Approximated models for aerodynamic coefficients estimation in a multidisciplinary design environment

Original

Availability:
This version is available at: 11583/2429582 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Approximated models for aerodynamics coefficients estimation in a multidisciplinary design environment

*Ph.D. Student. Aerospace Engineering Department, Politecnico di Torino
Corso Duca degli Abruzzi, 24, 10129 TORINO
** Research Assistant. Aerospace Engineering Department, Politecnico di Torino
Corso Duca degli Abruzzi, 24, 10129 TORINO
***Associate Professor. Aerospace Engineering Department, Politecnico di Torino
Corso Duca degli Abruzzi, 24, 10129 TORINO

It is known how the aerospace engineering is characterized by great complexity. This is related to the fact that it deals with large-scale systems and that the involved issues are numerous, different in nature and often not independent. Also for aircraft industries, some design requirements are more and more demanding.

On the one hand the need to maintain competitiveness in terms of design quality and reduction of time to market (which can be translated into a physiological reduction in design time). On the other hand the need to reduce development and production costs is reflected in the will to develop an optimal design since the early (preliminary) stages in order to reduce the entity and amount of changes (typically cumbersome and expensive) done in further design phases.

A good response to these demands is the use of tools and methodologies that go under the name of Concurrent Engineering (CE) and Multidisciplinary Analysis (MDA) [1]. The need to reduce the time for design process is also strictly related to a containment of computational burden. It is therefore necessary to find methods of analysis that allow a significant reduction of both running time and computing resources used. In engineering literature there are several methods to address this problems. They are multi-fidelity modeling approaches and approximations of analysis process.

The multi-fidelity approach involves the use of analysis models characterized by different levels of fidelity [2, 3]. In this framework typical high fidelity models are implementations of methods that allow a very accurate analysis (i.e. for aerodynamic analysis, 3D finite volume Computational Fluid Dynamics (CFD) model with very refined discretization and physics description). On the other hand low fidelity models families are various: implementation of the same high fidelity approach, but with a rougher description or discretization of the problem, implementation of simplified physics models and approximations by the use of surrogate modeling approaches.

Speaking about surrogate modeling, different kind of methodologies can be found. In particular it is possible to distinguish between two families of surrogates. The first is the group of data fit models [6, 7]; they are generated via interpolation of data related to simulations at given sets of design points; the most known data fit techniques are response surface models [8] and Kriging models [9]. The second family gathers reduced order models that are typically based on the reduction of the state dimension [10]; Proper Orthogonal Decomposition (POD) techniques are widely used examples of these methods [11, 12].

In this paper variable fidelity analyses are investigated. Moreover we will build different kind of approximations to be used in a wide multidisciplinary design environment for aircraft design. Speaking about the matter in hand, in order to obtain the surrogate models to be used in the main design process, a proper framework is built using the I-sight environment for process and variables management. Approximated models for the estimation of aerodynamic coefficients are evaluated on design spaces of different dimensions and considering different set of variables (i.e. geometric parameters and flight conditions). They are mainly based on the hybrid combination of Vortex Lattice Method (VLM) models (representing basic low fidelity analysis) and 3D finite volume Computational Fluid Dynamics models (representing basic high fidelity analysis tool). Different strategies for the evaluation of the surrogate model are considered and compared.
References

