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Abstract 

 

Scleral buckling is a widely used surgical procedure that aims at repairing retinal detachments. 

Many materials and procedural techniques have been variously proposed and tested in an attempt to 

find the best combination for providing optimal results to the patient. This review highlights the 

evolution of scleral buckling implants and chronicles the main advances that have been made in 

such a context. Specifically, the limitations of the materials and implants fallen in disuse, as well as 

the advantages of currently adopted devices are critically examined and discussed. Future directions 

for the research are considered, underlining in particular the great potential carried by the 

development of accurate mathematical models for describing the postoperative evolution of buckled 

eye. These analytical models, supported by a comprehensive data set provided by advanced 

techniques of medical investigations, may become useful tools for helping surgeons to choose, and 

to design if necessary, the best buckling material and configuration to be used in each specific 

clinical case. 
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1. Introduction 

 

Retinal detachment (RD) is a serious pathological condition which can eventually lead to total 

vision loss in the affected eye if it is not promptly treated [1-3]. In order to treat the RD and 

depending on its extent, size and features, the surgeon may decide to perform surgical procedures of 

pneumatic retinopexy, scleral buckling or vitrectomy combined or not with scleral buckling [4-10]. 

During these surgical procedures, all the retinal holes, if present, must be sealed by laser 

photocoagulation or cryoteraphy in order to preclude the fluid flow into the subretinal space, 

thereby preventing retinal re-detachments.  

Scleral buckling is a widely used procedure for treating RDs: its effect is to maintain the 

neurosensory retina and the retinal pigment epithelium (RPE) attached to each other until the 

healing process accompanied by scarring has taken place, thereby ensuring that the retina remains 

tightly attached thereafter to prevent further RD; in addition, it also contributes to relieve vitreo-

retinal tractions [6].  

A wide range of natural or synthetic materials has been proposed and tested in the course of scleral 

buckling procedures carried out on animal models and humans and, at present, most surgeons 

considers permanent silicone buckle(s) as the “gold standard” choice. However, further 

improvements can be achieved: for instance, the design and development of resorbable buckles 

could be very suitable for treating RD in children, as such implants do not carry the need for 

surgical removal, which is necessary for non-absorbable buckles to allow the normal growth of 

child’s eye. In addition, recent advances concerning the modelling of eyeball deformation under 

scleral cerclage open new perspective towards the design of an optimal and tailor-made buckle 

depending on the peculiar features of each clinical case. 

This article, after giving a short overview on eye anatomy and physiology, as well as on the 

methods commonly adopted in retinal detachment surgery, focuses specifically on scleral buckling 

procedures and provides a comprehensive picture – at the best of the author’s knowledge – about 
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the materials used for manufacturing scleral implants. For the first time, the suitability, advantages 

and drawbacks of the materials currently in use, with particular emphasis on silicone implants, are 

outlined and extensively discussed and, finally, a forecast for the future is presented.     

 

2. Anatomy and functions of the eye: short overview 

 

The eyeball, or ocular globe, is approximately a spherical shell that is transparent at the front 

portion and opaque (or nearly so) over the remaining 80% of its surface [11]. The main structures of 

the eye are represented in Fig. 1. The optical path consists of a series of transparent liquids and 

solids: beginning from the exterior and proceeding towards the retina, it is possible to find in 

succession the cornea, the anterior chamber containing the aqueous humour, the iris, the posterior 

chamber (also containing aqueous humour), the crystalline lens, the large chamber containing the 

vitreous humour and, finally, the retina. Six extraocular muscles attached to the outer sclera alter the 

position of the eye and consequently the optical axis; focusing ability (often termed as 

accommodation) is accomplished by the crystalline lens, which is suspended by ligaments (the so-

termed zonules) attaching to the inner fibres of the ciliary muscle. Variations in the tone of these 

muscle fibres allow the zonules to tug on the lens, so that it can change shape to alter the focal 

length of the eye. 

Focusing on the posterior segment of the eye, Fig. 1 shows that the vitreous cavity is surrounded by 

three different tissue layers, i.e. the retina, the choroid and the sclera. The sclera is an opaque, semi-

rigid and stable layer of connective tissue, which provides mechanical support and protection to the 

intraocular structures and imparts the shape to the eyeball. Choroid is a highly vascularised tissue 

which is attached to the sclera on its outer side and to the RPE on its inner side. Choroid nourishes 

the RPE and the other retinal layers. The retina is a highly specialized multi-layered tissue that lines 

the inner eye wall and is responsible for vision. The light is first absorbed by photoreceptors (rods 

and cones), then converted to an electrochemical signal and transferred through the neural retinal 
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cells to the optic nerve, that eventually transmits the impulses to the visual cortex in the brain [12-

14]. The vitreous cavity is filled by a transparent gel (vitreous humour or simply vitreous) 

consisting of water (over 98%wt.), hyaluronic acid, collagens (mainly type II collagen) and small 

amounts of plasma proteins and ascorbic acid [15-19]. Vitreous can play a significant role in RD 

phenomenology [19-21]. Age-related changes occur in the vitreous, including the aggregation of 

collagen fibres into thicker bundles: in this process, called liquefaction, the hyaluronan molecules, 

previously located around the collagen fibres, become dissociated and form adjacent liquid lacunae 

[22,23]. These progressive changes evoke a decrease of shock-absorbing ability of vitreous; in 

addition, due to liquefaction, the vitreous mass gradually shrinks and collapses, separating and 

falling away from the retina in the course of a phenomenon called posterior vitreous detachment 

(PVD). PVD may cause problems in the retinal areas where attachment is tight, as the tractional 

forces can create retinal breaks allowing the access of vitreous fluid into the sub-retinal space.   

