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Abstract: In this paper we relate the foremost virtues of temperance, justice, courage, and
prudence to the correct methodological approaches that researchers should follow when setting
up a fault injection experiment. With this work we try to understand where good and bad
practices lie, in order to highlight those common methodological errors that deeply influence
the coherency and the meaningfulness of fault injection experiments. Fault injection is like an
art, where the success of the experiments depends on a very delicate balance between modeling,

creativity, statistics, and patience.
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1. INTRODUCTION

"Therefore, as with any other four things, if we were
looking for any one of them and recognized it first, that
would be enough for us, but if we recognized the other
three first, this itself would be sufficient to enable us to
recognize what we are looking for. Clearly it couldn’t be
anything but what’s left over... Therefore, since there are
four virtues, mustn’t we look for them in the same way?
Clearly".

Plato, the Republic

The use of digital systems pervades all areas of our lives
from common house appliances such as microwave ovens
and washing machines, to complex applications like au-
tomotive, transportation, and medical control systems.
These digital systems provide higher productivity and
greater flexibility, but it is also accepted that it is not easy
to guarantee that they are fault free. Some faults may be
attributed to flaws during the development, while others
can stem from external causes such as process defects
or environmental stress. Moreover, as devices geometry
decreases and clock frequency increases, the incidence of
transient errors due to external stress (e.g., radiation, EMI,
etc.) increases, and consequently, the dependability of the
systems decreases. High availability is therefore a require-
ment for every digital system whose correct functionality
is connected to human safety or economic investments.
In this context, the evaluation of the dependability of a
system plays a critical role. Unlike performance, depend-
ability cannot be evaluated using benchmark programs
and standard test methodologies. It requires observing
the system behavior after the appearance of a failure.
However, since the Mean-Time-Between-Failures (MTBF)
in a dependable system can be of the order of years, the
fault occurrence must be artificially accelerated in order
to analyze the system reaction to a fault without waiting
for its natural appearance.

Fault injection (Arlat et al., 1993; Benso et al., 1998b;
Carreira et al., 1998; Clark and Pradhan, 1995; Choi and

Iyer, 1992; Guthoff and Sieh, 1995; Mei et al., 1997; Jenn
et al., 1994; Karlsson et al., 1994; Benso et al., 1998a;
Benso and Prinetto, 2003; et al.., 2006) emerged as a
suitable solution, and it has been deeply investigated by
both academia and industry. Fault injection techniques
are continuously evolving and improving. In this paper
we will mostly refer to the ones that helped building the
foundations of this topic.

In general, fault injection techniques can be grouped in
hardware-implemented (Karlsson et al., 1994), simulation-
based (Jenn et al., 1994), software-implemented (Benso
et al., 1998b; Carreira et al., 1998; Choi and Iyer, 1992),
and hybrid (Guthoff and Sieh, 1995; Benso et al., 1998a;
Velazco et al., 2000) fault injection. The process of setting
up a fault injection environment requires different choices
that can deeply influence the coherency and the meaning-
fulness of the final results. In this paper we analyze these
choices to point out where, in our experience, they can be
more easily affected by methodological errors and therefore
lead to non-reliable dependability evaluations of the target
system. In the paper we will use the analogy with the
four Cardinal Virtues to discuss the four most important
aspects of a fault injection environment: the choice of
the fault model and fault list (temperance), the choice of
the workload and inputs to apply to the target system
(justice), the outputs to be chosen as readouts points
(prudence), and the way of understanding and interpreting
the experimental results (courage). This paper does not
intend to propose a new fault injection methodology. The
intention is to review existing techniques, discuss the most
critical methodological experimental issues and to propose
some guidelines to help designing robust fault injection
environments.

The use of the four cardinal virtues is solely intended as a
metaphor to create a different perspective to the realities of
fault injection. We do not wish, in any way, to offend any of
the readers’ religious sensibilities. This paper was written
imagining setting up a fault injection environment in an
ideal situation with an unlimited amount of resources,
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time, and money. We understand that ideal situations
are uncommon and that outside factors such as Time-To-
Market or economic resources may influence the decision
making process.

Finally, we would like to be the first to admit that we,
the authors, in our research have incurred in most of the
cited methodological errors. Our intention is to discuss the
problems and some possible solutions, not to blame those
who commit them, who, in this paper, will be referenced
to with [omitted].

The paper is organized as follows: Section 2 presents the
typical architecture of a fault injection environment. In
Sections 3 we discuss the four cardinal virtues of fault
injection. Finally, Section 4 concludes the paper.

