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Abstract 

 

Purpose: Coupling in a single device the potential for bone regeneration and the ability for 
in situ controlled drug release is a challenging field of research in bone tissue engineering; 
in an attempt to pursue this aim, membranes of mesoporous bioactive glass (MBG) 
belonging to the SiO2-P2O5-CaO ternary system were produced and characterized.  
Materials and methods: The glass was synthesized via a sol-gel route coupled with 
evaporation-induced self-assembly process by using a non-ionic block co-polymer as a 
mesostructure former. MBG structure and morphology, as well as mesopores size and 
shape, were investigated by X-ray diffraction, transmission electron microscopy and N2 
adsorption-desorption measurements. In vitro bioactivity was investigated by soaking MBG 
membranes in simulated body fluid (SBF) for different time frames. Ibuprofen was 
encapsulated into MBG pores and the drug release kinetics in SBF were assessed. 
Biological tests by using SAOS-2 cells were performed to evaluate the material 
cytocompatibility.  
Results: The material exhibited a high ability of inducing hydroxyapatite formation on its 
surface (bioactivity). Drug release kinetics in SBF are very similar to those obtained for 

mesoporous silica having mesopores size comparable to that of the prepared MBG (5 
nm). No evidence of cells viability depression was detected during in vitro culture, which 
demonstrates the good biological compatibility of the material.  
Conclusions: The easiness of tailoring and shaping, the highly bioactive and biocompatible 
behaviour and the drug uptake/release ability of the prepared materials can suggest their 
use as “smart” multifunctional grafts for bone reconstructive surgery. 
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INTRODUCTION 

 

Mesostructured materials belong to the class of nanomaterials, whose properties can be 

tailored at the nanometrical scale. Specifically, according to IUPAC classification 

mesoporous solids are characterized by pores ranging within 2-50 nm (1). These materials 

are generally obtained by coupling a sol-gel method, that is very effective to prepare 

glasses and ceramics at room temperature, with a supramolecular self-assembling 

process (2). This particular approach is possible by taking advantage of 

hydrophobic/hydrophilic features of some molecules, i.e. surfactants, to prepare 

supramolecular aggregates, called micellae (3). 

The first successful synthesis of ordered mesostructured silicas (OMSs) was reported in 

the early 1990s, when researchers of Mobil Oil Corporation used surfactants as structure-

directing agents (SDAs) (4). Since then, a wide range of OMSs, such as the hexagonal 

phases MCM-41 and SBA-15, have been prepared and investigated (4,5).  

The skill to tailor the channels size depending on the synthesis conditions, and the ordered 

pores structure of OMSs make these materials promising matrices for the encapsulation of 

functional molecules, such as dyes, drugs or enzymes. In particular, OMSs have attracted 

increasing interest in biomaterials science as devices for controlled drug release (6). For 

this purpose, recent studies have proposed composite hierarchical systems, coupling silica 

mesophases and bioactive scaffolds, in order to obtain multifunctional devices able to 

combine bone-bonding properties with drug delivery ability (7-10).  

As regards the applications in bone tissue engineering, it should be taken into account that 

as-such OMSs are not very suitable as bone fillers due their lack of bioactivity, that 

nevertheless can be opportunely induced. In fact, MCM-41 exhibited a good bioactive 

behaviour when its walls were doped with phosphorus (11) or by adding small quantities of 

bioactive glasses (12). Composite systems formed by MCM-41 and bioactive glass-
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ceramic scaffolds, necessary to guarantee implant bioactivity, have been also recently 

proposed for bone tissue engineering (7-10). 

The materials traditionally used for bone replacement, e.g. natural or synthetic 

hydroxyapatite (HA) (13), calcium phosphates (14) and bioactive glasses and glass-

ceramics (BGs and BGCs) (15,16), which have been widely investigated since the early 

1970s, are able to chemically bond to living bone without the formation of scar or fibrous 

tissue around the implant owing to the growth of a bone-like apatite layer on their surface 

in the course of the so-called “bioactivity process” (17). In particular, BGs are glasses of 

complex composition containing modifier oxides, e.g. CaO, Na2O and K2O, that locally 

interrupt the SiO2-based network. The bioactivity process is due to ion-exchange 

phenomena between the glass, which usually releases alkaline ions (Ca2+, Na+, K+), and 

the solution or the biological fluids put into contact with the implant. 

