(i)) (1)

where fj(i) is the cost to open a facility for commodity
i, Ri ⊆ V is the subset of nodes acting as facilities for
commodity i, mh(i) ∈ Ri is the facility holding item i that is
the closest1 to h, and the number uj(i) of clients requesting
any content i attached to facility j ∈ Ri, i.e., uj(i) = |{h ∈
V s.t. mh(i) = j}|, is such that

∑
i∈I

uj(i) ≤ cj .
Note that our problem formulation is more complex than

the traditional one, where the intersection between the sets of
facilities and clients is null. Indeed, since in our settings any
vertex of the graph G can host a facility (i.e., be a replica node
for an item) or be a client (i.e., request an item that does not
currently own), a vertex can assume both roles. Moreover, in
the location theory literature, two copies of the same facility
can be opened at the same location, in order to increase the
capacity of a site. Instead, in our work a vertex of the graph
can host only one copy of the same facility, as it is reasonable
that a node stores only one copy of the same item.
Finding approximate solutions to the problem of multi-

commodity capacitated facility locations, even in its (simpler)
traditional formulation, is an open issue and little is known
concerning heuristics that can be effectively implemented in
practice. Thus, we take the following simple approach: a
solution to the multi-commodity problem is built from the
union of the solutions to individual single-commodity facility
location problems. We transform the formulation from multi-
commodity to single-commodity by solving the above problem
for each item i (i = 1, . . . , I) separately2. Then, we denote
the subset of commodities hosted at node j by Ij and its
cardinality by Ij , and we adopt two different techniques to
verify the capacity constraints:
1) each opened facility (replica node) has a capacity that is

allocated to each commodity individually: this translates into
having a separate budget allocated to each commodity (item).
The capacity constraints can be written as uj(i) ≤ cj/Ij , ∀i ∈
Ij , where we equally split the budget cj available to facility j
over all the commodities it hosts. In the following, we name
such a technique split capacity budget;
2) we consider that the capacity of a facility is shared

among the commodities it currently hosts, i.e., each replica
node allocates a preset budget that is used to serve the requests
by other nodes. We write the capacity constraints for this case

1As distance function, we take the Euclidean distance between the nodes.
2A single-commodity facility location problems reduces to the k-median

problem when the number of facilities to be opened, k, is given.
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as:
∑

i∈Ij
uj(i) ≤ cj , and we refer to such a technique as

shared capacity budget.
To solve such a problem, we resort to the local search

heuristic detailed in [3], which finds a solution to the capac-
itated, single-commodity location problem that is one of the
best known approximations to optimal replication and place-
ment. Hereinafter we term such a heuristic centralized facility
location (CFL) algorithm because it can only be executed
in a centralized, synchronous environment. We consider the
CFL algorithm to be a baseline against which we compare the
results obtained by our approach.
Also, note that existing distributed approximation algo-

rithms of the optimal solution to facility location problems
either require global (or extended) knowledge of the network
[3] or are unpractical [4]. Therefore, in the next section we
propose a new approach that only requires local knowledge,
which is acquired with simple measurements, and adapts to
the system dynamics. In addition, our scheme provides load-
balancing; it follows that, even in a static scenario, our dis-
tributed algorithm would not converge to a static configuration
in which a fixed set of nodes is selected to host content
replicas. As such, the traditional methods that are used in the
literature to study the convergence properties and the locality
gap of local search algorithms cannot be directly applied,
which is the main reason for us to take an experimental
perspective and validate our work through simulation.

III. CONTENT REPLICATION

Armed with the insights on the problem formulation dis-
cussed in Sec. II, our mechanism mimics a local search
procedure, by allowing replica nodes to execute one of the
following three operations on the content: (1) handover, (2)
replicate or (3) drop. However, unlike the traditional local
search procedures, in our mechanism the three operations
yield the solution to the content replication problem iteratively,
albeit asynchronously. Furthermore, in our network system,
replicate and handover are constrained operations: only ver-
texes that are connected by an edge to the current vertex
hosting a content replica can be selected as possible replica
locations. Thus, our operations are local and replicas can only
move by one hop at the time in the underlying network graph.
In the following we describe our mechanism in terms of