 

3. Features and treatment of retinal detachment 

 

3.1. Retinal detachment 

 

According to the specific pathogenic mechanism, RDs can be divided in three groups [1,6]: (i) 

rhegmatogenous RD (RRD), (ii) tractional RD (TRD) and (iii) exudative RD (ERD). In RRD, fluid 

from vitreous cavity enters the sub-retinal space through a full-thickness retinal break; in TRD, the 

retina is mechanically lifted up as a result of vitreous tractions, for instance induced by the presence 

of vitreoretinal membranes in the case of diabetic retinopathy; ERD is caused by fluid leakage from 

blood vessels due to inflammatory diseases. It is worth to underline that TRD and ERD are featured 

by no retinal holes.  

The natural course of RD may vary widely, from asymptomatic self-healing of local detachments to 

a rapidly occurring total detachment with large retinal tears [3,6,24-26]. The outcome of surgically 
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treated RD should take into account the evaluation of both anatomic success (retina re-attachment) 

and functional success (visual acuity recovery) [27]. With modern techniques, anatomic success 

occurs in more than 90% of cases with one or multiple operations. However, if the detachment 

includes the macular region, despite a good postoperative anatomical result, the possibility of a 

correct functional recovery is less than 40% [6].       

Usually, RRD occurs in middle-aged or elderly subjects due to the development of retinal tears at 

sites of abnormal vitreo-retinal adhesion and retinal weakening following PVD; a more limited 

number of cases derives from accidental ocular trauma [3,6,22,23]. In general, there is an increased 

risk in patients with severe myopia, lattice degeneration and aphakia/pseudoaphakia, as well as in 

the subjects affected by the retinopathy of prematurity or inherited retinopathies [1,4,6,28]; 

specifically, proliferative diabetic retinopathy and proliferative vitreo-retinopathy (PVR) are serious 

risk factors for TRD [1,6,29-31].   

 

3.2. Current methods for treating retinal detachment 

 

Treatments of RD aim either at preventing further progression of retinal break(s) or at re-attaching 

the neural retina to the underlying RPE. The first option, essentially based on laser 

photocoagulation,  is used mainly for treating small localized detachments without significant PVR 

[1,4-6]. For the surgical treatment of RD, three approaches are currently in clinical use [6,7,32]: (i) 

scleral buckling procedure, (ii) vitrectomy and (iii) pneumatic retinopexy. In any case, it is essential 

a careful examination and localization of all retinal breaks, that must be sealed to stop the passage 

of fluid from the vitreous cavity into the sub-retinal space, thereby preventing retinal re-

detachments [6]. 

Scleral buckling involves the support of retinal break area(s) by means of a scleral buckle (Fig. 2), 

that may be localized on a limited portion of the eye wall (the so-called plombage) or spread on the 

whole circumference of the eye in the case of multiple or giant breaks (the so-called 360° buckling) 



 7 

[10]. The implant, which can be placed either episclerally or intrasclerally, creates a buckling effect 

(indentation) which apposes the neural retina to the underlying RPE. Retinal breaks can be treated 

by a cryoprobe or laser to achieve local scar formation in order to seal the hole and to maintain the 

neurosensory retina attached to the RPE. The location and depth of indentation can be monitored 

during surgery, and it is securely maintained in the desired place by suturing the buckle in situ. 

Normally, the sub-retinal fluid is gradually re-absorbed by the active transport through the RPE, but 

drainage can be also performed during operation. In the course of a normal follow-up, the implant is 

progressively surrounded by a collagenous, tough and avascular capsule, that becomes translucent 

with time. Scleral buckling can be also combined with vitrectomy or, more rarely, air injection in 

the course of the so-called D-ACE (Drain, Air, Cryotherapy, Explant) procedure. Alternative 

approaches to buckle implantation, which involved the use of a peribulbarly-placed inflatable 

silicone balloon for 1-2 weeks in order to achieve a temporary indentation, are also reported 

[33,34]; today, these procedures have been generally abandoned due the poor long-term results in 

comparison with the other surgical techniques.   

Vitrectomy involves the removal of vitreous humour and its temporary substitution with a gaseous 

or liquid tamponade agent [8,9,35,36]. This complex surgical procedure may be necessary to 

completely remove retinal tractions, for instance in the case of TRD and/or if surgeon’s view is 

hindered by bleeding inside the vitreous cavity – which can also results in blurred vision for the 

patient. The development of an ideal vitreous substitute which can be left in place is a challenging 

and attractive field of research in ophthalmology; this topic has been reviewed in detail by other 

authors [8,9,37]. In the course of vitrectomy, the retinal breaks can be treated by cryotheraphy, 

diathermy or laser endophotocoagulation.  

Pneumatic retinopexy involves the injection of an expansive gas into the vitreous cavity to flatten 

the retina for allowing the sub-retinal fluid to be pumped out from beneath it [1,6,7]. The patient’s 

head is properly positioned so that the gas bubble floats exactly to the detached area and presses 
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against it; cryopexy or laser photocoagulation can be used to seal the retinal tear. The gas bubble is 

gradually absorbed by the eye while a scar forms around the retinal hole, thereby sealing it securely.  

 

3.3. Retinal re-detachment 

 

Apart from surgical inaccuracies, such as incorrect positioning of buckle(s), incomplete sealing of 

all retinal breaks and undetected holes, the most common reason of the anatomical failure of retinal 

reattachment is PVR [29-31]. PVR involves the formation of contractile membranes on both sides 

of the detached retina and even within the vitreous, that can exert tractional forces on the retina 

itself thereby preventing its successful reattachment. In addition, already attached retinal regions 

could re-detach due to the forces of these contractile membranes, formed by proliferating cells, such 

as RPE cells, fibroblasts, macrophages and glial cells, that have migrated and become attached to 

the retina. The cells can gain access to the vitreous cavity through retinal breaks but also during 

surgery. In the course of surgical procedures, it is essential not only to close all the breaks, but also 

to relieve the retinal tractions, as well as to prevent the formation of new tractions [38]. Especially 

in the case of severe PVR, the relief of retinal tractions can be successfully achieved by vitrectomy; 

in milder PVR, less invasive methods can be sufficient, such as external support by scleral buckling 

implants. PVR causes shrinkage of the retina, making the retinal surface area smaller than that of 

the underlying choroid; scleral buckles are able to decrease retinal stresses by decreasing the 

circumference of the eye wall through a proper indentation and provide local support to the area(s) 

of retinal breaks. Therefore, it should be taken into account that the removal of scleral buckles, due 

to infection, pain, intrusion or other complications, may carry the risk of retinal re-detachment as 

there is no longer the relief of retinal tractions induced by the implant [39].       

