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ABSTRACT

This paper describes the improvement introduced tle

Loquendo—Politecnico di Torino (LPT) speaker redtign system
submitted to the NIST SRE10 evaluation campaigris Blgstem
combines the results of eight core acoustic syst@inbased on
Gaussian Mixture Models (GMMs).

We illustrate the key factors, in the selectiontteé development
data and in engineering state-of-the art technglogiich

contributed to the very good performance and calibn of our

system in all the test conditions proposed in ¢vigluation.

Index Terms—Speaker Recognition, Speaker Segmentation

Joint Factor Analysis, Total variability models

1. INTRODUCTION

The 2010 Speaker Recognition Evaluation (SRE10xrargd by
the National Institute of Standards and TechnolddyST),
focused, as usual, on the speaker detection tasdevthe goal is
to decide whether a target speaker is speaking segment of
conversational speech. System performance is askesing the
Detection Cost Function (DCF) defined in the evatraplan [1]
and by means of Detection Error Tradeoff (DET) esr{1].

The main difference of the 2010 evaluation withpezg to the
previous ones is that the core test includes spieahtelephone
conversations, conversations recorded over a roécnophone
channel, and conversational speech from an intengeenario
recorded over a room microphone channel. Someeofetlephone
conversations have been collected in a manner tmuge
particularly high, or particularly low, speaker wabcefforts.
Moreover, the evaluation of the systems was peddraccording
to a new Detection Cost Function that severely |mem false
acceptance costs. SRE10 included 4 training andesding
conditions, but only 9 different test configuratomwith different
amounts of speech, such as 10&&minutes (core condition) or
8 conversations, and 2/4 wire recordings. A dedailescription of
the data, tasks and rules of SRE10 can be foutitkirvaluation
plan available in [1].

One of the most important factors for the succésainsystem
in this evaluation was the use of models obtaingeddint Factor
Analysis (JFA) [3] and by the Total Variability [44pproach,
which perform better than our Feature Domain Corapton
technique [5] at the expense of a higher computatioost. These
two technologies have been exploited to train eigpstems,
differing only for the number and type of acoudéatures chosen
to generate “complementary” systems: The scordlesfe systems
are combined and normalized in order to obtairfitied scores.

A wise usage of the development data wasstéeond key
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factor that allowed our fused systems to obtaim@dgcalibration.

English speaker segments only were selected, telafement set
has be extended so that it was possible to reliabtimate the
parameters that optimize the new DCF, and finally,used only
the interview segments in the SRE@8velopment subset for

channel compensation, leaving the SREO8 trainimgtest subsets
for back-end estimation and for evaluation. In oth®rds, we

avoid partitioning the SREO08 train and test subsetset aside
interview speakers segments for channel compemsatio

Complying with the new DCF raised new issues on the

normalization and calibration process that has bfeead using
Adaptive T-norm [6] and custom development setshwitany
impostors.

We submitted results for all the test conditiomgluding the
summed channel test conditions, where the speakenents were
obtained by means of the diarization technique goresl in [7],
using English trained eigenvectors, rather than tilimgual
eigenvectors. This simple replacement has showpeteffective
compared with the best results reported in [8].

2. FEATURE EXTRACTION

Four sets of feature have been extracted for trgithe models
used in this evaluation, two "small" and two "ldrg@ll the
features are subject to short term gaussianization

The first set (MFCC-25) is the "small" one that wesed in the
SREO8 evaluation. It includes 12 Mel Frequency @aps
Coefficients (MFCC) plus 13 delta cepstral paramsefec0-Ac12)
computed every 10 ms. For this set of features, ahalysis
bandwidth is 300-3400 Hz, and feature warping t&aussian
distribution is performed, for each static parametecam, on a 3
sec sliding window, excluding silence frames.

All the other feature sets are extracted analyttiegull 0-4000 Hz
bandwidth and feature warping is performed befdre tvoice
activity detection has been applied, thus includiignce frames.
The second set of "small" features (PLP-26) inctud® PLP
coefficients (c0-c12) and their first order derivas.

The two set of "large" features consist of 60 pat@ns, 20 MFCC
coefficients (c0-c19) and their first and secondeorderivatives,
and 20 PLP parameters and their first and secatet dierivatives.

3. SPEAKER MODELS

For this evaluation we estimated models accordmghe Joint
Factor Analysis (JFA) and the Total variability apaches, which
allow obtaining accurate models taking into accomtgrsession
variability. Both approaches rely on GMMs estimatiedm a
Universal Background Model (UBM).

