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A reduced order model based on sector mistuning for

the dynamic analysis of mistuned bladed disks

P. Vargiu∗ , C.M. Firrone, S. Zucca, M.M. Gola

Department of Mechanics, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129,
Torino, Italy

Abstract

In this paper, a pre-existing reduction technique suitable for the analysis of
mistuned bladed disk dynamics, the Component Mode Mistuning technique
(CMM), originally developed exclusively for the use of blade frequency mis-
tuning pattern, is extended in order to allow for the introduction of a sector
frequency mistuning pattern. If either mistuning is not confined to the blades
(i.e. blades-to-disk interface mistuning), or the blades can not be removed
from the bladed disk (i.e. integral bladed disks), sector mistuning rather than
blade mistuning is a more suitable choice to perturb the tuned system. As
a consequence, the extension of the original technique is referred as Integral
Mode Mistuning (IMM). After a theory review of the original technique, the
modifications leading to the IMM are described. Finally, the proposed IMM
technique is validated in terms of both modal parameters estimation and
forced response calculation, by means of a dummy bladed disk developed at
Politecnico di Torino.

Keywords: Bladed disk dynamics, Mistuning, Order reduction technique

1. Introduction

. An industrial rotor generally is a very complex structure. Using a complete
finite element model (FEM), in order to predict the dynamic behaviour and
the stress outline of the bladed disk, is often a formidable task, due to the
high computational cost needed by the calculation (an industrial FE model
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easily consists of millions of nodes). Consequently, a model simplification is
usually requested, without any loss of accuracy; this target is reached not-
ing that a bladed disk can be subdivided in sectors, everyone ideally equal
to each other. This property, called cyclic symmetry, allows to analyse the
whole structure by using only the FE model of the fundamental sector, fol-
lowing for instance the approach proposed by Mead [2] and Thomas [3]. The
dynamic behaviour of such structures is mainly characterized by the presence
of double natural frequencies, corresponding to twin mode shapes counter-
rotating along the system. Although a bladed disk is generally designed in
order to reproduce the perfect cyclic symmetry conditions, the real rotors
are always characterized by random deviations among the sectors, caused
by manufacturing tolerances, material defectiveness, non-uniform assembly
or wear. This issue is commonly called mistuning, which destroys the cyclic
symmetry of the structure. The effects of the introduction of irregularities on
a tuned structure have been extensively studied by the research community
from the early 60’s (Ewins [1]; Hodges [4], [5]; Kissel, [8]; Pierre, [9]): even
though mistuning is typically small, it causes the split of the double natural
frequencies, a distortion of the mode shapes and, above all, mistuned bladed
disks can experience drastically larger forced response levels than the ideal,
tuned design, as outlined by Whitehead in [13] and MacBain et al. in [7].
The unexpected increase in maximum stresses can lead to premature high
cycle fatigue (HCF) of the blades. It is clearly of great interest to be able
to predict the maximum blade response as a result of mistuning. The most
used approach to analyse mistuning effects on bladed disks is a statistical
method, through Monte Carlo simulations, in order to evaluate the maxi-
mum possible blade forced response, as highlighted in [20]. It is well known
that the accuracy obtainable from Monte Carlo techniques improves as the
number of iterations grows, especially in case of rare events. This commonly
makes unusable the FEM of the whole structure, due to the tremendously
high computational cost required for the analysis. From this considerations
the development of purpose-made FEM reduction techniques is necessary, in
order to obtain more compact, but also accurate, models.

Introducing the mistuning definition, we usually refer to the so-called
geometrical mistuning, i.e. the physical perturbations occurring in the real
structural parameters. Clearly, the introduction of a geometrical mistun-
ing into the reduced-order models (ROMs) means that all the degrees of
freedom (dofs) where mistuning is present must be retained. Moreover, espe-
cially when one wants to analyse a real, manufactured bladed disk through a
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ROM, FEM or lumped mass model, there is usually no way to measure or de-
termine the geometrical mistuning in the structure. An alternative mistuning
model has to be considered: the frequency mistuning. In fact a geometrical
mistuning, whatever its nature is, has the effect of modifying the structure
natural frequencies with respect to the ideal tuned configuration. Further-
more, the frequency perturbation is a quantity directly measurable and easy
to be introduced into the ROMs. Therefore, by swapping the cause with the
effect, the geometrical mistuning (cause) is substituted into the ROMs by
the frequency mistuning (effect). This is the approach mainly used in the
literature, where two frequency mistuning models have been introduced: (i)
the blade frequency mistuning model, used in the vast part of the ROMs,
defined as the deviation of the single, cantilevered-blade mistuned natural
frequencies from the corresponding tuned ones; (ii) the sector frequency mis-
tuning model, firstly introduced by Griffin et al. in [18], where the natural
frequency deviations are referred to the whole fundamental sector.