2. TYPICAL STRUCTURE OF A FAULT INJECTION
ENVIRONMENT

An effective way to characterize a fault injection environ-
ment is the FARM model, proposed by Arlat in (Arlat
et al., 1993). The four FARM attributes are:

e the set of Faults "F" to be deliberately injected into
the system. F' is also called the experiment fault list.
Each fault is characterized by a model (e.g., stuck-
at, bit-flip, short, etc.), a location (e.g., a flip-flop, a
memory address, a pin, etc.), and an injection time
(e.g., at a given clock cycle, after the execution of
a certain instruction, after a given time, etc.). The
size of the fault space is therefore M x L x T, where
M 1is the set of possible fault models, L is the set
of possible fault locations, and T the set of possible
fault injection instants corresponding to the duration
of each experiment. Contrary to traditional hardware
testing where the size of the fault space is M x L,
in a fault injection experiment the size of the fault
space is often assumed to be infinite, thus making
impossible to work with exhaustive fault lists. The
main problem in defining the target fault list F' is
therefore to select a subset of the entire fault space
that can be injected in a reasonable time but still able
to provide statistically significant results;

e the set of Activation trajectories "A" that specifies
how the system is functionally exercised during the
experiment. It constitutes the set of functional inputs
applied to the system during each experiment. The
choice of A directly influences the length of every
single experiment, and consequently, the size of the
fault space (M x L x T) and target fault list. Often
this model is extended to include the set of Workloads
"W" (e.g., a set of software benchmarks in the case
of a microprocessor-based system);

e the set of Readouts "R" that corresponds to the
logged behavior of the system. Data recorded in
R can strongly depend on the target system and
on the mechanisms used to observe the system’s
behavior. For example, in a microprocessor-based
system, recorded data may include memory accesses,
the final application results, or the system exceptions.
At the same time it may also include the waveform at
the output of the microprocessor’s pins. The quality
and detail of the logged data can deeply affect the
significance of the final fault injection results and

also the experiment duration. The choice of R must
therefore be a prudent trade-off between precision and
time/memory overheads;

e the set of Measures "M" obtained analyzing and
elaborating the Readouts obtained during the exper-
iment required to compute the final dependability
estimation of the system.

Given the FARM model, a fault injection campaign
is a collection of experiments, each requiring the
injection of a fault f from the set F' while the system
is exercised with an activation trajectory a selected
from A in a workload w from W. The set of measures
M is obtained elaborating the set of readouts R
gathered during each experiment. Fig. 1 presents the
typical structure of a fault injection environment.

CONTROLLER

WORKLOAD (A,W)

=

arget DATA DATA
System COLLECTOR (M) ANALYZER (R)

INJECTOR

Fig. 1. A typical fault injection environment

The actual implementation of each functional block de-
pends on the type of fault injection mechanism. There are
basically four different approaches to fault injection:

e hardware-implemented fault injection: faults are in-
jected in the actual system by changing its internal
state using logic analyzers, heavy-ion radiations, FP-
GAs, or laser beams. Depending on the chosen injec-
tion method, only a limited set of locations can be
corrupted. Hardware-implemented fault injectors are
usually very expensive to setup, but they guarantee
very realistic experiments;

o simulation-based fault injection: faults are injected
into a model of the system (e.g., a VHDL or Verilog
description) by modifying the model or using sim-
ulation scripts. This feature allows to theoretically
injecting faults in any part of the system. The be-
havior of the system is then analyzed using a simu-
lator. Simulation-based fault injectors are very low-
cost solutions but the meaningfulness of their results
strongly depend on the accuracy and abstraction level
of the model of the target system;

o software-implemented fault injection: faults are in-
jected into the actual target system using software
procedures. Faults can therefore be inserted in any
software accessible location. Software-implemented
fault injectors are usually very flexible but can be
used only in microprocessor-based systems;

o hybrid fault injection: hardware, simulation, and soft-
ware approaches are all applied in the same environ-
ment to optimize performance and accuracy in the
experiments.
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In the following sections we will more deeply analyze the
FARM model, highlighting the most common method-
ological errors that can badly affect the setup of a fault
injection environment.

3. VIRTUES AND FAULT INJECTION

"I’ mi volsi a man destra, e puosi mente
A Daltro polo, e vidi quattro stelle
non viste mai fuor ch’a la prima gente"
"To the right hand I turned, and fized my mind
Upon the other people, and saw four stars
Ne'er seen before save by the primal people”

[Dante Alighieri, Purgatory, Chant I, 1-3]

The four stars that Virgilio sees in the Purgatory are
the four cardinal virtues. They are called cardinal (Latin:
cardo, hinge) virtues because they are hinges on which all
moral virtues depend. We chose the analogy with the four
cardinal virtues because they are supposed to be "natural"
and they can be achieved through human effort.