It is known that the formation of an apatite layer on sol-gel glasses surface is related both 

to the structure and to the composition of the material, whereas BGs obtained via 

traditional melting routes show a direct dependence only from the composition (18). In fact, 

it was demonstrated that an increase of the specific surface area and pores volume in sol-

gel BGs highly accelerates the HA formation kinetics, thereby enhancing the bone-bonding 

ability of the material (19,20). Recently, ordered SiO2-based mesoporous bioactive glasses 

(MBGs) have been synthesized through a combination between supramolecular chemistry 

and sol-gel process (21-23). The potential carried by this new class of biomaterials is 

remarkable, and, for instance, the use of MBGs as drug release systems (21,22), bone 

fillers (23) and components of glass cements inducing accelerated in vitro apatite 

formation (24) have been proposed.  

In the present work, a MBG belonging to the SiO2-P2O5-CaO ternary system has been 

synthesized in different forms (powders and membranes of adjustable thickness) and its 

features were investigated in detail by means of structural and morphological analysis, in 
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vitro bioactivity tests and biological compatibility assay. In addition, the drug uptake and 

release ability of the material was evaluated by using ibuprofen as a model drug. The great 

potential of the prepared MBG as a multifunctional material able to couple bone 

regeneration ability, in virtue of its excellent bioactivity, with drug release properties was 

particularly highlighted. In addition, the easiness and versatility of shaping the MBG in form 

of membranes could carry valuable advantages also from a surgical viewpoint, in an 

attempt to design and manufacture patient-designed bone grafts. In such a context, an 

ever better synergy between surgeons and materials scientists will be very desirable and 

appreciated. 

 

MATERIALS AND METHODS 

 

Materials synthesis 

 

In this work, a glass with ordered mesostructure was produced by coupling a traditional 

sol-gel method with the evaporation-induced self-assembly (EISA) process (25), following 

the procedure previously reported by Yan et al. (26). An amphiphilic triblock copolymer 

with sequence poly(ethylene glycole)-poly(propylene glycole)-poly(ethylene glycole) (PEG-

PPG-PEG), commercially called Pluronic 123 (P123), was used as a structure directing 

agent (SDA) (5). Briefly, 2.0 g of P123 (Mw = 5800 Da; Aldrich) were dissolved in 60.0 g of 

ethanol (99.5%, Sigma-Aldrich) and 1.0 g of 0.5 M HCl. After continuous magnetic stirring 

(~400 rpm) at 35 °C for 1 h, till P123 is completely dissolved, the glass oxides precursors, 

i.e. 6.7 g of tetraethyl orthosilicate (TEOS; 98.0%, Sigma-Aldrich), 0.73 g of triethyl 

phosphate (TEP; 99.8%, Sigma-Aldrich) and 1.4 g of calcium nitrate, Ca(NO3)24H2O 

(Sigma-Aldrich) (molar ratio Si/Ca/P = 80:15:5), were added to the synthesis batch (pH < 

1.0). The batch was continuously stirred at 35 °C for 24 h; then, the sol was cast into glass 
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moulds to undergo the EISA process at room temperature (RT). The gelation occurred 

after ~36 h; after 7 days of ageing, the dried gels were carefully removed from the moulds 

as transparent membranes and finally calcined at 700 °C in air for 5 h (heating rate and 

cooling rate set at 1 and 10 °C∙min-1 respectively). The steps involved in the preparation 

method of MBGs are resumed in Figure 1. 

 

 

Fig. 1 - Flow-chart of the procedure followed for manufacturing the mesoporous glass. 

 

Materials characterization 

 



 

 

7 

 

The MBG was investigated by means of wide-angle (2θ within 10-70°) and low-angle (2θ 

within 0.8-4°) X-ray diffraction (XRD, X’Pert Philips diffractometer with Bragg-Brentano 

camera, Cu anode and K radiation); specifically, the latter one was necessary to assess 

the mesostructure symmetry.  