two objectives: content replication and placement. Indeed, the
handover operation amounts to solving the optimal placement
of content replicas, whose number is determined through the
replicate and drop operations. For simplicity, we consider
again that all users are interested in every content i (i =
1, . . . , I) and we fix the time instant, hence we drop the time
dependency from our notation.
Content replication: Let us define the workload of the generic
replica node j for content i, wj(i), as the number of requests
for content i served by j during its storage time. Also, recall
that we introduced the value cj as the capacity of node j
and we provided a definition that suited the simplified, static
scenario described in Sec. II. We now adapt the definition of
cj to the dynamic scenario at hand, as the reference volume of
data that replica node j is willing to provide during the time

it acts as a replica node, i.e., in a storage time τ . Then, with
reference to (1), we denote by fj =

∑
i∈Ij

fj(i) the cost that
a node j must bear while acting as a facility for any content.
Given the load balance we wish to achieve across all replica

nodes and the capacity constraints, the total workload for
replica node j should equal cj . Thus, we write fj as:

fj = cj −
∑

i∈Ij

s(i)wj(i) (2)

In other words, we let the cost associated with replica node
j grow with the gap between the workload experienced by j
and its capacity cj .
Then, during storage time τ , the generic replica node j ∈ R

measures the number of queries it serves, i.e., wj(i) ∀i ∈ Ij .
When its storage time expires, the replica node j computes
fj and takes the following decisions: if fj > ε the content
is dropped, if fj < −ε the content is replicated, otherwise
the handover operation is executed (see below). Here, ε is a
tolerance value to avoid replication/drop decisions in case of
small changes in the node workload.
The rationale of our mechanism is the following. If fj < −ε,

replica node j presumes that the current number of content
replicas in the area is insufficient to guarantee the desired
volume of data, hence the node replicates the content and
hands the copies over to two of its neighbors (one each),
following the placement mechanism described below. The two
selected neighbors will act as replica nodes for the subsequent
storage time. Instead, if fj > ε, node j estimates that
the workload the current number of replicas can provide is
exceeding the total demand, thus it just drops the content copy.
Finally, if the experienced workload is (about) the same as the
reference value, replica node j selects one of its neighbors to
which to hand over the current copy, again according to the
mechanism detailed next.
Replica placement: As noted in Sec. II, given the graph
representing the network topology at a fixed time instant, the
placement of R=k replicas can be cast as a k-median problem.
By applying the approximation algorithm in [3], in [5] we
observed that the solution of such a problem for different
instances of the topology graph yields replica placements
that are instances of a random variable uniformly distributed
over the graph. Thus, in a dynamic environment our target
is to design a distributed, lightweight solution that closely
approximates a uniform distribution of the replicas over the
network nodes while ensuring load balancing among them. To
this end, we leverage some properties of random walks and
devise a mechanism, called Random-Walk Diffusion (RWD),
that drives the “movement” of replicas over the network.
According to RWD, at the end of its storage time τ , a replica

node j randomly selects another node l to store the content
for the following storage period, with probability pj,l = 1

dj

if l is a neighbor of j, and 0 otherwise, where dj is the
current number of neighbors of node j. In this way, each
replica performs a random walk over the network, by moving
from one node to another at each time step τ . Thus, we
can apply the result stating that in a connected, non-bipartite
graph, the probability of being at a particular node j converges
with time to dj/(2|E|) [6]. In other words, if the network



JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, MONTH 201X 4

topology can be modeled by a regular graph3 with the above
characteristics, the distribution of replicas moving according to
a random walk converges to a stationary distribution, which is
uniform over the nodes. In general, real-world networks yield
non-regular graphs. However, when V nodes are uniformly
deployed over the network area and have the same radio
range, the node degree likely has a binomial distribution with
parameters (V − 1) and p, with p being the probability that a
link exists between any two nodes [7].
For practical values of p and V in the scenarios under study,

we verified that the node degree distribution is indeed binomial
with low variance, i.e., all nodes have similar degree. It follows
that a random walk provides an acceptable uniform sampling
of the network nodes, hence the replica placement distribution
well approximates the uniform distribution.
A similar result can be obtained also for clustered network

topologies, where each cluster core results to be an expander
graph [8]. In this case, a uniform replica placement over the
nodes can be achieved within each of the network clusters,
thus ensuring the desired placement in all areas where the
user demand is not negligible.
Finally, we stress that the presence of R replicas in the

network corresponds to R parallel random walks. This reduces
by almost a factor R the expected time to sample all nodes
in the network, which is closely related to the time needed
to approximate the stationary distribution by a constant factor
[9]. It follows that, given a generic initial distribution of the
replicas in the network, the higher the R, the more quickly
the replica placement approximates a uniform distribution.