Temperance is the virtue suggested in choosing an effective
fault model F (see Section 2). The need of trading-
off among several constraints requires finding the best
"middle ground" or compromise between budget, time
constraints and the representativeness of the fault list.

Justice is necessary when choosing the set of activations
A (see Section 2). They have to strictly reflect the real
working conditions, and cannot be chosen superficially
"just to make the experiment work". They have consider
both the goal of the experiment (validating a fault tol-
erant mechanism is different from evaluating the system
response to faults), and the fault list, since it is most of
the times recommended to inject faults only in the "active"
parts of the system.

Prudence is essential in the choice of the readout points R
(see Section 2). Logging the system behavior can be a very
time and memory consuming task that directly affects the
duration and the accuracy of the experiments.

Courage is required when elaborating the final results and
deriving dependability measures M (see Section 2). It is
very easy to jump to easy conclusions not supported by
a statistical background. Real and useful results require
analyzing the raw data with courage, without being afraid
of having to add experiments or modify the methodology
to obtain significant results.

3.1 Temperance (Faults)

"Temperance, called mastery of self, is really the mastery
of the better over the baser qualities .... Temperance
would seem to lie in the harmonious inter-relation of the
different classes".

Plato, the Republic

Fault injection techniques mainly target one or more of
the following goals:

(1) understanding the system’s behavior under the effect
of real faults;

(2) evaluating the fault tolerance mechanisms embedded
in the target system,;

(3) forecasting the faulty behavior of the target system
and, in particular, encompassing a measurement of
the efficiency (coverage) provided by the embedded
fault tolerance mechanisms.

In all three contexts, one of the most critical phases is the
definition of the fault list that most accurately represents
the type of faults that can actually appear in the system
under analysis. This is a delicate task since the type of
possible real faults depends on different factors, such as
the target system technology or its environmental working
conditions. Differently from traditional testing techniques,
in fault injection the fault space is made up of three
dimensions: M, L, and T (see Section 2). They respectively
are the fault model, the fault locations and the injection
times. We can therefore divide the fault list generation
process in three different steps:

e the choice of the fault model;
e the choice of the fault locations;
e the generation of the actual target fault list;

Temperance means "finding the middle ground", "avoiding
excesses", and "offsetting an extreme". These are exactly
the attitudes we need when defining a fault list where many
parameters like budget and technical/time constraints,
have to be traded-off with the reliability and confidence in
the fault list. The choice of a bad fault list will completely
invalidate the results of the experiments; either because
the number of experiments is not statistically meaningful,
or because the injected faults are not representative of the
actual potential faults that may appear into the system.

Fault model The choice of the fault model is critical
since real faults depend on different factors including the
target system’s technology and its environmental working
conditions (e.g., in space applications many faults are
caused by ion radiations that are less likely to appear at
ground level). The common practice is to assume that the
chosen fault model (whatever it is) is sufficient, justifying
this assumption with experimental data, historical data,
or results published in the literature. We agree that the
problem of demonstrating a tight relationship between
real faults and injected models is not trivial. However,
in many cases, the choice of the target fault model is
simply guided by the available fault injection environment
rather than a real effort to model the realistic faults. For
example, a very well known fault model is the Single
Event Upset, or SEU (Normand, 1996), i.e., a bit of a
memory element of the system is flipped. Almost all fault
injection environments use this model as their primary
target fault. This wide use of the SEU model is sometimes
the result of a "virtuous" decision and sometimes that of
a "sinful" one. The "virtuous" reason is that the advance
in integration technologies is leading to a situation where
SEUs will be very common causes of failures in commercial
digital systems used at ground level (Titus et al., 1998).
It is therefore true that SEUs are a growing concern not
only for the dependability community, but also for the
manufacturers of large production ICs. The "sinful" reason
is that the SEU is the easiest model to artificially inject. In
general, it is enough to stop the execution of the system,
inject the fault, and then let the system run until the end
of the experiment. The injection of intermittent or even
permanent faults is much more complicated, since after
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reaching the correct fault injection time, it is necessary
to keep the faulty state "active", preventing the system
from overwriting its effects. This operation can cause
a considerable performance overhead that can be not
compatible with experiments on real-time systems. Even
though many researchers claim that their fault injection
systems are able to deal with different types of faults,
a few of them presented convincing experimental results
[omitted].