Compositional investigations on the samples before and after calcination were carried out 

by energy dispersive spectroscopy (EDS; Philips Edax 9100); the samples were silver-

coated before analysis. 

Nitrogen (N2) adsorption-desorption porosimetry measurements at 77 K (Quantachrome 

Autosorb1) were carried out on the MBG ground in powders; in particular, the specific 

surface area (SSA) was assessed by using the Brunauer-Emmet-Teller (BET) method 

(27), whereas the pores size distribution was determined from the desorption branch of the 

isotherm through the Broekhoff-de Boer (BdB) method (28) and the BJH method (27). 

The structure and morphology of mesoporous channels were investigated in detail by 

means of transmission electron microscopy (TEM, Jeol JEM 3010 UHR operating at 300 

kV). 

In vitro bioactivity assessment involved the soaking of MBG membranes in 30 ml of 

acellular simulated body fluid (SBF) prepared according to the protocol proposed by 

Kokubo and co-workers (29). The different time frames chosen for the analysis were 8, 24, 

48 h and 7 days, in order to evaluate the formation of HA on samples surface also during 

the first hours of immersion. The solution was replaced twice a week to simulate fluid 

circulation in the human body; pH variations were daily monitored. 

 

Drug uptake and release 

 

The drug loading/release ability of the MBGs was tested by using ibuprofen, that has been 

used as a model drug in previous works (7-10). The absorption of ibuprofen (99.9% purity, 
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Sigma-Aldrich) was carried out by putting into contact a solution (9 ml) of ibuprofen in 

pentane (33 mg·ml-1, 0.16 M) with MBG powders for 24 h under continuous stirring. The 

drug uptake ability was evaluated by UV-visible spectrophotometry (Cary 500 Scan UV-vis 

spectrophotometer); specifically, the amount of ibuprofen absorbed by the sample was 

calculated from the difference in the concentration of drug in solution before and after 

contact with the sample, on the basis of the absorption at 263 nm, typical for ibuprofen 

molecules. Before analysis, the samples were centrifuged to avoid scattering effect due to 

MBG powders suspended in the solution. The test conditions were properly set in order to 

allow the application of Lambert-Beer’s law. A calibration curve was empirically derived by 

using solutions of ibuprofen in pentane of known concentrations. 

The drug release kinetics were evaluated in vitro by soaking the MBG powders in 30 ml of 

stirred SBF maintained at 37 °C. At different time frames – from 1 h up to 72 h after 

experiment beginning – a small amount of SBF (1 ml) was picked-up and analyzed 

through UV-visible spectrophotometry to assess the molecule concentration in the 

solution. A calibration curve was calculated by using solutions of ibuprofen in SBF of 

known concentrations, as well as we made for uptake tests. Before spectrophotometric 

analysis the samples were centrifuged for eliminating possible scattering errors due to the 

presence of residual glass powders in the analyzed solution. 

 

Biological tests 

 

MBG ground in powders was used for cells biocompatibility assay. The cells were not 

seeded directly on the material but a transwell-based method was adopted (30). Viability of 

cells was quantified by evaluating their mitochondrial activity; possible effects of dose-

dependence were also investigated by using different amounts of MBG powders (0.5, 1.0, 

1.5, 2.0 and 3.0 mg). The incubation time was set at 24 h for all the tests.  
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Human osteosarcoma cell line SAOS-2, obtained from the American Type Culture 

Collection (HTB85; ATCC), was used for the test. The cells were cultured in McCoy’s 5A 

modified medium with 1.5 mM L-glutamine and 25 mM HEPES (Cambrex Bio Science, 

Baltimore, MD), supplemented with 15% foetal bovine serum, 1 mM sodium pyruvate, 100 

IU/ml penicillin, 100 mg/ml streptomycin, 10-8 M dexamethasone and 10 mM β-

glycerophosphate (Sigma-Aldrich, Milwaukee, WI); 2.84 mM ascorbic acid, another 

osteogenic supplement, was present as a component of McCoy’s 5A modified medium. 