Gender dependent UBMs were trained on telephoreeatdy on
Switchboard Il Phases 3, Switchboard Cellular Parésd 2, and



the English conversations of the NIST SRE 2004,5280d 2006
databases. The final training s&\B+NIST) includes 445 hours
for speech selected from the 12498 conversatiorisl88 female
speakers and28 hours from 9678 conversations of 963 male
speakers. The models, consisting of 2048 Gaussigines, were
trained running 10 iterations of an approximatioh toe EM
algorithm, which updates for each frame only thetb@aussian
statistics for the sake of efficiency.

3.1. Joint Factor Analysis
In the JFA approach a speaker model is estimated as

s=UBM+UX+Vly+DI[z (1)
The Joint Factor Analysis (JFA) models have beeaiinéd
following the guidelines of [3] and [9]. Gender @apent models
are trained using the corresponding UBMs to colteet zero-th
and first order statistics necessary for estimating eigenvoice
matrix V.

3.1.1.  Eigenvoice subspace estimation

The eigenvoice matri¥ was trained on a subset of tB&B+NIST
dataset, including at least 4 conversations peakgye TheV
matrix is trained on English telephone speech ority number of
eigenvoices was kept fixed at 300 for all the ctiods in this
evaluation. The estimation of matrix is initializeg EM Principal
Component Analysis [10] on speaker models estimaltgd
relevance MAP, followed by Maximum Likelihood esétion [3].

3.1.2.  Eigenchannel subspace estimation

For each conversation of the same speaker colléwsddifferent
sessions, a GMM isstimated through MAP estimation of the
factor analysis vectorin

s=UBM+Vy ()

by collecting the zero-th and first order statstitom a single
conversation. In addition, the average model ofnewpeaker is
obtained from all the conversation of the same legmeaThe
difference supervector between each speaker madetsaverage
supervector is collected for all the available &ees and matrixJ

in

©)

is obtained performing Principal Component Analysitowed by
Maximum Likelihood on centralized statistics.

Three versions of gender dependent U matrices esth@ated:

» U, trained on the telephone data selected from tiST\lart of

s=UBM+VIy+UX

the SAVB+NIST database. (6684 and 5487 recordings of 711

female and 622 male speakers, respectively).

= U,, trained on the microphone data of the NIST SRE52€0
2006, and including also telephone conversationsthef
speakers contributing to the microphone databa®&81(and

content of parallel chunks are the same, the cosgtiem is
focused on channel and microphone differences.

The dimensions of the subspaces estimated for gimeall”
models are 60 for the, , 60 forU, and 20 forthe U; matrices,
whereas for the “large” models the dimensions bexd®0, 100,
and 20, respectively.

3.1.3. Residual variability estimation

The diagonal matriXD describing the residual variability in the
JFA speaker model (1) is set to a constant vala #tlows
obtaining the same behavior of relevance MAP.

3.14.  Speaker model training

A speaker model is estimated by JFA, stacking thend U
matrices and jointly estimating the speaker andhobhfactors.
Relevance MAP is performed in all conditions exahgd10sec-
10sec. Finally the contribution) X is discarded.

3.15. Scoring

For these models scoring was performed computidgsamming
the frame by frame log-likelihoods on the chanregdehdent
model obtained adding to the channel independentiGlideaker
model (3) the estimated test channel contribution

s=UBM+Vy +DZ+UX (5)

test
3.2. Total Variability

A second set of models, using the same previouskcribed
features has been estimated according to the Tatahbility

approach proposed in [4]. The approach is intergdtiecause it
get rid of the distinction between speaker and shbwariability in

its first dimensionality reduction step, where datovariability

subspace, represented by a mafrixs estimated.

3.21.  Total subspace estimation

TheT matrix has been trained using the same datasefeahdes

of theV matrix. The same procedure that allows the eigeew
matrix to be obtained can be used for estimating tbtal
variability matrix T, supplying the procedure with a supervector
per conversation rather than a supervector peikspe@incer is a
low rank matrix, a large number of correlated Malea in a
supervector is projected into the total subspacelyming a small
number of speaker and channel dependent uncodelatiables,
the total factor vectow in the model

s=UBM+T v
3.22.  Intersession compensation

Intersession compensation is then performed by seérinear
Discriminant Analysis (LDA), where all the totalctar vectors of
the same speaker are associated with the same TlassLDA

(6)

2893 recordings of 95 female and 82 male speakerdransformationw'=A [ seeks a rotation matrik that projects

respectively).