Fault locations  The available fault locations should be
selected considering the nature of the target system. We
can identify the following situations:

e the target system is a digital system but not a
microprocessor. In this case the fault locations should
include all possible memory elements (e.g., flip-flops,
registers, memory cells). This can create a problem
in the choice of the injection mechanism, that, for
example, must be able to inject faults in all the
flip-flops of a circuit. This operation can be very
difficult or even impossible when the target system
is not an abstract model (e.g., a VHDL model) but
a real circuit with a limited set of "controllable" and
"observable" locations;

e the target system is a microprocessor. When using
a software-based approach, the only possible fault
locations are the ones directly or indirectly reachable
by an assembly instruction. Usually, cache memories
and many internal microprocessor registers which are
not directly addressable by assembly instructions can
only be injected in VHDL models or using radiation-
based mechanisms. A possible extension to the avail-
able set of fault locations can be offered in some
microprocessors by particular resources such as the
debug ports available in the 68k and PowerPC family
of microprocessors;

e the target system is a software application executed
on a microprocessor. In this case the goal is not the
evaluation of the hardware platform, but that of the
application running on it. Faults must be injected
only in those locations (RAM, CPU registers, external
devices) that are or can be directly or indirectly
involved in the execution of the application. For
example, if the application does not use the floating
point unit, it is useless to inject in its registers, since
they will never be activated during the experiments.

Obviously, the nature of the target system is not enough to
select the target fault locations. To be injected, locations
must be reachable, and the "reachability" of a location
depends mostly on the adopted fault injection mechanism.
In hardware-implemented fault injection (see Section 1)
only a limited set of locations can be controlled or even
observed, due to the difficulty of acting directly on the
system’s hardware using logic analyzers, heavy-ion radi-
ations, laser beams, or ad-hoc hardware designs (Arlat
et al., 1993). When using simulation-based environments
(see Section 1) based on a soft model (i.e, a VHDL or
Verilog description) every location is usually reachable and
can therefore be used as a potential fault location. Finally,
if running software-implemented experiments (see Section
1), any software accessible hardware location can be con-
trolled using software instructions and therefore used as

a candidate fault location. Another issue that needs to
be taken into account is the physical dependency among
locations. Equivalent fault locations, i.e., locations that,
if corrupted, will by construction cause the same effect,
mast be carefully identified and considered. For example
in the case of a stack the question is: should all words in
the stack injected with faults or it is enough to inject in
the top of the stack, since all faults in the other words will
be "activated" only when the corrupted word is popped
out of the stack? The problem in considering these types
of problems is that it can be very hard to "automate"
the process of selecting the best fault locations , and, at
the same time, a manual approach would be too time-
consuming to be effective. Again, the solution probably
lies in finding the best set of locations that can effectively
represent the location space and that correctly represent
the type of results we are looking for. Once all possible
fault locations have been selected it is possible to generate
the final fault list.

Fault list As already introduced, in a fault injection
experiment the target fault list cannot be an exhaustive
set since the fault space is usually very large or even
assumed to be infinite. Therefore, location and injection
time of each injected fault are usually sampled from the
set F' of all possible fault locations and time. Sampling
according to an uniform distribution of fault locations and
injection time is an easy choice, but its effects should be
carefully considered. The main risk is that, in the final
results, each fault location will contribute with the same
weight to the dependability figures. As an example, let
us consider a software application containing a function
repeatedly executed. Choosing a uniform distribution of
faults on the application code means assigning the same
weight to all instructions of the code, regardless how
many times each of them is executed. This can lead to
misleading results, since the function that is executed
many times during the experiment will probably be more
critical than a piece of code executed only once. A possible
solution to obtain more realistic results is to relate the
distribution of the selected fault locations to the workload
or usage statistics of the parts of the system to which
they belong. One of the most important goals is to avoid
redundant experiments, i.e., injected faults that lead to
equivalent sensitizations of the fault-tolerant algorithm
or mechanism, which can lead to a great waste of work
and resources. The problem is that the number of fault
injection experiments needed to estimate the coverage with
a reasonable confidence interval can still be extremely
large. The question is: what is the alternative (or right
balance) between considering a small set of elaborate
and focused test cases (deterministic selection) versus the
simple reliance on a statistical approach (probabilistic
selection)? It is well known that probabilistic selection
of the faults is required when fault injection is used to
rate the behavior of a target system in the presence of
faults. On the other hand, tailored and focused test cases
are mandatory when fault injection experiments aim at
revealing design flaws. Still, no clear inclination exists
for both of these two alternatives when dealing with
dependability benchmarking. An interesting approach to
reduce the complexity of the fault list is the one suggested
in (Benso et al., 1998c; Titus et al., 1998) and (Berrojo
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et al., 2002), where the authors propose a set of collapsing
rules based on the analysis of a fault free run of the
system. With this approach it is then possible to reduce
the number of faults to inject into the system without
decreasing the accuracy of the results. The basic idea is
to avoid the injection of faults whose behavior can be
foreseen, like those faults that will be certainly detected
by at least one of the system’s error detection mechanisms,
those belonging to certain fault equivalence classes, or
those that will produce a predictable effect on the system’s
behavior (e.g., injecting a temporary fault on a register
before a write operation on the same register is useless
because the fault will be overwritten and never activated).