The cells were cultured at 37 °C with 5% CO2, routinely trypsinized after reaching 

confluence conditions, counted and finally seeded onto the culture wells. 

MBG powders were sterilized by autoclave treatment (120 °C for 20 min at 1 atm) before 

cytotoxicity test. The materials were applied to the base of the transwells (6.5 mm in 

diameter, pores size of 0.4 μm) (Costar Transwell-Clear, Corning Costa, Cambridge, MA). 

To compare the relative toxicities of different materials, the transwells were transferred into 

24-well culture plates that were seeded with cells (2.5×105 cells/well) for 24 h before the 

respective powders were transferred to the transwells. The control group (CTRL) was 

represented by the cases in which powders were not transferred to the culture wells. The 

tests were performed on triplicate samples.  

To evaluate the mitochondrial activity of the seeded cells, i.e. the viability of SAOS-2 cells 

during the culture period, a test with 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT) (Sigma-Aldrich) was performed after incubation for 24 h. The culture 

medium was replaced by a 0.5 mg/ml solution of MTT in phosphate-buffered saline (PBS) 

(137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH = 7.4) and the cells 

cultures were incubated for 4 h. The test is based on the fact that viable cells can reduce 

MTT into formazan crystals: when reduced in a cell, either enzimatically or through direct 

reaction with NADH/NADPH, MTT turns to bright blue and forms a water-insoluble 

precipitate (formazan). After removing the MTT solution, 500 μl of dimethyl sulphoxide 
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(Sigma-Aldrich) were added to solubilize the formazan products and the well plate 

containing the cells was shaken for 20 min on a shaker. Aliquots of 200 μl were sampled 

and the related absorbance values were measured at 570 nm by a microplate reader 

(BioRad Laboratories, Hercules, CA). A standard curve of cell viability was used to 

express the results as percentage out of the total number of cells. 

 

RESULTS AND DISCUSSION 

 

Examples of as-synthesized MBG membranes are reported in Figures 2a,b. After the 

extraction from the mould, the transparent membranes, characterized by thickness ranging 

within 300-500 μm, can be easily cut in various shapes, and, for instance, disk-shaped 

(Figure 2a) or plug-shaped (Figure 2b) samples can be produced. The EDS spectrum of 

non-calcined membrane is reported in Figure 2c. It is possible to observe the peaks of 

silicon (Si), phosphorus (P) and calcium (Ca) due to glass oxides featuring material 

composition. In addition, an intense peak of carbon (C) is visible because the organic 

surfactant is still present inside the mesopores. The weak peak corresponding to chlorine 

(Cl) is due to Cl– ions, provided by HCl entrapped in the glass structure. The presence of 

the silver (Ag) peak in the EDS pattern is due to the metal coating necessary for analysis. 

Examples of MBG membranes obtained after calcination are shown in Figures 3a,b. 

During calcination, the surfactant (P123) burns-out and the consolidation of the 

mesostructure is promoted: as known, in this phase the pores walls become thicker and 

the pores size decreases. The resulting calcined samples are brittle, semitransparent 

membranes of SiO2-P2O5-CaO glass, that maintain their original shape imparted before 

calcination. As foreseen, the calcined MBG membranes are thinner (thickness ranging 

within 100-300 μm) than the as-synthesized ones; the thickness reduction is due to the 

shrinkage that occurs during calcination. A very weak peak of carbon (C) is distinguishable 
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in the EDS pattern (Figure 3c), which demonstrates that the organic surfactant was almost 

totally removed. Thermogravimetrical analyses (Mettler Toledo TGA/SDTA 851, range of 

analysis 25-1000 °C, heating rate 20 °C·min-1; software: STARe 6.10) were also 

performed (data not reported) to quantitatively assess the residue of surfactant and, 

therefore, to estimate the effectiveness of calcination. Specifically, the residual organic 

fraction that remained entrapped inside the pores was estimated to be <5 %wt. of the 

initial weight of the sample.  

 

 

Fig. 2 - As-synthesized mesoporous membranes: (a) disk-shaped and (b) rectangle-

shaped (“plug”) samples; (c) EDS pattern. 