The choice of the blade mistuning as the most important (and, often, as
the only important) mistuning model is due to the high sensitivity shown by
the blade-dominated modes (high modal density regions) to the presence of
irregularities. However, Griffin et al. pointed out that the blade mistuning
is not the proper model to analyse the integrally manufactured bladed disks
(blisks), due to the impossibility to physically separate the blades from the
disk. Moreover, a perturbation in the disk-to-blade interface (for instance,
the stagger angle of the blades) can not be captured by a blade frequency
mistuning model. In order to fill this gap, they proposed an alternative mis-
tuning model, which considers the frequency deviation of the whole sector.
The importance of the blade-to-disk interface mistuning has been recently
confirmed by Mignolet et al. in [22]: considering the FE model of a non-
integral bladed disk, they showed how the highest forced response amplifica-
tions obtained with a mistuning pattern in the disk-to-blade interfaces can
be compared to those occurring when only the blades are mistuned.

Several model reduction techniques have been proposed in literature in
order to analyse the mistuned bladed disk dynamics: as mentioned, the vast
part of them accounts only for a blade frequency mistuning model, like for
instance REDUCE [11], SNM [15], MISTRES [17], CMM [21]; just FMM
[16] allows to account also for a sector mistuning. However, the great sim-
plifications introduced in this high-reduced model lead to a limitation of its
applicability, i.e. only to isolated and blade-dominated families of modes.
This restriction prevents, for instance, from the analysis of the so-called
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veering regions, also characterized by high sensitivity to mistuning effects, as
mentioned in [20].

The aim of the work described in this paper is the development of a
ROM which takes into account a sector frequency mistuning model without
introducing any restriction for its application. For this purpose, one of the
higher-performing models, CMM, has been selected to provide an extended
technique, referred as IMM. Firstly, the original CMM theory is briefly re-
sumed. Then, the proposed IMM model is described in details. Finally, the
IMM model is validated through the model reduction of a realistic dummy
bladed disk, where two types of mistuning are applied: a disk-to-blade in-
terfaces mistuning, and a blade elastic modulus mistuning; the validation
process serves also to highlight as the introduction of the blade frequency
mistuning model only does not always guarantee a correct modelling of the
whole bladed disk dynamics.

2. CMM (Component Mode Mistuning) theory

. The CMM reduction technique was proposed by Lim et al. in [21]. This
model can be classified as C.M.S. technique, and in particular belongs to the
hybrid-interface component class. Let us consider the classical equation of
motion of a cyclic mistuned system:(

−ω2 ·M + iω · C +K
)
· {x0} = {F} (1)

where the vector {F} is the rotating force acting on the structure. The
force system acting on the complete structure may be called a rotating force
system if the force acting on any degree of freedom of one sector n − 1 has
the same amplitude as the force acting on the same degree of freedom in
the nth following sector, and there is a fixed phase difference between them
(depending on the force periodicity):

{F}n · e
iωt = {F}n−1 · e

i(ωt−EOφ) = F0 · ei(ωt−(n−1)EOφ); (2)

where EO is the Engine Order of the excitation, φ = 2π/N is the sector ge-
ometric angle, n = 1, · · · , N is the number of blades and F0 is the amplitude
of the force.
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The key-idea of this technique is to substructure the mistuned bladed
disk in two components: the first substructure is the whole tuned bladed
disk, the second corresponds to the perturbation produced by mistuning on
the blades only, as shown in Figure 1(a). As a consequence, the interfaces
between the components previously defined consist of all the blade degrees of
freedom; the model reduction of each component is here described:

1. Tuned bladed disk, treated as free-interface component, whose mass-
normalized normal modes [φs] are a restricted set of the whole structure
tuned modes. In order to guarantee the correct static behaviour of the
structure, a set of attachment modes [ψs] are needed; these static deflec-
tions are computed by imposing, one-by-one, a unity force to a single
interface dof while keeping the other dofs unloaded. By applying a co-
ordinate transformation through the transformation matrix

[
φs ψs

]
,

the equation of motion of the component becomes:(
−ω2 · µs + iω · cs + κs

)
· {ps} =

[
φs ψs

]T · {F} ; (3)

where:

µs =
[
φs ψs

]T · [M s] ·
[
φs ψs

]
=

=

[
I φsT ·M s · ψs

ψsT ·M s · φs ψsT ·M s · ψs
]

; (4)

κs =
[
φs ψs

]T · [Ks] ·
[
φs ψs

]
=

=

[
Λs φsT ·Ks · ψs

ψsT ·Ks · φs ψsT ·Ks · ψs
]

; (5)

cs = diag (2ζωi) ; (6)

are, respectively, the modal mass, stiffness and damping matrices, the

vector {ps} =
{
ps psψ

}T
contains the generalized coordinates and

the submatrix Λs includes the tuned eigenvalues in the main diagonal.
Note that the tuned matrices [M s] and [Ks] are block circulant.
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(a) CMM. (b) IMM.

Figure 1: Bladed disk substructuring.

2. Blade mistuning component, consisting of all the blades which
structural matrices,

[
M δ
]

and
[
Kδ
]
, contain only the perturbations

of the tuned ones. This component is treated as fixed-interface com-
ponent, so a set of constraint modes

[
ψδ
]

is necessary to complete the
model. Consequently, for this second component no normal modes are
available, since all the blade dofs are fixed, and constraint modes

[
ψδ
]

only are used. In this case, these static deflections are computed by
imposing, one-by-one, a unity displacement to a single interface dof
while keeping the other dofs fixed. Therefore, such constraint modes
matrix is equal to the identity matrix [I]. The final mass and stiffness
modal matrices of the component are equal to the unreduced

[
M δ
]

and[
Kδ
]
:

µδ = [I]T ·
[
M δ
]
· [I] =

[
M δ
]
, κδ = [I]T ·

[
Kδ
]
· [I] =

[
Kδ
]
. (7)

Note that the matrices
[
M δ
]

and
[
Kδ
]

are block diagonal since the
blades are not directly coupled among themselves.

As stated before, the component-to-component interfaces consist of all
the blade dofs. Consequently, the number of static deformed shapes [ψs] and[
ψδ
]

necessary for the two reduced components is equal to the number of
blades dofs.

The assembly between the mass and stiffness matrices of the components
is performed by imposing the congruence of the displacements at the mating
interfaces, i.e. {xsb} =

{
xδ
}

; subscript b, hereinafter, indicates a vector or
matrix containing quantities related to the blade dofs only. The final equation
of motion of the whole system is:
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(
−ω2 · µrom + iω · crom + κrom

)
· {prom} =

[
φs ψs

]T · {F} . (8)

where the model structural matrices are:

µrom = µs +

[
φsb

T ·M δ · φsb φsb
T ·M δ · ψsb

ψsb
T ·M δ · φsb ψsb

T ·M δ · ψsb

]
; (9)

κrom = κs +

[
φsb

T ·Kδ · φsb φsb
T ·Kδ · ψsb

ψsb
T ·Kδ · φsb ψsb

T ·Kδ · ψsb

]
; (10)

Due to the presence of the attachment modes [ψs], the employment of such
technique is quite expensive from a computational point of view. However,
in the case of small mistuning, some approximations can be introduced in
order to reduce the model dimension.