 

4. Biomaterials for scleral buckling 
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In the beginning, the design of scleral buckling materials and implants was quite easy: essentially, 

the surgeon needed an element that would encircle the eye partially or totally along globe equator, 

thereby creating an indentation that would approximate the neurosensory retina to the underlying 

RPE. Progressively, surgeons developed new element shapes and styles in order to improve the 

outcome of the specific applications they had in mind. 

Table 1 chronicles the development of scleral buckling materials and implants, that will be 

described in detail in the following sections: specifically, the advantages and drawbacks of each 

option will be underlined and discussed. The materials used for scleral buckling (refer to Table 1) 

were generally experimented in human patients; if studies in animals were also performed, the 

animal recipient(s) will be specified. Particular emphasis will be devoted to silicone (solid or 

porous) implants, that, at present, are the only buckles commercially available on the market and 

routinely used in the clinical practice. Almost 100 style options are currently available to 

ophthalmic surgeons seeking an implant designed to achieve a particular width, height or shape of 

buckle. The evolution continues today as surgeons develop new surgical procedures, identify new 

needs and suggest new styles to meet specific requirements. 

 

5. Permanent implants 

 

5.1. Polyviol 

 

In the early 1950s, Custodis implanted the first permanent buckle by using polyviol as buckling 

material [40,41]. Polyviol was a red rubber, constituted by poly(vinyl alcohol), Arabic gum and 

Congo red, that could be compressed over the sclera to about half of its original thickness; the 

buckle was held in place by means of silk sutures. Over the next few hours after surgery, the explant 

expanded thereby creating a high buckle that closed the retinal breaks and reattached the retina 

without drainage of sub-retinal fluid. However, polyviol was abandoned soon as it induced serious 
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tissue reactions, such as severe scleral infection; in addition, polyviol buckles were considered too 

bulky, needing long intrascleral sutures along the implants.  

 

5.2. Polyethylene 

 

In 1957 Schepens used polyethylene (PE) tubes as either segmental or encircling implants, placing 

them either intrasclerally or in the equatorial eyeball plane with scleral resection, respectively [42]. 

PE was attractive due to its easy manufacturing to produce tubes with different diameters, from a 

surgical viewpoint, a suture could be easily into the tubing lumen for regulating buckle tension and 

height [42,43]. However, PE tubing was very stiff and exerted a too severe pressure on the ocular 

globe; therefore, thin tubes (external diameter up to 2 mm) were tested to overcome such drawback,  

but, in this way, only a poor buckling effect was achieved [10,43]. In addition, the PE rigidity 

increased in vivo with time and the narrow bearing surface of tubes eventually caused erosion of the 

underlying sclera and choroid [44]. 

 

5.3. Silicone 

 

At present, silicone is commonly considered the material of choice in scleral buckling procedures 

due to its excellent biocompatibility, chemical inertness and long-term stability in vivo. Silicone 

implants have been extensively reported to be well tolerated by ocular tissue [6,10,45,46]: in 

general, a slight inflammatory reaction occurs during the first months after surgery, whereas only a 

capsule layer without inflammatory cells is detected around the implant after long-term follow-up 

periods (18-204 months [47]). However, even with careful operative techniques and appropriate 

materials/implants design, evidences of adverse local tissue reactions and postoperative long-term 

complications have been occasionally reported, such as persistent inflammation, dramatic increase 

of intraocular pressure (IOP), scleral thinning/erosion under the implant, intrusion into the vitreous 
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cavity, migration/extrusion of the implant, alteration of ocular blood circulation, diplopia, pain and 

foreign body sensation [48-59].  

A wide range of style options is currently available for ophthalmic surgeons seeking an implant able 

to achieve a specific width, depth or shape of buckle. The following sections give a short overview 

of the different silicone implants developed over time.    

 

5.3.1. Solid silicone implants 

 

The first use of a silicone buckle was reported by Girard [60], who employed a simple cylindrical 

solid element (Fig. 3a): its softness and elasticity overcame the problem of scleral erosion that 

featured its predecessor, the PE tube [44]. However, the rod-like shape of the Girard’s solid silicone 

element allowed only a very localized buckling effect on ocular circumference, thereby limiting its 

actual usefulness [61]. Therefore, a new design was conceived and in 1965 flat bands of various 

width (Fig. 3b) were proposed and tested as encircling elements [10]. The silicone bands answered 

the need for a grater lateral support and their flattened configuration (thickness within 0.5-1.0 mm) 

stretched better and more evenly than rods under the influence of IOP. Today, the typical width of 

solid silicone bands is within 2.0-2.5 mm; broader silicone strips  (3-5 mm) are particularly 

indicated when the surgeon wants to achieve a wide buckling effect, such as in the cases of serious 

PVR. In 1993 Gray tested a modified circling band, commonly called silicone lace, that involved 

the presence of a removable stainless steel aglet attached to one of its ends [62]. The aglet provides 

a solid place to firmly grasp the band without damaging the silicone and to facilitate the threading 

of the lace around the globe either intrasclerally through scleral tunnel or episclerally by sutures.   

The use of silicone encircling bands led the surgeons to develop a new method of securing the 

elements in place. In fact, if with previous PE tubing buckles the surgeons could pass the securing 

suture through the tube lumen to tie the two ends of the element in place [42,43], this approach was 

no longer possible with solid silicone elements. Hence, tantalum clips were specifically developed 
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to meet this need: these metal elements were found to be highly biocompatible, ductile and less 

bulky than sutures, thereby allowing the surgeon to easily adjust the tension of the band; in 

addition, being tantalum a non-magnetic material, the clips do not cause problems if MRI 

investigations need to be performed on patients. Another method for holding the band in place, 

which was developed by Watze in 1963 [63], involves the use of round silicone sleeves (Fig. 3c), 

through which the ends of the circling elements are threaded from opposite directions. 