 

 

Fig. 3 - Calcined mesoporous membranes: (a) disk-shaped and (b) rectangle-shaped 

(“plug”) samples; (c) EDS pattern. 

 

It is worth to notice that the final thickness of the membranes can be easily tailored: in fact, 

the more the sol volume cast into the mould, the higher is the thickness of the resulting 
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MBG membrane. The linear shrinkage, roughly calculated on the basis of membranes 

thickness before and after calcination, ranged within 30-40%; this important point, related 

to MBG membranes design and tailoring, will be further discussed at the end of the 

following subsection.  

 

Structural analysis 

 

The wide-angle XRD pattern of calcined MBG is depicted in Figure 4. The presence of a 

broad halo between 2θ ≈ 15.0° and 2θ ≈ 35.0° demonstrates that the material is 

completely amorphous. 

Figure 5 collects low-angle XRD investigations on the MBG before and after calcination. 

The spectrum of as-synthesized MBG (Figure 5a) shows a unique weak peak at 2θ ≈ 

0.93°. The presence of this peak demonstrates that an ordered structure of mesopores 

already existed in the non-calcined material, but the peak intensity was weak as the 

surfactant (P123) filled the on-forming mesopores. After calcination, when the SDA is 

removed, the basal peak due to the mesophase order is clearly distinguishable at 2θ ≈ 

1.35° (Figure 5b), together with a broad scattering at higher angles (2θ ≈ 1.70°). 

The mesophase symmetry is a crucial point and was determined combining low-angle 

XRD results with TEM data that will presented in the following subsection. The structure of 

the prepared MBG was interpreted as a 2-D hexagonal symmetry, together with some 

disordered wormlike domains. 

By comparing the patterns shown in Figure 5, it can be observed that the position of the 

basal peak shifts towards a higher 2θ-value after calcination. This is due to the shrinkage 

of the material during calcination, i.e. the surfactant burning-out, which yields a decrease 

of the interplanar distance. 
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Fig. 4 - Wide-angle XRD pattern of the calcined MBG sample. 

 

 

Fig. 5 - Low-angle XRD spectra of the prepared MBG: (a) as-synthesized and (b) calcined 

sample. 

 

From XRD data it is also possible to give an evaluation – although rather rough – of the 

shrinkage due to calcination, which should be carefully taken into account for MBG 

membrane design and tailoring. Assuming the basal peak being the (1 0 0) reflection of the 

2-D hexagonal phase, then *

100d = 9.40 nm and 100d = 6.50 nm are the interplanar distance 

of the non-calcined and calcined material, respectively. Hence, the cell parameters of the 
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mesophase before and after calcination are, respectively, *

100

*

3

2
da   = 10.85 nm and 

100
3

2
da   = 7.50 nm. Eventually, the linear shrinkage linS (%) can be calculated as 

1001
*










a

a
Slin  = 29.1 %; this value is consistent with the range assessed qualitatively 

by comparing the thickness of the MBG membranes before and after calcination. Under 

the assumption that the cell parameter is the characteristic dimension of the mesophase, a 

rough evaluation of the volumetric shrinkage volS (%) can be finally obtained as 

 
1001

3*

3

















a

a
Svol = 66.9 %.  

Knowing the shrinkage, the size of the mould and the volume of sol cast into the mould, it 

is possible – at least ideally – to design the shape and thickness of the final calcined MBG 

membrane, so that it can match the size and shape of patient’s bone defect.       

 

Mesopores characterization 

 

Figure 6 shows a typical IV type well-defined N2 sorption isotherm for calcined MBG 

ground in powders. The three relevant regions of the adsorption branch, typically 

corresponding to (i) monolayer/multilayer adsorption onto the mesopores surface, (ii) 

capillary condensation and (iii) multilayer adsorption onto the particles external surface, 

are clearly distinguishable. As described elsewhere, the shape of the hysteresis loop is 

tightly related to the shape of mesopores (31): in the present case, the MBG channels 

have a well defined cylindrical shape with a diameter of ~5.0 nm (BdB and BJH methods 

led to very close results, as reported in Table I). 