2.1. Small mistuning approximations

. Following the concept developed by Griffin et al. in [12], dealing with the
restricted number of tuned modes needed to obtain the mistuned ones by
linear combination, Lim et al. proposed to neglect the attachment modes
[ψs], since they do not contribute to the mistuned modes generation in the
high modal density region. The simplified matrices of the CMM model so
are:

[µromsm ] = [I] +
[
φsb

T ·M δ · φsb
]
, [κromsm ] = [Λs] +

[
φsb

T ·Kδ · φsb
]
, (11)

where subscript sm refers to the small mistuning hypothesis.
After the approximation mentioned about, the model dimension is re-

duced to the number of tuned modes retained into the analysis. However,
the computation of [µromsm ] and [κromsm ] still requires a high computational cost,
since they involve products among matrices whose dimensions are equal to
the number of all the N blades dofs. Furthermore, a frequency mistuning
model can not be introduced yet.

In order to overcome this problem, the authors used an approach proposed
by Bladh et al. in [14], the mistuning projection method, according to which
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the mistuned matrices are reduced through the projection over the unper-
turbed mode shapes. Let us consider a single, mistuned cantilevered blade,
whose mistuned stiffness matrix and tuned modal matrix are, respectively,
[Kmist

b ] and [φ0
b ]; then, defined the matrix product:[

κmist
]

=
[
φ0
b

]T · [Kmist
b

]
·
[
φ0
b

]
, (12)

the mistuning projection method, in absence of mass mistuning, allows to
approximate the diagonal terms of the matrix above as:

κmistpp = δb · λ0b,p with p = 1, · · ·P, (13)

where δb is the blade frequency deviation in respect to the pth unperturbed
cantilevered blade eigenvalue λ0b,p, and P is a restricted set of eigenvectors
[φ0
b ]. Note that the matrix [κmist] is diagonal if the mistuning is proportional

to the global stiffness matrix [Kmist
b ], since the blade mistuned mode shapes

are not generally distorted; however, in case of slightly distorted blade mode
shapes, the diagonal terms are predominant in respect of the off-diagonal
ones, so the (13) still holds.

In order to apply the mistuning projection method to the CMM formu-
lation, the unperturbed cantilevered blade modes must be expressed in the
(11). This is achieved by computing the modal partecipation factors of the
cantilevered blade modes [φ0

b ] in the blade portions of the tuned modes [φsb]:

[φsb] =
[
φ0
b

]
· [q] . (14)

Using the cyclic symmetry properties, the participation factors [q] are ob-
tainable from the tuned mode shapes referred to the single blade, through
the relation:

[
φ0
b

]T · [K0
b

]
·
[
φ̃s,hb

]
=
[
φ0
b

]T · [K0
b

]
·
[
φ0
b

]
·
[
q̃h
]
n

=
[
Λ0
b

]
·
[
q̃h
]
n

; (15)

where [q̃] are the modal participation factors expressed in a cyclic symme-
try fashion, the superscript h denotes the harmonic number of the tuned
eigenvector considered and the subscript n indicates the blade number, with
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n = 1, · · · , N . The modal participation vector [q] of the whole structure is
finally obtainable through the cyclic expansion:

[q] = (F ⊗ I) · Bdiag
h=0...N/2

[
q̃h
]

; (16)

where ⊗ indicates the Kronecker product and F is a real-valued form of the
Fourier matrix, as defined in [11]. The final form of the CMM model matrices
is:

[µromsm ] = [I] , [κromsm ] = [Λs] +
∑

n=1...N

[q]Tn · diag
p=1...P

(
δnb,p · λ0b,p

)
· [q]n ; (17)

where the summation in the stiffness matrix equation can be introduced
since the blades are not directly coupled together (the matrix

[
Kδ
b

]
is block

diagonal).

3. Integral Mode Mistuning (IMM)

. An alternative reduced-order model, accomplishing for the introduction of
the sector frequency mistuning, can be obtained through an extension of the
CMM technique ([23]). The key-idea is to change the definition of the second
CMM component, i.e. substituting the blade mistuning component with a
sector mistuning component, as shown in Figure 1(b).