Grooved silicone strips (Fig. 3d,e) were tested for the first time by Regan et al. in combination with 

the basic encircling band as versatile means for creating different buckling configurations [64]. In 

fact, by placing a grooved element under a silicone band, it is possible to increase the width of the 

scleral region that can be engaged by using an encircling band alone. Furthermore, different buckle 

configurations could be achieved by changing the geometry of the grooved underlying element (Fig. 

3d,e). At present, the grooved strips are manufactured by an extrusion process in several appropriate 

sizes and shapes, and their choice depends on the specific height, width and profile required by the 

final buckle.    

As an expansion of the concept of  grooved strips, Schepens et al. [61] proposed the use of 

encircling silicone “tyres” having a groove in their outer surface for the placement of a silicone 

band (Fig. 3f); often, only a small segment of the tyre is necessary. Silicone tyres are stiffer than 

grooved strips, as they are manufactured by moulding the silicone rubber into a particular shape; 

this is a significant advantage because it is possible to impart such implants an inner curvature 

approximating that of the eyeball. Therefore, silicone tyres are easy to be place and, although they 

remain soft and pliable, the moulded geometry can create a buckle of a desired shape. Silicone 

tyres, which are commercially available in different configurations (basically convex, concave and 

asymmetric geometry), are particularly suitable for treating multiple retinal breaks spread on a large 

area and for counteracting the vitreous tractions in the case of TRD. 

Meridional implants (Fig. 3g) were introduced with the aim of minimizing the postoperative 

problems associated to retinal puckering along the posterior edge of a large retinal tear [64]. In 
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order to prevent these complications, a wide buckle is required in the critical region around the 

retinal break(s): meridional implants, used in conjunction with a traditional silicone band, can 

successfully broaden the buckling area for preventing retinal folding after sub-retinal fluid release. 

Silicone wedges, which are properly shaped to follow the eyeball curvature [65,66], can be also 

used for high and wide local buckles (Fig. 3h).  

 

5.3.2. Sponge silicone implants 

 

In 1965, Lincoff was seeking an elastic implant that, like polyviol one, would create a buckle able 

to increase in height postoperatively so that IOP returned to normal. Solid silicone rods seemed to 

be too stiff and, therefore, porous silicone elements (sponges) with different pores content were 

experimentally tested [67,68]. The tissue reactions to silicone sponge were substantially analogous 

to those observed for solid implants; in addition, the elastic properties of sponge made external 

drainage of sub-retinal fluid unnecessary in most RD operations, thereby simplifying the surgical 

procedure. Radially placed round (Fig. 4a) or oval (Fig. 4b) sponges were found to be more 

effective in closing retinal breaks than the traditional circumferentially oriented implants [69]. 

Large tears, however, can be treated only with a circumferential buckling; for this purpose, an oval 

sponge can be successfully used as encircling band in combination with grooved sponge elements 

with proper thickness able to perform an extensive indentation (Fig. 4c,d). Today, sponges with 

different length and diameter are commercially available; it should be underlined that sponge 

thickness has been progressively reduced in modern implants (from 5-6 mm for traditional sponge 

to 2-3 mm for the so-called “half sponge” shown in Fig. 4e) to minimize the risk of extrusion and 

subsequent infection at the implant site [70]. In addition, too thick sponges were found to cause 

problems of ocular motility postoperatively. 
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Hollow (or tunnel) sponge (Fig. 4f) was designed to be used with a circling band threaded internally 

through the whole length of the sponge: this allows a high and localized buckle with little reduction 

of eyeball volume and minimizes the risk of buckle migration. 

Oblong (or ellipsoidal) sponge (Fig. 4g) is useful for procedures in which a wide buckle is 

indicated; in the past, surgeons tried to fulfil this requirement by placing two sponge pieces together 

in parallel.          

Snyder et al. developed the so-called L-shaped sponge (Fig. 4h) for repairing complicate RDs, such 

as tears that fall slightly behind the buckle [71]. The L-shaped sponge is positioned radially and its 

function is the same as the meridional solid silicone implants, i.e. the broadening of the area of 

scleral indentation in the meridian of retinal tear(s). 

Silicone sponges were also implanted after impregnation with antibiotics to limit the bacterial 

colonization of the buckle, but this procedure was demonstrated to be substantially unnecessary and 

unhelpful [72,73].  

 

5.4. Polytetrafluroethylene 

 

The use of solid polytetrafluroethylene (PTFE) as scleral buckle material was proposed in the mid 

1960s by Wolter et al. [74,75], who used Teflon tubes as cerclage elements. However, such 

implants showed analogous drawbacks to those of PE buckles, as also reported by Deodati et al. 

[76]. 

Porous expanded PTFE (e-PTFE), commercially known as Goretex, has been more recently 

proposed by several authors for scleral buckling procedures [77-81]. Many studies reported the 

colonization of porous PTFE buckles by fibrocellular tissue, as well as the adhesion to surrounding 

conjunctival tissue [77-79,81]: colonization by fibrovascular tissue can represent an extra-challenge 

for the surgeon if implant removal is required in the case of re-operation. Adverse or inflammatory 

responses of tissues to e-PTFE were minimal or very mild [77-80]: the material was generally well-
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tolerated, thereby demonstrating a good biocompatibility, except for the study of Sheu et al. who 

reported complications associated to massive strong adhesion [81]. 

In the early 2000s, silicone bands coated with porous e-PTFE have been tested with quite opposite 

outcomes. Roldan-Pallares et al. [82] used e-PTFE-coated silicone buckles in 32 patients affected 

by RRD and reported an excellent material biocompatibility without complications throughout the 

whole follow-up period (11 months). On the contrary, Mortemousque et al. [83,84] reported 

massive adhesions between material and surrounding tissue accompanied by local inflammatory 

reaction; the porous e-PTFE layer was also colonized by inflammatory cells and granulomas with 

calcium deposits were observed. 