Figure 7a depicts a section along the direction parallel to channels axes, that reveals a 

highly ordered arrangements of 1-D open, cylindrical and parallel mesopores, as 
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previously inferred from N2 adsorption-desorption analysis. In Figure 7b the system of 

ordered parallel channels can be simultaneously seen both along the channels axes and 

orthogonally to them; the 2-D hexagonal symmetry of the ordered mesopores system is 

clearly distinguishable.  

 

 

Fig. 6 - N2 sorption isotherm of the MBGs calcined at 700 °C for 5 h. 

 

 

Fig. 7 - TEM images of the calcined MBGs. The hexagonal symmetry of the mesophase is 

emphasized, as an example, in two white circles. 
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Table I. TEXTURAL PARAMETERS OF THE MBG ASSESSED BY N2 ADSORPTION-DESORPTION 

MEASUREMENTS AND TEM ANALYSIS. 

Parameter Analysis Average value 

SSA [m2∙g-1] BET 450.0 

Pores size [nm] 
BdB/BJH 5.0 

TEM 4.9 

Pores wall thickness [nm] TEM 3.0 

 

The pores size calculated by means of N2 adsorption-desorption measurements is in good 

accordance with that assessed by TEM, as shown in Table I. In addition, the cell 

parameter calculated from TEM data (7.90 nm) is consistent with that determined by XRD 

analysis (7.50 nm). 

It should be noticed that the investigated MBG is not completely organized in ordered 

domains, but two different domains can be distinguished: (i) well-ordered regions 

according to a hexagonal symmetry and (ii) poorly ordered or disordered regions (wormlike 

domains).  

The importance of a structure constituted by totally or partially ordered channels of 

nanometrical size is relevant in a material to enhance its bioactivity. As previously 

discussed, the mesopores texture allows to increase the surface area (Table I) available 

for ion-exchange phenomena, thereby promoting the bioactivity process and the kinetics of 

HA formation.   

 

In vitro bioactivity tests 
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Figure 8 collects the SEM micrographs of MBG membrane surface after soaking for 8, 24, 

48 h and 7 days in SBF; the corresponding EDS spectra are also reported. After 8 h of 

immersion, globe-shaped agglomerates are already distinguishable on the MBG 

membrane (Figure 8a). The newly formed phase, whose formation is due to ion-exchange 

phenomena between the MBG and the solution, is apatite-like, as qualitatively assessed 

by the EDS spectrum reported in Figure 8b. An intense peak corresponding to silicon (Si) 

is clearly visible in the pattern and can be attributed to (i) the presence of a silica-gel layer, 

according to the bioactivity process proposed by Hench and co-workers (32,33) and/or (ii) 

a substrate effect due to the finite volume of EDS analysis (~1 μm3). The Si-peak becomes 

progressively weaker as the soaking time increases (Figures 8d and 8f) and it is no more 

visible after 7 days of soaking (Figure 8h). This demonstrates that the newly formed phase 

progressively grew in amount and thickness, and finally the typical “cauliflower” 

morphology of HA can be recognized after soaking for 7 days (Figure 8g)  

The quantitative EDS data reported in Table II show that the agglomerates visible on the 

membrane after 8 h of soaking in SBF can be identified as Ca-deficient HA (Ca/P = 1.51). 

The Ca content in the newly formed phase progressively rises as the soaking time 

increases; after 7 days, a molar Ca/P ratio of 1.67, corresponding to the stoichiometric 

Ca/P ratio of natural HA, was detected. 

The XRD pattern reported in Figure 9 shows, as expected, several marked peaks 

assignable to the (0 0 2), (2 1 1), (3 0 0), (2 0 2) and (2 1 3) reflections of HA. The main 

(double) peak at 2θ ≈ 32.0° is broad due to the microcrystalline nature of the HA nucleated 

on MBG surface. 

It is worth to underline that the prepared MBG membranes, although having a silica 

content of 80% mol., are highly bioactive. Hench and co-workers demonstrated that, for 

traditional melt-derived glasses, the silica content has to be 60 %mol. or less to allow to 

bond with bone (34). Nevertheless, bone bonding can be achieved for sol-gel glasses with 
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up to 90 %mol. of SiO2, due to their high surface area, typically within 100-200 m2∙g-1 

(about two order of magnitude higher than that of melt-derived glasses) (35,36). 