THE ADVICES TO APPLY TEMPERANCE IN FAULT
INJECTION EXPERIMENTS ARE

e Choose a realistic fault model, considering the actual target
system and, if necessary, its operating conditions. Do not
choose a fault model only because it is easy to inject or it is
the default model on the available tools;

e always take into account the real fault occurrence probability
of the chosen model;

e compute the cardinality of your fault space. Claiming that the
fault space is infinite will make your results totally useless
because it will not be possible to evaluate how the injected
set of faults is statistically representative of the whole fault
space;

e apply meaningful fault sampling methods instead of resorting
to simple uniform selection:

(1) by a statistical sampling, if the fault space distribution is
known;

(2) taking into account the specific structure of the hardware
and software under investigation:

(a) faults should never be injected in unused parts of
the system;

(b) injection should focus on the most critical/stressed
parts of the system;

(3) if the faults to be injected are randomly sampled from a
larger list, the experiment should always be repeated with
different fault lists until the required level of confidence is
reached;

e there are always faults whose effect is known a-priori. These
faults must always be identified, considered in the fault list,
but never actually injected;

e there are always equivalent faults in terms of time (same
location but different injection time) and/or space (different
fault location but same effect on the system). These faults
must always be identified using fault-collapsing techniques to
minimize the number of actual injections.

3.2 Justice (Activations)

" ... and justice is the virtue of the soul as a whole; of

each part never failing to perform its own function and

that alone. To ask, now, whether justice or injustice is
the more profitable becomes ridiculous”.

Plato, the Republic

As we know, in a canonical fault injection setting like
the one depicted by the FARM model of Section 2, high
relevance is attributed not only to the fault list but
also to the input stimuli that must ideally exercise the
system with respect to all possible faulty conditions (the
relationship between workload and error rates has been
often highlighted (Chillarege and Bowen, 1989)). Since it
is often impossible to exhaustively activate all possible
operating modes in a system or application, the so-called

activation set (A) must be chosen paying attention to two
main requirements:

e representing the actual inputs the system will get
during its operational lifetime;

e focusing on the particular goals of the fault injection
experiment.

This is a typical dualism also faced in the field of hard-
ware/software test generation. In the case of software,
for example, this opposition between "functional" and
"extensive" testing is visible in two of the mainstream
approaches for software validation (Kuball et al., 2002),
namely statistical software testing and code coverage.
While the former aims at individuating (through a prob-
abilistic model) a proper subset of the input space that
is representative enough of the typical application usage
scenarios, a maximization of code coverage (amount of
source code executed at least once by the chosen input
sets) goes in the opposite direction of extensive testing.
Failure in choosing an activation set able to simulate all
the critical parts of a target system (or application) could
result in two main consequences for the experiment:

e incomplete results: the gathered dependability figures
are not representative of the whole application, but
only of the particular execution flow(s) covered by
the chosen inputs. It would be wrong and risky
to infer information about the dependability of the
application (or even worse, of the system) from the
results obtained with an incomplete activation set;

e no effect faults: faults injected in those parts of the
system or application that will not be activated dur-
ing the experiment will result in "no effect" faults, i.e.,
they will not cause any misbehavior in the system.
The fault injection experiment will therefore cate-
gorize them as harmless faults. This is a misleading
result since the fault might be destructive when using
a different activation set.