 

5.5. Hydrogels 

 

Since the early 1970s, three type of hydrogels, i.e. poly(glyceryl methacrylate) (PGMA), poly(2-

hydroxyethyl acrylate) (PHEA) and poly[methyl methacrylate-co-(2-hydroxyethyl methacrylate)] 

(MAI), have been widely tested in scleral buckling procedures [10,85-91] and MAI has been 

commercially available under the name of Miragel for several years. Hydrogels, thanks to their 

softness, ease of shaping and defined swelling under hydration, have been considered for many 

years as the revolutionary materials in scleral buckling surgery. Some authors also emphasized the 

potential of hydrogels to act as devices for the in situ release of hydrophilic drugs, which could be 

an additional advantage over solid silicone implants in controlling infections [92]. After the initial 

enthusiasm, however, many surgeons realized progressively that hydrogel buckles could induce 

severe mid-term and long-term complications [93-99]. Specifically, PGMA was found to suffer 

from a lack of tensile strength when swollen and PHEA exhibited a dramatic tendency to fragment 

after swelling [95]. MAI implants, which could be placed both intrasclerally and episclerally, 

seemed to offer better bulk features and were found to promote the formation of a strong 

surrounding capsule of connective tissue [45,47,100,101]; although after 3 weeks from implantation 
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a mild inflammatory response was generally detected, after 3 months almost no inflammatory cells 

were found [88]. In spite of their excellent biocompatibility, however, in many cases MAI buckles 

need to be removed due to foreign body sensation, ocular motility limitations, subconjunctival 

bulge or pain complained by patients [96,97,99]. These drawbacks were essentially ascribable to 

hydrogel overexpansion: Oshitari et al. quantified this problem and reported that the cross-sectional 

area of MAI implant could increase up to 185% due to excessive swelling [97]. In addition, 

experimental studies carried out in both rabbits and humans demonstrated that MAI implant became 

surrounded by a capsule of connective tissue, but the inner surface of this capsule was irregular due 

to the presence of hydrogel debris and foreign body giant cells, which indicated material 

fragmentation [45,47,100,101]. Therefore, also MAI implants have been progressively fallen in 

disuse, particularly due to buckle degradation and friability occurring after about 10 years, as 

reported by several researchers [93,94,98].   

 

5.6. Other non-absorbable buckling materials 

 

Materials different from those described in the previous sections have been occasionally used for 

permanent buckles manufacturing (Table 1).  

In 1937 a cotton gauze pad was used to temporarily indent the eye wall for approximating the 

retinal layer with the choroid: this is considered the first procedure of scleral buckling, but tissue 

reactions to the material were not studied [102]. 

In 1958 Arruga tested nylon braided threads, commercially known as Supramid
®
, as encircling 

elements to overcome the drawbacks related to PE tubes [103]. It should be underlined that these 

threads were not properly used as a “buckle” but rather for suturing the wall of the eye to create a 

“fold” which then created a buckling effect. Moderate inflammatory reaction was observed by both 

Arruga [103] and Witschel et al. [104] around the implant, but the material could cause erosion of 

the underlying sclera, thereby leading to intrusion to the choroid (the so-called “string-syndrome”). 
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Commercially available polyester bands (Mersilene
®
) with broadness of ~5 mm were also tested as 

buckling materials [104-106]; such implants were generally well-tolerated by tissues, but in some 

cases scleral erosion occurred. 

In most cases, surgeons selected polymeric materials as buckling elements, due to their easy 

manufacturing, shaping and versatility in the course of surgical procedures; an unusual approach 

was followed by Gloor [107], who  indented the eyeball by an episclerally-placed silver clasp. After 

6 months, however, it was necessary to remove the cerclage clasp to avoid serious deformation of 

the ocular globe due to the too high buckling effect. 

 

6. Absorbable implants 

 

A wide range of absorbable materials of biological or synthetic origin has been tested to achieve a 

temporary buckling effect. Biological materials have been derived from human or animal tissues, 

and they could be used for performing transplants (autografts, allografts and xenografts) or properly 

treated for obtaining suitable substances, e.g. collagen or fibrin. Biological materials carry some 

problems, such as limited availability and morbidity at the harvest site for autologous tissues and 

risks of viral infections and disease transmission for donor (living or cadaver) tissue; in addition, the 

resorption rate of such materials can vary greatly depending on their origin.  

Synthetic polymers, which have recently re-attracted the interest of researchers, can successfully 

overcome most problems typical for biological grafts, offer more controllable and predictable 

absorption kinetics and can be easily tailored to obtain an implant of desired size and shape.  

 

6.1. Biological materials 

 

6.1.1. Tissue transplants 
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6.1.1.1. Autografts 

 

Tendon autograft provided indentation for 3-4 months with good tissue tolerance [108]. Autologous 

transplants from temporalis muscle and fascia lata evoked minimal histological responses without 

inflammatory reaction and foreign body giant cells [109-111]. These autologous materials, 

however, could carry the drawback of morbidity at the donor site. Autologous tarsus was placed by 

Mortada et al. in a scleral pocket as a segmental buckle, thereby creating an indentation lasting for 

2-8 weeks [112].    

 

6.1.1.2. Allografts and xenografts 

 

Rolled scleral tissue from donor was placed episclerally to create an indentation lasting for a few 

months [113,114]. Mild and localised inflammatory reaction was observed, without toxicity or 

necrosis of surrounding tissues; indentation became progressively flatter with time and finally 

disappeared in about 8 months-1 year [113,114]. Lyophilized sclera with histoacryl tissue adhesive 

was also tested, and it evoked only a localised inflammatory reaction with good clinical results 

[115,116]. 

Dura mater was used by Winter et al. in 76 patients and no complications due to the material were 

reported [117]. 

Weissgold et al. successfully used pericardial patch grafts from cadavers for rescuing exposed 

scleral buckles [118]. 

Also skin was used as an episcleral and intrascleral implant by Chien et al. [119] and Zeng et al. 