 

 

Fig. 8 - Surface micrographs and corresponding compositional analyses of the MBG 

membranes after soaking in SBF for (a,b) 8 h; (c,d) 24 h; (e,f) 48 h; (g,h) 7 days. 

 

Table II. EDS ANALYSIS (SEMIQUANTITATIVE EVALUATION) ON THE SURFACE OF THE MBG 

MEMBRANES SOAKED IN SBF. 

Soaking time Ca/P (molar ratio) 

8 h 1.51 

24 h 1.58 

48 h 1.62 

7 days 1.67 
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Fig. 9 - XRD pattern of the MBGs after soaking for 7 days in SBF. 

 

The excellent bioactive properties observed for the prepared MBG membranes can be 

explained considering that the nanoporous texture of the material plays a key role in 

enhancing its surface area. In fact, the system of mesoporous channels enhances the 

surface area up to values still higher (Table I) than those exhibited by sol-gel glasses. 

Therefore, the ion-exchange phenomena between MBG and SBF in vitro or between MBG 

and the biological fluids in vivo can be remarkably promoted. The presence of an ordered 

mesostructure significantly affects the bioactive properties of the glass and, generally, has 

more influence than glass chemical composition in the HA nucleation stage during the 

bioactivity process (23).  

The pH variation in the solution, resulting from ion-exchanges with the material, is quite 

moderate (pH < 8.0; reference value for SBF = 7.40), thus no cytotoxic effect induced by 

the material, when implanted, is foreseen. 

 

Drug uptake and release ability 

 

The potential of mesoporous materials of acting as matrices for the encapsulation and 

subsequent release of drug molecules has been underlined in many research works, as 

the size of the mesopores can be designed to match, at least approximately, the sizes of a 
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wide range of biomolecules. Since the material synthesized in this work exhibited a very 

high bioactivity with fast kinetics of HA formation, it was very interesting to assess if such a 

property could negatively affect the drug release ability of the MBG. In fact, one might 

reasonably hypothesize that the HA agglomerates, formed during immersion in SBF, can 

obstruct the mesoporous channels, thereby inhibiting – or strongly depressing – the 

ibuprofen release from the material. 

The test of ibuprofen uptake was carried out in duplicate to have a control of the test 

repeatibility. Actually, the test was found to be highly repeatable, as the analyses on both 

samples led to analogous results. It was estimated that the material could absorb an 

ibuprofen amount equal to ~25 %wt. of its starting weight. This value is slightly higher than 

that obtained by Izquierdo-Barba et al. (37) who tested mesoporous materials belonging to 

the SBA-15 family characterized by mesopores size similar to that of the MBGs prepared 

in this work. The amount of ibuprofen absorbed by MBG powders was also found 

comparable to the data obtained testing mesophases with smaller pores, e.g. MCM-41 (8-

10), that should be expected to exhibit a higher affinity for ibuprofen molecules due to a 

better dimensional matching between drug molecule length and pore size. 

According to the uptake tests, also the ibuprofen release tests were performed in 

duplicate, and both of them led to similar results. Figure 10 shows the kinetics of ibuprofen 

delivery in SBF. Above 90% of the drug absorbed into the mesopores was released within 

the first two hours of soaking and, therefore, before HA formation occurred. Hence, HA 

growth and ibuprofen release followed quite separate kinetics and, specifically, the 

material bioactivity does not negatively interfere with the drug release ability of MBG. After 

the first 24 h of analysis, the percentage of released ibuprofen seems to decrease 

progressively (from 96% after 24 h up to 93% after 50 h); this phenomenon may be 

explained considering that the material, after releasing most of the absorbed drug, can re-

uptake a small amount of it. The release kinetics from the MBG are very similar to those 
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obtained by Izquierdo-Barba et al. testing SBA-15 spheres (37), that have mesopores size 

comparable to that of the prepared MBGs. 