Considering a structural perturbation applied to the whole sector, the
matrices

[
M δ
]

and
[
Kδ
]

are no longer block diagonal, since the sectors are
directly coupled together; moreover, due to the different perturbation among
the sectors, these matrices are not circulant. Let us re-order the displacement
dofs of the two components as:

{xs} =



xS,1r ≡ xs,nl
xS,1i

xS,2r ≡ xS,1l
xS,2i
...

xs,nr ≡ xS,N−1
l

xs,ni


;

{
xδ
}

=



xδ,1r ≡ xδ,Nl
xδ,1i

xδ,2r ≡ xδ,1l
xδ,2i
...

xδ,Nr ≡ xδ,N−1
l

xδ,Ni


; (18)
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where n = 1....N denotes the sector number and the subscripts i, r and l
indicate respectively the internal, right and left interfaces dofs. Consequently,
the re-ordered stiffness matrix of the sector mistuning component is:

[
Kδ
]

=

=



Kδ,1
rr +Kδ,N

ll Kδ,1
ri 0 0 · · · 0 Kδ,N

li

Kδ,1
ir Kδ,1

ii Kδ,1
il 0 · · · 0 0

...
...

...
. . .

. . .
...

...
...

...
...

...
. . .

...
...

0 0 0 0 Kδ,N−1
ri Kδ,N

rr +Kδ,N−1
ll Kδ,N

ri

Kδ,N
il 0 0 0 0 Kδ,N

ir Kδ,N
ii


.

(19)

By using the same approach described in section 2, where [Φs
b] are now re-

placed by the whole tuned eigenvectors [Φs], the mass and stiffness matrices
of the IMM model, with the small mistuning approximation, can be written
in place of (11):

[µsm
rom] = [I] +

[
φsT ·M δ · φs

]
, [κsm

rom] = [Λs] +
[
φsT ·Kδ · φs

]
. (20)

Let us now explicit the bracketed product of the stiffness matrix in (20):

[
φsT ·Kδ · φs

]
=

∑
n=1.....N

(
[φs,nr ]T ·

[
Kδ,n
rr

]
· [φs,nr ] +

+
[
φS,n+1
r

]T · [Kδ,n
ll

]
·
[
φS,n+1
r

]
+ [φs,ni ]T ·

[
Kδ,n
ir

]
· [φs,nr ] +

+ [φs,ni ]T ·
[
Kδ,n
il

]
·
[
φS,n+1
r

]
+ [φs,nr ]T ·

[
Kδ,n
ri

]
· [φs,ni ] +

+ [φs,ni ]T ·
[
Kδ,n
ii

]
· [φs,ni ] +

[
φS,n+1
r

]T · [Kδ,n
li

]
· [φs,ni ]

)
(21)

The nth addend can be rewritten as the matrix product:
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 φs,nr
φs,ni
φS,n+1
r

T ·
 Kδ,n

rr Kδ,n
ri 0

Kδ,n
ir Kδ,n

ii Kδ,n
il

0 Kδ,n
li Kδ,n

ll

 ·
 φs,nr

φs,ni
φS,n+1
r

 = [φs,n]T ·
[
Kδ,n

]
· [φs,n] ;

(22)

i.e., the projection of the nth sector stiffness matrix
[
Kδ,n

]
in the correspon-

dent nth sector portion [φs,n], including left and right interfaces dofs, of the
tuned modal matrix.

As a consequence, also in this case, it is possible to introduce the summa-
tion seen in (17); the great advantage is that the cantilevered blade normal
modes used in the classical CMM technique are replaced with the normal
modes [φ0

s] of the whole basic sector, with its left and right interfaces kept
free. The replacement is accomplished, as done for the classical CMM model,
by introducing the participation factors [q]:

[
φ0
s

]T · [K0] ·
[
φ̃s,hs

]
n

=
[
φ0
s

]T · [K0] ·
[
φ0
s

]
·
[
q̃h
]
n

= [Λ0] ·
[
q̃h
]
n
, (23)

being [M0] and [K0] are the mass and stiffness matrices of the unperturbed
single sector and [Λ0] contains its eigenvalues, it is possible to express the
tuned eigenvectors

[
φs,hs
]
n

as linear combination of the free-interface sector
modes [φ0

s]; substituting the (21) in the (20), without mass mistuning, we
obtain:

[µromsm ] = [I] ; (24)

[κromsm ] = [Λs] +
[
φsT ·Kδ · φs

]
=

= [Λs] +
∑

i=1....N

[q]Tn ·
[
φ0
s

]T · [Kδ,n
]
·
[
φ0
s

]
· [q]n . (25)

Now it is possible to apply the mistuning projection method:

[
κδ
]
n

=
[
φ0
s

]T · [Kδ,n
]
·
[
φ0
s

]
= diag

p=1...P

(
δns,p · λ0p

)
with n = 1...N, (26)
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where δnp is the nth sector frequency mistuning for mode p, defined as the
deviation of the pth natural frequency λ0p of the free-interface sector.