In general, the effectiveness of a chosen activation set
could be quantified with a measurement of the portion
of fault list it is able to cover. To this purpose, different
target systems could rely on different kinds of metrics: in a
generic digital system the provided activation set should be
integrated with a measure of the percentage of potential
fault locations that such set is able to activate. In the
particular case of a microprocessor, a possible metric to
exploit is the so-called instruction set coverage, i.e., the
percentage of assembly instructions of the instruction set
that are executed during the experiment. Yet a uniform
coverage of all the instructions in the instruction set does
not guarantee a uniform activation of all the microproces-
sor functionalities, which would be possible only with a
very deep knowledge of the microprocessor’s architecture
and microcode. If the target is a software application, all
possible execution flows deriving from its design should be
activated in order to have a global figure of the application
dependability. When this is not possible, then it will be
necessary to at least exercise all those critical or typical
functionalities that the application will need during its
operational lifetime. As mentioned above, a measure of
the code coverage (Kuball et al., 2002; Garg, 1994) should
be provided in order to demonstrate the effectiveness of
the chosen activation set.
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Operational profiles  The problem of identifying correct
test patterns for system dependability assessment has
been tackled in many ways, producing several practical
approaches based on the peculiar features of targeted sys-
tems (i.e., monitoring facilities in operating systems, for
software testing). The only unified, system-independent
methodology seems that of operational profiles (Musa,
1993). An operational profile is a collection of informa-
tion about all relevant fault-free system activities. Typical
traced information items are read/write activities associ-
ated with processor registers, address bus, data bus, and
memory locations in the system under test. Moreover,
they may also include higher level information like the
most probable expected sets of inputs that the system or
application will receive, or even concern other issues that
influence development, like customer /user preferences.

This translates in a set of probability distributions that
identify possible rates of occurrence for typical usage sce-
narios or execution flows within the considered application
or system. Essentially, the purpose of an operational profile
is to better understand the situation in which the system
or the application will be used, and then analyze this in-
formation to ensure that only faults which will produce an
error are selected during the fault list generation process.

Several approaches have been proposed to cope with the
creation and optimization of operational profiles. A reason-
able development approach in terms of quality/cost ratio
(Juhlin, 1992) consists in separating profile components
that depend on the peculiar workload exercised on the
system by each potential user (usage profile(s)), from the
ensemble of physical and logical features representing the
unvarying setting upon which particular usage profiles may
be introduced (configuration profile). It is also possible to
manipulate such profiles to deal directly with the above-
mentioned problem of "no-effect faults". Through the use
of inverted profiles of a tested system (Voas et al., 1996),
it is possible to isolate subsets of inputs that are unlikely
to be activated in order to rebuild the activation set and
test.

Scenario-based test generation  The concept of opera-
tional profile has nowadays become quite a standard for
the primary modeling of systems usage, almost indepen-
dently from the particular architecture being targeted.
This methodology has been integrated with various input
generation approaches, each one trying to propose a differ-
ent way to deal with its limitations. What follows is a brief
summary of approaches available to deal with meaningful
test pattern generation (and therefore fault activation),
distinguishing between the two main categories of hard-
ware systems and software systems.

3.2.2.1. Hardware systems  Test generation for digital
electronic systems is usually composed by three main
steps: selecting a description method (model of the sys-
tem), developing a fault model and generating tests to de-
tect all the faults identified by the fault model. Therefore,
the efficiency of test generation (in terms of quality and
speed) is highly depending on the system description and
fault models which have been chosen. Due to the increas-
ing complexity of digital circuits, classical gate-level test
generation has become impractical. Moreover, it has been

shown that test generation for combinational circuits is
an NP-complete problem (Fujiwara, 1985). Consequently,
different methodologies to model test patterns have been
progressively considered:

e functional and behavioral test synthesis methods: such
methods rely on an outline of the expected system’s
behavior, trying to compose the activation set start-
ing from all main functionalities expected by the
system (Gupta and Armstrong, 1985; et al., 1983).
However, as such methods do not use implementation
data but mainly rely on design specifications, they
cannot afford good test quality measured in terms of
gate-level fault coverage;

e hierarchical test synthesis methods: in order to main-
tain a better correlation between test selection and
physical coverage of the system, hierarchical test gen-
eration methods have evolved (Lee and Patel, 1991;
Rao et al., 1993). Such methods take advantage of
higher abstraction level information, while generating
tests for the gate-level faults. The advantage gained
by hierarchical methods over functional ones lies in
the possibility of measuring the test coverage in gate-
level stuck-at faults (SAF). On the other hand, it has
been shown that exclusive SAF coverage cannot guar-
antee high quality of testing (Soden and Hawkins,
1993; Huisman, 1993). This is due to the fact that
SAF has proven unfeasible in adequately representing
the majority of real IC defects and failure mecha-
nisms;

e decision diagrams: good results in gate-level test gen-
eration have been achieved with decision diagrams
used as model of digital circuits (Corno et al., 1995) in
order to replace abstract fault models like SAF with
realistic defect models. In (Ubar and Raik, 2000) the
authors propose a hierarchical test generation method
where three levels of modeling are exploited: high-
level decision diagrams for efficient high-level system
constraints generation and high-level test planning
(Ubar, 1996), low-level Boolean differential equations
for logic-level exact fault activation, and medium-
level structurally synthesized binary decision dia-
grams for local test pattern generation with respect
to single system modules. By using such diagrams
for different system levels (RTL and gate-level), this
methodology manages to provide a uniform system
representation model, and the application of consis-
tent fault activation and transportation procedures
throughout all the levels.