[120] with generally good clinical results: the local reactions were slight and well-tolerated in most 

cases, although there were a few patients who experienced serious inflammatory complications. 

Donor collagen prepared from cattle tendons was used in form of sheets and placed intrasclerally by 

L’Esperance [121]. The indentation effect maintained unchanged for 6-8 weeks, then started to 
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flatten and eventually disappeared in about 10 months; it was observed that the material became 

part of the surrounding tissues. More recently, Wu et al. [122] prepared and tested 

collagen/glycosaminoglycan polymers as buckling materials with promising clinical results. 

 

6.1.2. Gelatin 

 

Gelatin is prepared by partial hydrolysis of collagen from animal tissues such as skin or bones; it 

has been normally used for scleral buckling procedures in form of sheets of adjustable width and 

thickness within 0.5-1.0 mm [123-130]. Many surgeons found gelatin very versatile and suitable as 

buckle material due to its ease of shaping to fulfil a wide range of specific surgical needs; however, 

gelatin presented some drawbacks. For instance, gelatin needed to be hydrated before implantation 

even for as long as 1 hour, which led to a significant increase of operation time. The major problem 

associated to the use of gelatin was the persistence of the buckle indentation on the eye wall: the 

material created a buckle which remained for 1-2 months and then completely disappeared in about 

6 months [123-125], but after only 3-4 weeks the implant started to soften and to fragment [124]. In 

addition, gelatin could induce a mild but persistent inflammatory reaction in ocular tissues; 

however, it was well defined and localised and no damage to sclera, choroid or retina were 

generally detected [123,125].  

 

6.1.3. Surgical gut 

 

In the course of experiments performed in dogs and reported by Dellaporta, surgical gut was used as 

suture material for creating a temporary indentation on the eye wall [131-135]. Specifically, one or 

two sutures were placed intrasclerally or as encircling elements within scleral folds; a remarkable 

inflammatory reaction was observed to occur for about 10 days in the choroid and in the ciliary 

body within the operation site [132-135]. This tissues response could be ascribable either to the 
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extensive operative technique, as the securing mattress sutures were placed all the way along the 

encircling scleral folds, or to the presence of intrasclerally-placed gut sutures. The indentation 

persisted from 5 weeks up to 2 months and then became progressively flatten. The surgical gut was 

surrounded by fibroblasts, lymphocytes and giant inflammatory cells before its total degradation in 

5-6 months [132,134,135] and, finally, after 1 year the sclera was found to be normal again 

[134,135].  

 

6.1.4. Fibrin 

 

Fibrin was used in form of a single rod (diameter of 0.6, 0.8 or 1.1 mm) or open-cell sponge and 

placed intrasclerally in humans [136,137]. The indentation persisted only up to 1 month 

postoperatively and the clinical results were not very good. In fact, the inflammatory reaction of 

tissues to the buckling material was mild – histological evaluations carried out after 12 days showed 

few foreign body giant cells around the implant –, but the retina remained detached in some areas, 

thereby demonstrating the substantial uselessness of such a buckle [136].  

 

6.1.5. Injectable materials 

 

Temporary buckles based on injections of different substances into the suprachoroidal space have 

been also attempted: these procedures produced an adequate buckling effect only for a short time (< 

15 days). Smith injected air subsclerally, but the tissue reactions and clinical outcomes were not 

reported [138]. Sachsenweger et al. used homogenized autologous fat, that was reabsorbed slowly 

but incompletely from subscleral tissue [139]. Sodium hyaluronate was also tested and it was found 

to create a temporary buckling effect lasting up to 14 days [140,141]; no inflammatory cells were 

observed, but there was evidence of a few intrachoroidal cysts and fibrosis in the choroid [141]. 
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A serious problem related to these techniques, which today have been abandoned, was the risk of 

choroidal perforation during surgery, with subsequent haemorrhage. In addition, the control of 

buckle shape and size by injection was very poor. 

 

6.2. Synthetic materials 

 

6.2.1. Urethane-based polymers 

 

Polyurethane (PU) sponges were used by Kothe et al. experimentally in rabbits and clinically in 

human patients [142,143]. In both cases, follow-up studies showed fibrocytes growth and evidences 

of foreign body reaction after 24 weeks from implantation; however, the buckle structure still 

remained well distinguishable after 48 weeks. In general, PU sponge was considered to have been 

incorporated rather than bioabsorbed by surrounding tissues, although PU is known to be slowly 

reabsorbable [144]. In most patients, after 72 weeks the materials was well-tolerated and no 

evidences of inflammation were observed [143]; however, PU sponge often exerted a too high 

buckling effect, thereby inducing a dramatic increase of IOP postoperatively. 

Foulds et al. tested an urethane-based polymer as suprachoroidal buckle material [145]: an acute 

inflammatory reaction was observed after few hours, as well as the persistence of macrophages at 

the implantation site around the material after a 10-month follow-up period. After 13 months, the 

material disappeared but local scleral thinning and choroidal fibrosis were detected.  

 

6.2.2. Poly(lactic acid),  poly(glycolic acid), polydioxanone and related copolymers   

 

In 1983 Wilson used for the first time absorbable materials, i.e. poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA) and polydioxanone (PDO), as scleral buckling elements in rabbits [130]. 

Specifically, the implants were made of braided fibres of PGA, PLA/PGA composite (PLGA) and 
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PDO (diameter of the final encircling element ~0.5 mm); 1-mm wide bands of PDO were also used. 

The indentation persisted for 1 month with PLGA and PGA buckles, and for 10 weeks in the case of 

PDO implants. Minimal foreign body reactions, with giant cells and fibroblasts, were detected for 

all the implants; the buckles were visible no longer after 6 month. In addition, PLGA buckles were 

tested in 20 patients as encircling bands: examinations via indirect ophthalmoscopy showed that 

after 4 weeks there was little or no indentation in 12 patients; in all cases, the indentation has 

completely flattened by 2 months. 