The IMM matrices are, finally:

[µromsm ] = [I] , [κromsm ] = [Λs] +
∑

i=1....N

[q]Tn · diag
p=1...P

(
δns,p · λ0r

)
· [q]n . (27)

We can conclude that, by introducing the free-interface sector modes instead
of the single cantilevered blade modes into the CMM formulation, it is possi-
ble to obtain an alternative version of this ROM, here referred as IMM, that
keeps the high-performing characteristics of the original technique.

4. Numerical validation

. In order to validate the CMM extension proposed in the previous section,
a whole finite element model of a real, manufactured dummy bladed disk,
consisting of 18 sectors, is chosen as benchmark (Figure 2(c)). In order to
better reproduce the real blade-disk interface, a dovetail blade root geometry
has been adopted.

The centrifugal force effect is simulated through two screws (Figure 2(b))
pressing the blade root against the slot on the disk rim. Between the screws
heads and the blade are provided two washers to uniformly distribute the
load. The assembly is designed in order to obtain a stagger angle of the blades
equal to 45 degrees. The material used is a C40 hardened and tempered steel.

The benchmark FEM is analysed with the ANSYS software, and consists
of 81054 dofs. The disk is constrained at the inner circle radius; in order
to simplify the mesh grid, the washers has been uniformly distributed along
the slot axial thickness, as shown in Figure 2(c); the washer volumes are
completely fixed to both the blades and the disk. On the contrary, only a
couple of nodes for each side of the disk-slots and blade-roots are forced to
experience the same displacement, as highlighted by the green constraints
displayed in Figure 2(c).

The modal analysis of the tuned model produces the natural frequencies
over nodal diameter diagram shown in Figure 2(d): only the frequency band
including the first modal family is taken into account. The forced response
is calculated by applying a rotating force, defined in (2), whose amplitude
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(a) Whole FE model. (b) Blade-disk assembly.

(c) Blade-disk coupling. (d) First family of modes for the
tuned bladed disk chosen.

Figure 2: The FEM test-case chosen as benchmark for the IMM validation pro-
cess.

is 10 N, applied along the axial direction to a node at the tip of each blade;
a constant modal damping ζ = 0.001 is introduced both in the FE and RO
models, so that the modal damping matrix elements are:

[φi]
T · [C] · [φi] = 2 · ζ · ωi; (28)

where [φi] is the ith eigenvector and ωi is the correspondent squared root
eigenvalue, ωi = 2πfi. As a consequence, when a mistuning pattern is intro-
duced into the structure, also the damping matrix is perturbed due to the
occurred frequency change.

Two mistuning patterns are introduced on the tuned finite element model:
(i) a blade frequency mistuning pattern, consisting of deviations in the blades
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Sector (a) δ
(b)
E (b) Roots Sector (a) δ

(b)
E (b) Roots

1 0.0059 all 10 -0.0207 all
2 -0.0169 front 11 0.0045 back
3 0.0083 front 12 -0.0166 front
4 -0.0049 back 13 0.0012 front
5 -0.0077 all 14 -0.0157 back
6 -0.0053 back 15 -0.0030 all
7 -0.0016 back 16 -0.0218 back
8 0.0057 front 17 -0.0003 all
9 0.0142 all 18 -0.0116 all

Table 1: Mistuning patterns introduced in the FE model: (a) blade elastic mod-
ulus deviations (mean = -0.005, st.dev. = 0.01), (b) blade-to-disk mistuning: the
side of the coupled nodes is indicated.

elastic modulus (numerically generated from a normal distribution with zero
mean and 1% standard deviation), and (ii) a sector-to-blade interfaces mis-
tuning, by changing the root/slot coupling. In the former case, the mistuning
pattern is selected, through a Monte Carlo analysis consisting of 5000 iter-
ations (performed by using a reduced CMM model of the bladed disk), as
the pattern which produces the maximum forced response amplification for
an EO 9 excitation; in the latter case, the idea is to reproduce a typical
mistuning pattern coming out from the assembly of the whole structure: in
this case, the mistuning is due to a different tightening of the two screws
used to reproduce the centrifugal force effect. This condition has been mod-
elled in the FEM by uncoupling the front or back couples of nodes shown in
Figure 2(c). The two mistuning patterns are listed in Table 1.