3.2.2.2. Software In the case of software, several an-
alytic models have been proposed for the estimation of
reliability.

o time-domain models: these models use the failure
history obtained during testing to predict the field
behavior of the program, under the assumption that
testing is performed in accordance with a given oper-
ational profile. However, there are some fundamental
difficulties with this approach including the satura-
tion effect of the testing process (Chen et al., 1992),
and the usual difficulty in obtaining an accurate op-
erational profile;
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e statistical testing: in statistical software testing, es-
timation of software dependability is based on the
execution of a predetermined number of test cases
generated as a statistical sample from the operational
profile (Thevenod, 1991). Operational profiles are of-
ten built by partitioning the input space into a set of
so-called bins (groups of inputs that share the same
characteristics), each one retaining a different occur-
rence probability. Statistical testing does guarantee a
better performance in uniform input selection since it
is highly subjected to the quality of the operational
profile (Garg, 1994);

e coverage: other than a completely distinct method-
ology, coverage is intended to integrate previously
defined approaches by defining a uniform metric to
quantify the fraction of software application (in terms
of execution paths and code blocks, for example) that
has been actually executed and evaluated during the
testing process. The need for coverage measurements
in the validation of software dependability has been
widely demonstrated (Kahn and A.W., 1953; Benso
et al., 1998b). However, although coverage is needed
to define some sort of threshold that delimits a suffi-
cient amount of testing of a software system, it does
not hold a straightforward interpretation for reliabil-
ity. In this connection, efforts to combine coverage
with other test generation models are needed (Garg,
1994; Howden, 1997).

Another interesting approach that goes in the direction of
providing high level fault activation for software systems
can be obtained by shifting our attention from the input
space to that of faults.

The stress- and path-based fault injection methods (Aide-
mark et al., 2001; Tsai et al., 1999) provide an effective
solution for generating a fault list that correctly matches
system’s inputs, by analysis of the application under eval-
uation at different stages. This goes in the direction of
generating a fault list that gets highly (if not completely)
activated. The stress-based method monitors run-time
workload activity at the system level in order to lead fault
injection to the locations and times of greatest workload
activity. This technique guarantees high activation rates
for the fault list.

The path-based method analyzes the system under work-
load from an application standpoint during the develop-
ment phase of the software application, by considering
control-flow and resource usage information. It can there-
fore be used to individuate those portions of code that
need improvement. However, it is very dependent on the
peculiar instruction set and code format of the platform.
It usually requires pre-injection analysis to be properly ap-
plied. Path-based analysis guarantees complete activation
of the fault list.

The path-based approach is usually more costly than
the stress-based one, both in terms of time and setup
efforts. Such additional cost is fixed and quantified with
the number of paths to evaluate. However, is demonstrated
the existence of a threshold value for the number of paths,
over which such overhead starts to get amortized, thus
justifying the adoption of path-based over stress-based in
particular case studies.

THE ADVICES TO APPLY JUSTICE IN FAULT
INJECTION EXPERIMENTS ARE

e If the goal is to evaluate the hardware reliability, it is
necessary to choose a workload able to activate the
majority (possibly 100%) of the system functionali-
ties:

(1) it is possible to use end-of-production test
patterns or verification patterns, if available;

e if the goal is to evaluate the hardware/software
system, then the workload has to guarantee the
highest possible coverage of the mission software
functionalities by:

(1) computing the code coverage guaranteed by the
chosen workloads;

(2) choosing a set of workloads representative
of the actual mission. If available, useful
knowledge can be extracted from historical
information of previous systems working in
the same conditions.

3.8 Prudence (Readouts)

"Prudence is practical wisdom and judgment regarding
the choice and use of the best ways and means of doing
good”.

Plato, the Republic

Readouts strongly depend on the type of fault injection en-
vironment. Simulation-based environments usually allow
more detailed readouts, whereas software- or hardware-
implemented solutions in most of the cases allow recording
only a limited amount of information (usually gathered
from the system’s primary outputs only). Moreover, since
logging the system’s behavior can be very expensive (in
terms of execution time, hardware, or complexity), the
choice of the readout mechanism can be constrained by
the type of target system. For example, in case of a real-
time system, it is necessary to choose readout mechanisms
that do not influence the timing properties of the system
itself.