Marti et al. used commercially available absorbable synthetic sutures as rolled nets made of 

polyfilaments of PGA and PLGA in rabbits and monofilaments of PDO in humans [146-148]. In the 

animal model, PLGA was completely absorbed by the second month and PGA by the third month 

after implantation. In patients, PDO absorption began after the fourth month, then the indentation 

progressively reduced and eventually flattened after 6 months. In general, a mild chronic 

inflammatory reaction was seen around the implantation site but the materials were described as 

well-tolerated by ocular tissues. 

In the early 1990s, Guthoff et al. tested cylindrical implants made of PLGA and PDO (weight ratio: 

7 : 1) in rabbits [149]. The buckles created an indentation that decreased rapidly to ~50% and ~20% 

of its original size after 15 days and 5 weeks, respectively. A slight inflammatory reaction was 

observed at the implantation site, but no scleral thinning or infiltration by giant foreign body cells 

was noticed.  

Biardzka et al. used PDO as a single encircling suture placed episclerally in rabbits and human 

patients: the indentation started to flatten after 3 months and completely disappear in about 5 

months [150]. The local tissue reaction around the implant involved the presence of mononuclear 

and giant foreign body cells up to 3 months after surgery, whereas the suture was replaced by 

connective tissue by 6 months and, eventually, the sclera returned normal. 

Recently, Lansman et al. tested fibrous poly(LD-lactide) (PLDLA) implant as an episcleral buckle 

in rabbits [151,152]. The tissue reactions were studied in detail in follow-up periods ranging from 3 
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days to 48 weeks after surgery and, in addition, the results were compared to those obtained with a 

silicone sponge buckle implanted by analogous procedure up to a 21-week follow-up. In both 

groups, the depth of indentation decreased over time with comparable rate: specifically, after 21 

weeks the indentation was found ~75% of its initial size, and after 48 weeks implant degradation 

was not complete yet [151]. It is worth underlining that the scar formed by the cryoprobe normally 

matures during the first postoperative month, keeping the retina attached thereafter; hence, the 

indentation of PLDLA buckle persisted more than it should have been strictly necessary, but this 

can be a further “guarantee of security” for a successful long-term outcome. 

 

7. Summary of the present strategies 

 

The procedure to be followed by surgeons for treating RD has to be carefully selected depending on 

each specific clinical case. Non-invasive procedures based on laser photocoagulation are usually 

adopted for preventing further enlargements of small retinal hole(s), thereby preventing RRD. [1,4-

6]. Pneumatic retinopexy or scleral buckling are commonly used for treating uncomplicated RRDs, 

whereas in the case of multiple retinal breaks, giant tears or TRD, vitrectomy by itself or the 

combination between vitrectomy and scleral buckling are adopted [6,7,32,35,36,153].  

In most cases, the failure of RD treatment by using scleral buckling surgery is not due to an adverse 

interaction between tissue and buckle material, but it can be attributable to subsequent PVR 

complications [29-31,38]. Surgeons have proposed and tested many materials and implant designs 

(Table 1) in order to seek the best combination able to (i) be easily implanted, (ii) maximize the 

results for the patient and (iii) minimize adverse tissue reactions. In the author’s opinion, the 

development of scleral buckling design can be considered “evolutionary” rather than 

“revolutionary”, as surgeons progressively tried to improve buckle performances and clinical 

outcomes by overcoming step-by-step some specific drawbacks which featured the implants 

proposed by their predecessors.   
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All materials reported in Table 1 but silicone have been progressively abandoned or fallen into 

disuse. However, a particular mention should be dedicated to hydrogels: in fact, hydrogel implants 

have been considered for long time superior to silicone ones, especially as they were softer and 

seemed to carry a lower risk of infection (less than 1% vs. 2-5%) [45,47,92,100,101]. However, 

hydrogel buckles were found to fragment over time and to cause long-term complications, such as 

foreign body sensation due to overexpansion and pain for patients [93-99]. 

At present, silicone is commonly considered the best standard choice in scleral buckling procedures 

[6,10,45-47]. Silicone scleral implants are hydrophobic, soft, biochemically inert, non-allergenic, 

stable in a wide range of temperatures, economical and can retain their physical properties for an 

extended period of time in vivo. A tough, collageneous capsule is normally found to develop around 

the episcleral implants, thereby sealing off the buckle and helping to minimize the opportunity for 

later infection or migration of buckling element(s). With intrascleral implants, the capsule also 

grows between the implant and sclera, thereby protecting against tissue erosion. Because silicone 

does not allow tissue in-growth, the implant can be easily slid out of the capsule in one piece 

without trauma if cerclage revision does become necessary by a second operation [154-157]. In 

comparison with solid implants, silicone sponges are more elastic and they produce a high buckle 

that usually increases postoperatively; sponges are usually placed episclerally, but can be also 

sutured under scleral flaps if desired. 

From surgeon’s viewpoint, solid/sponge silicone implants are very versatile, as they are 

commercially available in a wide variety of shapes to fulfil – at least virtually – every buckling 

requirement (Fig. 3 and Fig. 4). In addition, such buckles do not require scleral resection and, 

therefore, allow conservative surgical procedure. If during surgery or postoperatively the buckle is 

found to be improperly placed, the implant can be re-positioned by moving the anchoring sutures so 

that the correct position is attained. Finally, if the buckling procedure is not successful, the eye 

remains sufficiently intact to permit other procedures to be performed. 
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The low complication rate associated to solid and porous silicone implants involves that there is 

relatively little demand for new materials, in contrast, for instance, with the situation of vitreous 

substitutes [8,9,37]. However, open fields of research still remain to be explored, such as the 

development and investigation of absorbable materials suitable for temporary buckles, that recently 

have re-attract researchers’ interest [122,151,152]. In children and very young patients the use of a 

permanent silicone buckle could cause severe long-term complications, such as dramatic eyeball 

deformation of the ocular globe, local decrease of blood circulation and IOP rise while eye grows 

physiologically; for these reasons, at present a second operation for buckle removal is often 

necessary. The use of a temporary buckle, manufactured by using synthetic biodegradable polymer, 

seems to be a good option that allows to overcome all these drawbacks, although it can not be 

ignored that the short duration of buckle indentation may carry the risk of retinal re-detachment 

[39]. 