The reduced-order model is generated including the first 18 tuned modes
shapes [Φs]: then, its final dimension is equal to 18 dofs, corresponding to
the 0.022% of the whole finite element model. Moreover, in order to ap-
ply the mistuning projection method, the first 20 free-interface single sector
normal modes [Φ0

s] are retained. The proposed IMM technique is employed
in order to obtain the reduced-order model (ROM) of the whole structure.
As explained in the previous section, it is suitable for the introduction of
a sector frequency mistuning pattern; there is so the need to identify the
”real” mistuning (root/slot coupling + blade Young modulus deviations) of
the structure as deviations of the fundamental sector frequencies (δns ). This
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goal is achieved by providing a numerical one-to-one relation between the
two different mistuning patterns, i.e. using a proper FE model to calculate,
sector by sector, the frequency deviations caused by the real mistuning. For
this purpose, a tuned FE model of the whole structure is chosen where, one-
by-one, the different mistuning values of Table 1 are applied equally to each
sector; then, the consequent median nodal diameter (the fourth in this case)
frequency deviation is taken as representative of the sector frequency devia-
tion. This approach is based on the considerations proposed by Griffin et al.
in [18]: if the modal family of interest is sufficiently isolated (as the one of
Figure 2(d)) from the others, all the modes of this family can be represented
by means of the same basis of the fundamental sector modes: consequently,
the tuned median nodal diameter frequency deviation is representative of
the single sector frequency deviations. By using the same numerical relation
described above, we can also evaluate that the root/slot mistuning pattern
(considered alone) has a mean, in terms of sector elastic modulus deviation,
equal to -0.007 and a standard deviation equal to 0.6%: consequently, the
root/slot and blade mistuning patterns considered in our analysis are com-
parable.

The sector frequency mistuning pattern δns is then introduced into the
ROM (see equation (27)); the comparison between the ROM prediction and
the FEM benchmark concerns:

1. Mistuned natural frequencies;

2. Mistuned mode shapes, through the Modal Assurance Criterion (MAC);

3. Maximum forced responses of the whole blisk to some EO excitations.

In order to investigate the ROM accuracy in predicting the mistuned
frequencies, the percentage error defined by the (29) is commonly found in
literature:

ε =

∣∣∣∣∣f
(mist)
rom − f (mist)

fem

f
(mist)
fem

∣∣∣∣∣ · 100, (29)

where f denotes a natural frequency. However, this error index does not
give a full view about the real quality of the prediction, because the ROM
has to be able also to capture the frequency split due to mistuning. This
means that the ROM mistuned frequencies have to be, not only close to the
FEM ones, but closer to the FEM ones than to the tuned ones. A frequency
split percentage error must be defined to complete the information given
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Figure 3: Definition of the error εFEMsplit in capturing the frequency splits.

by the error (29). By defining the ”real” frequency split obtained by FEM
calculation as:

∆FEM
split =

f
(mist)
fem − ftuned

ftuned
· 100, (30)

we suggest to adopt the following frequency split error:

εFEMsplit = ε−
∣∣∆FEM

split /2
∣∣ . (31)

To understand the meaning of the (31), look at the example shown in Fig-
ure 3: we can assume that the frequency split is captured if the ROM mis-
tuned frequency lies within the up and bottom sides of the green square, i.e.,
if it is closer to the FEM frequency than to the tuned one. In this case,
the error εFEMsplit is less than zero, denoting a clear threshold under which the
frequency split can be considered as captured by the ROM. Note that when
the split δFEMsplit approaches zero, the error εFEMsplit tends to the error ε.