The readouts obtained during a fault injection experiment
allow therefore elaborating results that are intrinsically
strongly related to the particular level of abstraction of
the target system and fault injection setup. A lot of
attention has therefore to be paid if one of the goals is
to deduce dependability results for an abstraction level
(for example the gate-level) different from the one used
in the experiment (for example behavioral-level). Some
papers tried to do this [omitted] but only a few of them
gave a formal and complete statistical demonstration of
the correctness of their final results.

THE ADVICES TO APPLY PRUDENCE IN FAULT
INJECTION EXPERIMENTS ARE

e Whenever possible, implement or choose a fault
injection tool able to work at the same level of
abstraction at which I need to obtain results;

e observation points should be carefully selected to
precisely represent the actual portion of the system
that is critical for the experiment results.
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3.4 Courage (Measures)

"... Courage we find in the soldiers; courage is the true
estimation of danger, and that has been ingrained in
them by their education.”.

Plato, the Republic

Courage is maybe the most important virtue when trying
to interpret the fault injection results obtained during the
experiments.

The fault tolerance coverage estimations obtained through
fault injection experiments are estimates of conditional
probabilistic measures characterizing the dependability.
Coverage is defined as the probability of system recovery
given that a fault exits. Deriving coverage information
from the collected readouts is not trivial and requires a
good statistical background. Moreover it is necessary to
carefully analyze how the data has been obtained. The
first issue has to do with the no-effect faults that can
occur. A no-effect fault does not cause any modification
in the system’s behavior. Example of no-effect faults are:

e a fault present in a memory location that is never
accessed (e.g., a variable that will never be read
or written again, or an instruction that the given
activation set never executes);

e a transient fault overwritten by a write operation on
its location;

e a fault masked by the system.

These faults reduce the efficiency of the assessment process
because the fault injection experiments for these faults
provide no useful information and yet require the maxi-
mum amount of resources. A lot of experiments involving
no-effect faults must be therefore discarded.

As an example, let us consider an application with the
control flow graph presented in Fig. 2. Let us assume
to define a fault injection campaign that requires the
injection of 1,000 random faults in the code segment of
the application with an activation set that causes the
application to execute the following flow: Begin-B-End.
Approximately the same number of faults will be injected
in A and in B. However, since the A block of instructions is
never executed, at the end of the campaign we can expect
all the faults injected in A ( 50%) to be classified as no-
effect.

BEGIN

%
-

Fig. 2. Simulation Results

Injection

If the purpose of the experiment was to evaluate the
dependability of the application with a particular set
of inputs, then the result can be correct. On the other
hand, if the goal was the evaluation of the application
in general, the meaning of the collected results might
be misunderstood since there are no results about the
application behavior when faults are injected in A during
its execution.

We analyzed before that avoiding a random generation of
the target fault list can dramatically reduce the problem
of having useless or predictable results (see Section 3.1.3).
Nevertheless, when using collapsing techniques on the
target fault list it is very important to remember that
the collapsed (and therefore discarded) faults should still
be considered in the final measures. If a fault has been
discarded because its effect was predictable, than in the
final results its contribution must be counted in the
corresponding class. Explicit description of the statistics,
computations and assumptions must always be included
in the results of a fault injection experiment, because they
are the only means to evaluate the confidence in the final
results.

THE ADVICES TO APPLY COURAGE IN FAULT
INJECTION EXPERIMENTS ARE

Use real statistics and not only the minimum amount to

make the results look professional:

e never provide absolute results, but always couple
them with an error and confidence estimation;

e always correlate the results with the operating con-
ditions;

e be very careful in generalizing results;

always take into account the actual fault occurrence

probability. A very destructive fault with a very low

occurrence probability may be not that critical after
all;

e evaluate the results in a critical way in order
to understand if they reflect the actual system
behavior or they are biased by an error in the fault
injection setup.

4. CONCLUSIONS

"Errare umanum est, perseverare diabolicum"

In this paper the authors discussed the most common
methodological errors that can be committed (or have
already been committed) in setting up and presenting the
results of a fault injection campaign. The purpose is not to
blame other researchers, but to summarize those malicious
problems that can make fault injection results unreliable,
and to propose some possible solutions. The four Cardinal
Virtues of fault injection are: Temperance in the choice of
the fault model and fault list, Justice in the selection of
the activation set, Prudence in the selection of the readouts
points, and Courage when elaborating and interpreting the
final results. The authors believe that two of the most
significant advances in fault injection techniques can be
found in (i) the use of statistics in both the definition of the
fault list and the interpretation of the results, and in (ii)
the use of coverage metrics (as code coverage, instruction
set coverage, etc.) to relate the final dependability results
to the actual coverage of the system functionalities that
the experiment allowed.
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