IV. SIMULATION SCENARIO

We focus on a wireless pedestrian network with node
density of 3.2 · 10−4 nodes/m2, on a square area of 1 km2

unless otherwise specified, which results in V = 320 and an
average node degree of 9.6 neighbors. Nodes move according
to the stationary random waypoint model with an average
speed of 1 m/s and a mean pause time of 100 s. Results derived
using the SLAW mobility model can be found in [10].
Nodes are equipped with an 802.11 interface, with a

54 Mbps data rate and a radio range of 100 m. We do not
simulate cellular access, however we account for the delay
associated with the information download from the cellular
network by assuming a throughput of 384 kbps, matching that
typically provided by 3G technologies to mobile users.
The rate at which a node interested in a content generates

queries for that item is λ=0.01 requests/s. Also, we assume the
presence of a content-location service that nodes can access to
obtain the identity of the closest content replica (see, e.g., [11]
and references therein). A query for the closest replica node is
then propagated using sequence numbers to detect and discard
duplicate queries, as well as an application-driven broadcast
that optimally selects the forwarding nodes by leveraging the
PGB technique.Also, a TTL is included into queries, allowing
them to travel 5 hops at most so as to prevent network flooding.
Once reached by the request, the intended destination serves
it, while other replica nodes ignore the query. At each hop,

3A graph is regular if each of its vertices has the same number of neighbors.

the identity of the last node that relayed the query is included
in the message and recorded at the following forwarder. Thus,
the path from the target replica node to the query source is
backtracked at the application layer without resorting to ad hoc
routing protocols. If no answer to a query is received by 2 s,
a new request is issued, up to a total of 5 times. Finally, the
tolerance value ε used in the replication/drop algorithm is set
to 5% of the node capacity budget, while the storage time is
τ=100 s. For each experiment, the results obtained through ns-
2 simulations are averaged over 10 runs, each lasting around
3 hours of simulated time after a warm-up period of 500 s.

V. RESULTS
We organize the main results of our work in several sections

that cover the parameter space we studied. To benchmark
our distributed mechanism against the centralized approach
discussed in Sec. II, we implement the CFL algorithm as
follows. Given the network time evolution, we take a snapshot
of the network topology every τ s. For every snapshot, we
solve I separate single-commodity problems derived from (1),
under both split and shared capacity budgets. To do so, we
set fj(i) = cj/Ij − uj(i) and fj = cj −

∑
i∈Ij

uj(i) in
the case of split and shared capacity budget respectively, with
uj(i) = s(i)wj(i).
Benchmarking the replication scheme: First, we study

the impact of the allocation of the node capacity budget. We
take a numerical approach and focus on the CFL algorithm:
our objective here is to determine the implications of split or
shared capacity allocations as discussed in Sec. II. Later, we
show the performance of our distributed replication scheme.
We run the CFL algorithm in presence of 4 items of

1 Mbytes each. We vary the value of budget of each node
cj from 10 Mbytes to 40 Mbytes, which, in the case of opti-
mization with split capacity budget, means that each content
is assigned a budget cj/4. The optimal number of replicas per
information item, denoted by R∗

i , is obtained by numerically
solving the optimization problem in Def. 1, in both its split
and shared capacity budget versions, and is shown in Fig. 1(a).
Here and in the following, unless stated otherwise, the results
refer to one of the four items; similar results were obtained for
each of them. The plot clearly shows that, as higher budgets
allow replica nodes to satisfy larger amounts of requests,
increasing cj reduces the need for replication thus leading to
a lower number of replicas in the network. Using a common
budget for all items (i.e., shared capacity budget), forces
replications only when the total workload for all items exceeds
the budget. Conversely, optimization with split capacity budget
uses separate budgets for each content and, thus, results in
more frequent violations of such constraints.
Now, intuitively, more replicas should imply higher chances