 

8. Towards an ideal scleral buckling material: an integrate approach 

 

Although silicone implants are commonly considered the “gold standard” choice and the high 

variety of styles and designs allows the surgeon to treat successfully a very wide range – at least 

virtually – of RD requiring a scleral buckling procedure, nonetheless new researches and 

experimentations are essential to further improve the clinical outcomes of such operations. In the 

author’s opinion, the synergy between advanced techniques of medical investigation such as the 

high-resolution computerized tomography (CT), magnetic resonance imaging (MRI) and ultrasound 

imaging (USI), which are able to give accurate information on the buckle-induced geometric 

changes of the eyeball [158,159], and mathematical models describing such deformations [160-164] 

may provide a powerful and helpful tool for surgeons not only to optimize the RD treatment 

procedure, foreseeing in advance the “optimal” buckle configuration, but also to prevent 

postoperative complications that might occur in the patient’s eye. The application of a stretched 
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buckling band, often coupled with local buckling elements, induces an indentation of the sclera and 

the choroid beneath the band, thereby causing a decrease of the eye volume and an increase of the 

IOP. After the surgery, in the course of a couple of days the IOP usually goes back to its nominal 

value by an autoregulated decrease of aqueous humour and vitreous production within the eye. 

When the pressure is eventually back to its normal value, the scleral indentation induced by the 

cerclage band is deeper than immediately after surgery. At present, it is left to surgeon’s expertise to 

predict the final deformation of the eyeball, as well as the IOP rise caused by the buckling. A deep 

final indentation is desirable, but the IOP must be kept within a physiologically admissible range to 

avoid serious complications, such as acute glaucoma in the first days after surgery. Furthermore, in 

some cases the IOP stabilized postoperatively at a value higher than normal, thereby causing mild 

or even serious glaucoma in the patient. By evaluating through CT, MRI or USI the patient’s eye 

initial geometrical, physical and mechanical features, as well as the RD peculiar characteristics, and 

then by implementing accurate biomechanical models of buckled eye, which some authors are 

recently developing [161-164], it could be eventually possible to simulate patient’s eye deformation 

in response to different scleral buckle configurations and, therefore, it would be feasible to tailor an 

“ideal” scleral buckle – in terms of size, shape, elasticity, optimal position – for each single clinical 

case. 

Besides the case of permanent buckles, an analogous approach could be carried out also for 

evaluating the optimal configurations of absorbable implants; for this purpose, it is also necessary to 

take into account the specific polymer formulation as it strongly affects the degradation kinetics of 

the material. Analytical models able to predict the persistence of buckle indentation as a function of 

polymer degradation rate, as well as the modifications of implant geometry with time, could 

actually be very useful tools to help the surgeon in choosing the optimal material/implant in 

particularly critical cases. 
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Figure  

 

Fig. 1. Eye anatomy: A = cornea, B = pupil, C = anterior chamber, D = iris, E = zonules (lens 

ligaments), F = ciliary body, G = crystalline lens, H = vitreous body, I = retina, J = macular region, 

K = fovea, L = choroid, M = sclera, N = optic nerve.   
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Fig. 2. Scleral buckling sutured on the outer sclera. 
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Fig. 3. Some examples of solid silicone implants and related accessories: (a) rod, (b) flat band, (c) 

round sleeve, (d) and (e) grooved strips with different geometry, (f) asymmetrical tyre, (g) 

meridional implant and (h) wedge. 

 

 

 

 

Fig. 4. Some examples of porous silicone implants: (a) round sponge, (b) oval sponge, (c) and (d) 

 grooved sponges with different geometry, (e) half-thickness sponge, (f) tunnel sponge, (g) 

ellipsoidal sponge and (h) L-shaped sponge. 
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Tables 

 

Table 1 

Chronology of the key advancements/experimentations in selecting and designing materials and 

implants suitable for scleral buckling procedures. 

Year (first use)  Buckling material Implant 
a
 Type 

b
 References 

c
 

1937 Cotton gauze swab (first scleral buckling procedure) B R [102] 

1953 Polyviol B P [40,41] 

1956 Surgical gut S A [131-135] 

1957 Polyethylene tube B P [42-44] 

1958 Nylon threads (Supramid
®
) S P [103,104] 

1959 Solid silicone 
d
 B P [48-50,52-

56,58-66] 

1961 Gelatin B A [123-130] 

1962 Fascia lata (temporalis muscle autograft) B A [109-111] 

1964 Tendon (autograft) B A [108] 

1965 Silicone sponge 
d
 B P [48-52,54-

59,67-73] 

1966 Solid PTFE (Teflon) B P [74-76] 

1967 Sclera (allograft) B A [113-116] 

1969 Tarsus (autograft) B A [112] 

1972 Polyester (Mersilene
®
) B, S P [104-106] 

1972 Hydrogels B P [85-101] 

1976 Fibrin B A [136,137] 

1977 Silver clasp  B R [107] 

1978 Skin (allograft) B A [119-120] 

1981 ePTFE (Goretex) B  [77-81] 

1983 PGA, PLGA, PDO B, S A [130,146-

150] 



 45 

1985 Polyurethane foam B A [142,143] 

1988 Dura mater (allograft) B A [117] 

1989 Inflatable peribulbar balloon (B) R [33] 

2000 ePTFE-coated silicone implant B P [82-84] 

2001 Pericardial patch (allograft) B A [118] 

2005 PLDLA B A [151,152] 

2008 Collagen/glycosaminoglycan polymer B A [122] 

a
 B = buckle; S = suture(s) inducing the buckling effect. 

b
 P = permanent, A = absorbable, R = surgically removed after a relatively short postoperative 

period (in general < 6 months). 

c
 References numbering refers to the main text. 

d
 For the detailed development of silicone implants, see the properly-devoted sections in the text, as 

well as Fig. 3 and Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 