 

Biological compatibility and cytotoxicity 

 

The mitochondrial activity of SAOS-2 cells was used as a reliable index for quantifying 

their viability. Figure 11 reports the results after cells incubation for 24 in response to 

different MBG amounts. Control sample (CTRL; medium only without MBG powders) 

exhibits a cells viability of ~90% (< 100%); this occurs because a cells fraction (~10% in 

the present case) is damaged by the intrinsic oxidative stress due to cells manipulation 

during test procedures. 

In comparison with CTRL, the presence of MBG powders did not seem to significantly 

affect cells viability, that remain very high (>75%) in all the experiments. Cells viability did 

not seem to be compromised by the presence of MBG; further tests for investigating the 

material effect after time frames longer than 24 h are currently in progress. From the data 

reported in Figure 11, a high MBG amount seems to emphasize cells viability (maximum 

viability was registered in presence of 3 g of MBG); however, it is not surprising as it is 

known that bioactive glasses can influence the cycle, metabolism and activity of cells (38). 

It should be considered that MBGs are highly reactive and, specifically, Si and Ca ions 

released from the glass can exert a gene control regulation emphasizing the activity of 

bone cells (39-41).  
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Fig. 10 - Ibuprofen release kinetics from MBG powders in SBF.  

 

 

Fig. 11 - Viability of SAOS-2 cells after incubation for 24 h in presence of MBG powder by 

using the transwell culture method. 

 

CONCLUSIONS 

 

Mesoporous glass belonging to the SiO2-CaO-P2O5 ternary system was successfully 

synthesized in form of membranes with adjustable thickness in the 100-300 μm range. 
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After calcination, the glass exhibited an ordered structures of mesopores (pores size ~5 

nm) ascribable to hexagonal symmetry. The presence of an ordered texture of mesopores 

eventually resulted in excellent bioactive properties, as the pores contributed remarkably in 

increasing the specific surface area of the material (~450 m2·g-1), thereby enhancing the 

ion-exchange phenomena between glass and solution during immersion in SBF. This led 

to the fast formation (within 8 h) of a calcium-phosphate layer on the membrane surface; 

such a newly formed phase progressively crystallizes in HA, characterized by its typical 

globular “cauliflower” morphology. In addition, the mesoporous structure imparted to the 

material the ability of encapsulating ibuprofen molecules within its mesochannels. 

Ibuprofen release from MBG in SBF occurred with kinetics similar to that observed for pure 

silica mesophases with analogous pores size. Finally, the MBG exhibited an excellent cells 

tolerance, without negatively affecting SAOS-2 cells viability during in vitro tests.  

As a whole, the results suggest the potential use of the prepared MBG in bone tissue 

engineering as a bioactive drug release system suitable for bone defect fillers and 

controlled local drug therapy. 
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Figure legends 

 

Fig. 1. Flow-chart of the procedure followed for manufacturing the mesoporous glass.  

Fig. 2. As-synthesized mesoporous membranes: (a) disk-shaped and (b) rectangle-

shaped (“plug”) samples; (c) EDS pattern. 

Fig. 3. Calcined mesoporous membranes: (a) disk-shaped and (b) rectangle-shaped 

(“plug”) samples; (c) EDS pattern. 

Fig. 4. Wide-angle XRD pattern of the calcined MBG sample. 

Fig. 5. Low-angle XRD spectra of the prepared MBG: (a) as-synthesized and (b) calcined 

sample. 

Fig. 6. N2 sorption isotherm of the MBGs calcined at 700 °C for 5 h. 

Fig. 7. TEM images of the calcined MBGs. The hexagonal symmetry of the mesophase is 

emphasized, as an example, in two white circles. 

Fig. 8. Surface micrographs and corresponding compositional analyses of the MBG 

membranes after soaking in SBF for (a,b) 8 h; (c,d) 24 h; (e,f) 48 h; (g,h) 7 days. 

Fig. 9. XRD pattern of the MBGs after soaking for 7 days in SBF. 

Fig. 10. Ibuprofen release kinetics from MBG powders in SBF.  

Fig. 11. Viability of SAOS-2 cells after incubation for 24 h in presence of MBG powder by 

using the transwell culture method. 

 

 

 

 

 

 

 