U; trained on the small set of interview data proslides
development for the NIST 2008 evaluation. Trainag been
performed by splitting the audio files into churdés3 minutes
and estimating a supervector for each chunk, fota of 1520

the total factor vectorsv on new axes so that the differences
between the classes are maximized. Matrix A is inbth by
minimizing the intra-speaker variance (caused btergession
variability of the same speaker), while the varangetween
speakers is maximized. The matrix has been trained using not

and 1560 recordings of 3 female and 3 male speakernly telephone dataS(B+NIST), but also the microphone from

respectively. We then performed the difference witbpect to
the corresponding chunk supervector estimated eridlean”
condition of the same session (the
microphone, channel 2). Since the speaker and tioagtic

NIST 2006 and interview data sets from NIST 2008.
In these experiments the dimension of total valitghinatrix T

interviewee nea@nd of the LDA matrix have been set to 400 and 2&€pectively,

according to the setting proposed in [4], and aoméd by our
experiments on the NIST 2008 evaluation data.



3.23.  Within-Class Covariance Normalization

After LDA transformation has further reduced theattee
dimensions, removing the nuisance directions, alfistep is
performed to normalize the speaker features by me&within
Class Covariance Normalization (WCCN) [11][4].

Wu: thwl

BB' = W™
whereW is the within class covariance matrix of a sulisfethe
training data (NIST SRE 2005 and 2006 in our sginAll the
conversations of a speaker are associated to ke silags.
3.2.4. Fast scoring
Scoring for these models was performed computirgviddue of
the cosine kernel between the target speaker ann't')a(getand the

(6

test factorsy’

test

(W,

test

)t \N"target

targer) = - . .. -
\/(Wtest)twtest |1/(W targe)tw targel

4. SCORE NORMALIZATION

KW,y W W)

test

The scores of each system are subject to scoreafipation. First

the raw scores are speaker-normalized rhgans of Z-norm.
Separate statistics are collected for the femate raale speakers
both for the JFA and the Total variability models.

For the JFA telephone models, the Z-norm paraméersach
speaker model have been evaluated using the aanfiples of 323
female and 256 male impostor speakers, a subseipedker
samples included in the SRE04 and SREOQ5 datab@kessame
data have been used for training the impostor nsodletessary for
T-normalization. The T-norm parameters for eachgsample were
estimated using the Z-normalized scores of the stgo
voiceprints.

A much larger set can be used for the Total vditgbhodels
due to the fast computation of the dot-productesoin particular,
1183 female and 963 male impostor speakers have tossd for
this condition.

For the 10-sec and the 8conv training and testitiond, the
list of the impostor speaker samples was seleatedccordance
with the condition, and the impostor models weeéned with the
appropriate amount of data.

The list of impostor speakers for the normalizatiohthe
scores of the microphone conditions is smallertdube relatively
poor amount of data: Z-norm and T-norm is perforrmethis case

against 164 and 190 female and male microphone Isjode telephone call train-test conditions (DET5).

respectively.

The normalization of the interview conditions ustse
impostor speakers of the microphone data.

The core and 8-conv conditions were evaluated daogrto
the new NIST DCF, which weights False Alarms erathousand
times more than Miss Classification errors. In development
experiments we have found that Adaptive T-normétize [6],
which finds, in a large sethe T-norm impostor models more
similar to the current model, improved the perfonce of the
Total variability models. The same normalizatioreslmot perform
as well in the JFA framework, possibly becausestdection set is
kept small for the sake of efficiency.

4.1.1.  Scorecombination and calibration

The combination of the 8 GMM systems is obtaineditgar
fusion with prior-weighted Logistic Regression atijee,
estimating the combination parameters on the SRIB 2@ta using
the FOCAL toolkit [12]. Parameter estimation is dtion
dependent. Lacking development data for
microphone/microphone conditions, the weights comation is
borrowed by the most similar interview conditions.

the

5. SUMMED-CHANNELS TRIALS

In addition to the four wires conditions, we penfed speaker
model training for the summed condition. In thesaditions a set
of 8 whole conversations between two speakers [pled as
training audio files, and a single speaker or arsath channel
conversation is proposed as test.

For the multi-speaker conversations trials we ussipervised
speech segmentation to detect speaker clusteisyén by model
creation and scoring.

For the two wire tests, speaker segmentation fpeed, and
each putative speaker cluster is scored againsgtpbaker models
in the index list. For each model, we select theakpr cluster that
gives the best score.