The results of the validation process are shown in Figure 4. As expected,
the accuracy of the IMM model is quite close to that obtained from the orig-
inal CMM model in [21]: the average error ε in the mistuned frequencies
estimation, plotted in Figure 4(b), is 0.05%. Note that the greater error
occurring for the lower frequencies is due to the accuracy involved in the
mistuning identification, since the median nodal diameter frequency, used
as representation of the the sector frequency mistuning, is included in the
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high modal density region (nodal diameters greater than 3 in Figure 2(d));
as a consequence, the mistuned frequencies of the blade-dominated modes
are excellently modelled. The slight inaccuracy of the identified mistuning
pattern influences also the mode shapes calculation: the minimum MAC
(Figure 4(d)) is 0.61 for the eleventh mode, with a mean of 0.91; moreover,
Figure 4(c) shows that the frequency split is optimally captured. The results
shown for the modal analysis are confirmed also by the forced response cal-
culation: as an example, the maximum forced response amplification, for an
EO 9 excitation (Figure 4(e)), computed by the ROM is 66.32% higher than
the tuned response, against the 66.34% computed by the FEM.

The validation process described above confirms that a sector mistuning
model is suitable to correctly capture both the blade and slot/root mistuning.
On the other hand, the necessity to adopt a sector mistuning model instead
of a simple blade mistuning model to accurately predict the whole structure
dynamics is not evident; we need to verify that the slot/root mistuning is
not negligible with respect to the blade frequency mistuning. This validation
is accomplished by the generation of a further ROM, through the original
CMM technique, where only the blade elastic modulus deviations of Table 1
are introduced. The results are displayed in Figure 5. It is evident that a
blade frequency mistuning model is not enough for the case of interest; more-
over, if we calculate the maximum resonant forced response amplifications,
listed in Table 2, obtained both from the CMM and IMM models for some
EO excitation, it is possible to see how much the mistuning applied to the
disk-to-sector interface can sensibly, and sometimes negatively, influence the
structure dynamics. See, for instance, the 12% higher amplification obtained
by the IMM ROM with respect to the CMM model for EO 8 excitation.

Engine Order excitation Amplifications [%]

FEM IMM CMM

6 20 21 30
7 34 37 32
8 53 53 41
9 66 66 73

Table 2: Maximum forced response amplifications, with respect to the tuned
bladed disk, computed by the ROMs.
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(a) Mistuned natural frequencies. (b) Mistuned natural frequencies error
ε.

(c) Mistuned natural frequencies error
over frequency split εFEM

split .
(d) Mistuned mode shapes MAC.

(e) Maximum forced response tuned vs.
mistuned to E.O. 9 excitation.

Figure 4: Comparison between IMM ROM and FEM results.

18



(a) Mistuned natural frequencies. (b) Mistuned mode shapes MAC.

Figure 5: Comparison between CMM ROM and FEM results.

5. Conclusion

In this paper, a pre-existing high-performing order reduction technique
for finite element models, the so-called CMM, is extended to allow for the
introduction of a sector frequency mistuning pattern. This extension is re-
ferred as Integral Mode Mistuning (IMM) model. In order to validate such
technique, the FE model of a real, manufactured dummy bladed disk is cho-
sen as benchmark. Two mistuning patterns are superimposed in the tuned
structure: (i) a classical blade frequency mistuning, introduced as deviations
of the single blades elastic modulus, and (ii) a disk-to-blade interface mis-
tuning, as slight slot/root constraint modifications. Three tasks are chosen
for the validation process:

1. To investigate the quality of the IMM predictions, as already assessed
for the CMM model, by means of the comparison of the following modal
quantities between the ROM and the benchmark FEM: mistuned nat-
ural frequencies, mode shapes and forced responses.

2. To verify that a sector mistuning model can be more suitable than a
blade mistuning model to correctly predict the whole structure dynam-
ics.

3. To show how the addition of the slot/root mistuning can lead to higher
forced response amplitudes than those provided by the blade mistuning
only.
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All the goals listed above are reached: the highly reduced-order model
obtained with the IMM technique shows an excellent accuracy, both for the
modal parameters (natural frequencies and mode shapes) and forced response
predictions; moreover, if the blade mistuning only is applied to the ROM,
the whole structure dynamics may be not well captured; finally, a higher
maximum forced response may occur if the slot/root mistuning is added to
the blade mistuning.
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