for queries to be satisfied through device-to-device communi-
cations. In Fig. 1(b) we show the most important percentiles
of content access delay, for cj = 40 Mbytes. Contrary to the
intuition, our results indicate that the advantage granted by
a high number of replicas under the split capacity is quite
negligible: indeed, the lower number of replicas deployed by
the shared capacity allocation suffices to satisfy most of the
requests generated by nodes in the ad hoc network.
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Fig. 2. Numerical solutions of the optimization problems, and comparison
against our replication scheme: temporal evolution of the number of replicas
(a), and of the χ2 index (b)

In summary, our findings pinpoint that the replication mech-
anism with shared capacity constraints is a suitable approach.
Beside experimental results, there are also practical reasons to
opt for shared capacity constraints. Indeed, in the split capacity
case, a budget has to be assigned to each item currently
stored by a replica node, which is a quantity that may vary
over time. As a consequence, content replicas may not be
suitably handled if the remaining capacity available to a node
is not appropriately re-distributed. Furthermore, it would be
unfeasible to ask a user to select a service budget to allocate
to every possible item she will ever replicate. In the following
we will therefore focus on the shared capacity budget only.
Next, we simulate our distributed replication scheme when

each node has a budget of cj = 40 Mbytes. As shown in
Fig. 2(a), the scheme well approximates the results obtained
by solving the optimization problems in a centralized setting:
indeed, the number of replicas Ri generated by our scheme
is very close to the optimal value R∗

i . We then study the
similarity between the replica placement achieved by our
technique and that obtained with the CFL algorithm. To do so,
we employ the well-known χ2 goodness-of-fit test on the inter-
distance between content replicas As depicted in Fig. 2(b), the
χ2 error we obtain is well below the value (namely, 23.685)
needed to accept the null hypothesis that the two distributions
are the same at a 95% confidence level.
Impact of the content characteristics: We now assume

that not all nodes are interested in a content: a node stores
a replica of the content only if it is interested in the item. If
a node attempts to hand over the content to an uninterested
node, the request will be denied and a different node will have
to be selected. Fig. 3(a) shows that the number of replicas
for item i, Ri, generated by our scheme oscillates around the
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Fig. 3. Impact of content popularity on the replication with shared capacity,
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optimal value determined by the CFL algorithm for the same
item, R∗

i , even when i is characterized by low popularity (the
popularity levels are reported in the figure legend). Moreover,
the workload remains evenly shared among replica nodes:
Fig. 3(b) shows that each node serves at least 0.2% of the
total workload and 98% of nodes serve less than 0.4% of the
total workload. The load distribution is thus quite dense around
0.3%, i.e., 1

V
, corresponding to a perfectly fair workload

distribution among nodes.
Scalability: We now study the impact of the number of

items, network density, and network size on the system perfor-
mance. We first evaluate the performance when the cardinality
of the item set varies between 4 and 64. Fig. 4(a) shows the
number of replicas per item generated in the system, which
grows as the size of the information set increases. Indeed,
a larger content set implies that nodes tend to store more
items on average; however, their capacity budget cj remains
constant, and is shared among all items they store. Thus,
focusing on one single content, each replica node for that
content will be able to serve fewer and fewer queries as
the number of available items increases. As a consequence,
more replicas for the same content are needed in order to
meet the constraint on the capacity budget, hence to keep the
workload constant, as depicted in Fig. 4(b). Fig. 4(c) shows the
effect that the number of information item has on the service
provisioning delay. The increase of the delays is slight and
imputable to the heavier traffic on the channel, that results in
collisions and retransmissions of the information replies.
We then study the effect of the network density, measured as

the average node degree, which is increased up to 20. Fig. 5(a)
shows that the number of replicas increases according to the
optimal number of facilities computed by the CFL local search
algorithm. Indeed, the increased presence of neighbors induces
a higher query load in the network: in order to satisfy the
new demand, and yet fulfill the per-node workload constraint,
additional nodes must become providers for each content.
The availability of additional replica nodes allows them to
experience a practically unchanged workload (Fig. 5(b)), and
a similar delay for successful content requests (Fig. 5(c)).
Comparison to other approaches. We now consider in-