In the development experiments executed on the 2868 we
found that mislabeled gender models affect theopesdince of our
systems. In particular, the False Alarm rate insesalue to the use
of gender mismatched UBMs and speaker models. Tiefsre
speaker recognition is performed, we execute a ereddtector,
based on the gender dependent UBMs. If the geretectr does
not agree with the NIST supplied gender labels, #@nhdts
confidence is greater than a given threshold, flaéstagainst that
model are considered impostor trials, and theirescare randomly
set to very low values

6. THRESHOLD SETTING

To compute the Actual DCF, the theoretical log lik@od-ratio
decision threshold for the scores calibrated bynsed the logistic
regression was fixed, according to the NIST evabnaplan DCF,

to log 999 U6.9 for the core and 8conv core conditions, and to
log 9.9 J2.29 for all the other conditions.

7. RESULTS

The same combination of systems has been usedl fureatest
conditions, the only difference being a conditioependent
estimation of the back-end parameters.
Figure 1 and Table 1summarize the results of ostesy for all the
In the figure, the
white and black marks refer to actual and min D@Bpectively.
Looking at the DET curves, it can be noticed thatexpected,
on the 10sec test conditions, the performance imgzroising more
training data. The DET curve of tt8summed-core condition is
near to the curve of th&conv-core condition because it is rather
easy to detect the training speaker in eight caatems. The blue
and brown curves referring to the summed-test ¢mmdi show
higher errors, but again tsammed-train condition does not affect
the results as much as thammed-test. This is confirmed by the
yellow and violet curves referring to the core dtinds.
It is worth noting that in Table 1 the DCF valueparted in the
conditions marked by an asterisk are much highan the others
because they refer to the new more challenging DCF.
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Figure 1. DET plots of the results on the telephigsé conditions.

Table 1. Summary of the results on the phonecstiidenditions

Condition minDCF actDC EER %
F

10sec-10sec 0.534 0.614 10.44
core-10sec 0.273 0.278 5.83
8conv-10sec 0.146 0.156 3.46
core-summed 0.143 0.151 3.22
core-core-tel * 0.285 0.334 2.40
8conv-summed 0.070 0.075 2.10
8summed-summed 0.057 0.065 1.45
8summed-core 0.037 0.050 0.62
8conv-core * 0.225 0.225 0.45

OLD DCF Prior vs NEW DCF Prior
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Figure 2. Actual and minimum DCF on other NIST tnditions
Table 2. Legend for Figure 2

Condition No | vocal effort
interview_interview_same_mic 1
interview_interview_different_mic 2
interview _nvephonecall_tel

interview _nvephonecall_mic
nvephonecall_nvephonecall_different_tel
nvephoencall_hvephonecall_different_tel
nvephoencall_hvephonecall_mic
nvephoencall_Ivephonecall_different_tel
nvephoencall_Ivephonecall_mic

nve: normal

hve: high

Ive: low

3

4
5
6
7
8
9

Figure 2 shows the actual and minimum DCFs in 9ditmmns

including recordings of interviews and of telephaadls produced
by high or low vocal efforts. Each pair of barssBdhe actual and
minimum DCF obtained in the condition shown in &ald, by
training the back-end parameters to optimize thk al the new
Decision Cost Function, respectively. Most of tinees calibrating

the system on the new DCF is more difficult, asvahdy the

differences between the actual and minimum DCR&énFigure.

Surprisingly, the low vocal effort tests do not eeto affect the

performance, while the high effort condition harms system. It

is also interesting to note that in four conditidhe systems tuned
for the old DCF achieve better performance than ghstems

properly tuned for the new DCF. This raises soraads about the
amount of data needed for reliably estimate the D8K.

8. CONCLUSIONS

The experience gained in this evaluation suggéstt using
complementary features and models is effective. eq factor for
the success of our system on the interview conditivas the use
of the SRE08 development data only for channel @nsation.
For all conditions it was important to use a latgening set, and
gender dependent models. Moreover it was benefiziate a large
number of speakers for score normalization, andirftersession
compensation condition-dependent matrices. Althoughr
experiments have shown that it is possible to ab&ien better
results combining just 4 systems, the set of thet fgstems would
be condition dependent.

More experimentation, possibly with larger and elént
amount of data is required to face still open issuech as the large
variations of calibration errors of the subsystetie effect of
priors in back-end training, and the effects ofalcfforts.
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