formation items to be associated to different popularity levels,
and compare the performance of our replication scheme with
that of the square-root replication strategy [12]. According to
such a strategy, the allocation percentage for a content i is
proportional to the square root of the total demand per second
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for that content. In [12], it has been proved that square-root
replication is optimal in terms of number of solved queries.
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Fig. 6. Fraction of replicas for each of the four items, in comparison with
uniform, proportional and square-root allocation
Fig. 6 shows the fraction of the total number of replicas of

item i, versus the associated query rate π(i)V λ, for I = 4 and
cj={5, 15, 40}Mbytes. The plot compares our scheme with: (i)
the square-root strategy, (ii) a uniform strategy, which allocates
the same number of replicas per item, and (iii) a proportional
strategy, where the number of replicas is proportional to the
content popularity. Our solution achieves an allocation in
between the square-root and proportional distributions, while
it is far from that obtained under the uniform strategy. This
suggests that our replication mechanism well approximates the
optimal replication strategy. In particular, when cj is higher,
i.e., replica nodes are more generous in reserving resources
to serve requests, the allocation tends to follow a proportional
distribution. Conversely, in presence of lower values of cj the
allocation better fits the square-root rule.
Since our replication scheme roughly achieves the result

obtained by a square-root allocation, it is reasonable to wonder

why a different approach to content replication is required.
First of all, we have different objectives than that of [12]:
load-balancing, for example, requires an additional layer to
complement the square root allocation scheme, which instead
we achieve as part of our design. Furthermore, the distributed
version of the replication algorithms proposed in [12] has some
limitations that render them less suitable to be deployed in
a mobile, wireless environment. The simple path replication
scheme catering to low storage requirements, just like our
scheme, substantially over/undershoots the optimal number of
replicas. The other approaches discussed in [12] are better
at converging to an optimal number of replicas but require
the bookkeeping of large amounts of information. Finally,
the design and the evaluation of such algorithms in [12] are
performed in a static wired environment and do not take into
account the dynamics typical of a mobile network, such as
that we consider.
As a second step, we benchmark our replication mechanism

with a simple caching scheme. We consider a pull-based
caching mechanism: a node issues a query for an item of
interest. Such a request can travel up to h hops and if
it is not satisfied within a timeout, the content is fetched
directly from the cellular network. After having successfully
obtained the content, nodes store it until the corresponding
validity time expires and serve requests through device-to-
device communication. Note that, if a node is not interested in
an item, it will not participate to the caching process, including
content transfer and storage. In summary, with the above
mechanism, information spreads from one node to another in a
manner that loosely resembles an epidemic diffusion process.
We remark that such a caching scheme eventually achieves

full content replication; instead, our goal is to find the optimal
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Fig. 7. Performance of caching and replication mechanisms in terms of (a)
number of replicas and (b) χ2 index, for 100% content popularity and 100 s
content validity time

number of replicas that minimizes content access costs, while
guaranteeing load balancing. Additionally, in the caching
scheme, nodes simply discard expired content, while in ours
replica nodes are in charge of downloading up-to-date versions
of the content. Pull-based caching approaches are sub-optimal
during the bootstrap phase of the content delivery process.
The caching scheme we evaluate here partially overcomes
this problem by allowing nodes to fetch content through the
cellular network. However, it is reasonable to expect a large
number of “external” data transfers: as a consequence, access
congestion may arise also at the cellular level. Finally, when
the content is unpopular, the diffusion process is even slower
and the above negative effects are amplified.
We now study the behavior of the replication and caching

schemes over time, assuming a content validity time of 100 s
and a single replica in the network at the beginning of the
simulation. The number of replicas present in the system over
time is depicted in Fig. 7(a). As expected, by achieving full
replication, the caching strategy is more expensive than our
replication scheme, in terms of storage requirements. One may
argue that fewer content replicas may lead to a suboptimal
placement, while full replication ensures that the content
resides where the demand is. The results in Fig. 7(b), however,
show that such an additional storage space usage does not
lead to any significant advantage in terms of the quality of
replica placement. The χ2 index obtained by comparing the
geographical distribution of replicas under the two schemes
with that of the CFL solution is essentially equivalent.
We now compare the performance of caching and replica-

tion considering the following metrics: (i) query solving delay,
intended as the time elapsed from the instant when a node
sends the first query until the request is fulfilled, by either a
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Fig. 8. Performance of caching and replication mechanisms in terms of query
solving delay (a) and percentage of cellular downloads (b), when the content
popularity varies between 25% and 100%

replica node or the cellular network; (ii) percentage of external
downloads, i.e., queries that resulted in an external download,
with respect to the overall requests generated in the network.
Fig. 8(a) shows the average delay (along with the 95%

confidence interval) for the replication and caching scheme as
the content popularity varies. The replication scheme outper-
forms the caching mechanism, and the difference in the relative
performance is amplified (in favor of replication), as the
content popularity decreases. Indeed, in this case fewer nodes
participate in the diffusion process that underlies the caching
scheme. As such, nodes have to wait longer for their queries
to be satisfied and, in general, they end up downloading the
content from the cellular network. Fig. 8(b) shows that the con-
tent diffusion process is hindered by content popularity: hence,
nodes resort to the cellular network to compensate for the
delays of device-to-device communication. By approximating
optimal content replication and placement, our mechanism re-
duces the content access costs, in terms of congestion. Instead,
the caching mechanism does not alleviate access congestion:
i) nodes in the vicinity of a content replica “collide” to obtain
the content through device-to-device communication, and ii)
nodes resorting to the cellular infrastructure also compete for
bandwidth. These intertwined aspects are exacerbated when
the content becomes stale: with our approach, few replica
nodes take care of the update process, while, with caching,
the whole content diffusion process has to start over.
In conclusion, our scheme clearly emerges as a simple,

efficient and performing alternative to traditional mechanisms:
by controlling the replicas number and placement, it appears
to be suitable especially when content popularity is not 100%.

VI. RELATED WORK
Simple, widely used techniques for replication are gossiping

and epidemic dissemination, where the information is for-
warded to a randomly selected subset of neighbors. Although
our RWD scheme may resemble this approach in that a replica
node hands over the content to a randomly chosen neighbor,
the mechanism we propose and the goals it achieves are
significantly different.
Another viable approach to replication is represented by

probabilistic quorum systems for information dissemination
and sharing [11], [13]. In particular, in [11] the authors
propose a mechanism akin to random walks to build such
quorums. However, the problem statement of quorum systems
differs substantially from ours (i.e., facility location). We
use location theory to model the problem of determining
where and, crucially, how many content replicas to place
in a dynamic network. Instead, the construction of quorums
caters at the following quality metrics: intersection probability
between individual quorums, access cost in terms of number of
messages (and not distance) and traffic load (this latter being
a goal that we also aim at). Node grouping is also exploited in
[14], where groups with stable links are used to cooperatively
store and share information. The scheme in [14], however,
requires an a-priori knowledge of the query rate, which is
assumed to be constant in time. On the contrary, our solution
can cope with a dynamic demand, whose estimate by the
replica nodes is used to trigger replication.
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Threshold-based mechanisms for content replication are
proposed in [15], [16]. In particular, in [15] it is the original
server that decides whether to replicate content or not, and
where. In [16], nodes have limited storage capabilities: if
a node does not have enough free memory, it will replace
a previously received content with a new one, only if it is
going to access that piece of information more frequently
than its neighbors up to h-hops. Our scheme significantly
differs from these works, since it is a totally distributed, ex-
tremely lightweight mechanism that makes the replica density
autonomously adapt to the network dynamics.
Finally, we point out that the RWD scheme was first

proposed in our preliminary work [5], whose focus, however,
is on mechanisms for content handover only.

VII. CONCLUSION
We addressed the joint problem of establishing the number

of content replicas to deploy in a wireless network and finding
their most suitable location. We studied the above problems
through the lenses of the facility location theory and proposed
a distributed, lightweight scheme that builds on local search
approximations of the multi-commodity capacitated facility
location problem and parallel random walk diffusion in non-
regular graphs. Our solution approximates with high accuracy
the solution attained by optimal centralized algorithms, while
also guaranteeing a fair load balancing at the nodes.
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