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A half-pole can be expected in the transfer function of a Peltier device because proportionality be-
tween the diffusion length and the square root of the diffusion time is intrinsic in the diffusion equa-
tion. The resulting −1/2 bilogarithmic slope (10 dB/dec) is, however, easily masked by the thermal
time constant of the load, which makes it elusive. The goal of this work is to identify the arrange-
ments which can reveal and make usable the half-pole, because the latter can be instrumental in a
servo control to increase the open-loop gain without risking instability. The diffusion equation was
solved in a sine wave regime for a one-dimensional model of a Peltier device. The Laplace transform
method was used, and the periodic solution was obtained using Cauchy’s theorem and the method
of residues. The −1/2 slope of the half-pole appeared observable in a frequency range which can be
several decades wide, depending on details of device configuration and considered position within.
Amplitude and phase of temperature and heat flux in various spots are discussed with emphasis on the
physical meaning, and a comparison is provided with solutions yielded by the lumped model, which
cannot show the half-pole. An experimental check of the theoretical approach and analysis was made
taking into account the deviations from one-dimensionality occurring in a real Peltier device. Given
a constant amplitude sine wave injected current, the quadrature component of the Seebeck voltage
across the whole series of junctions was identified as the most easily measurable quantity related to
the thermal response of the device. Experimental results for the latter turned out in good agreement
with analytical solutions. © 2011 American Institute of Physics. [doi:10.1063/1.3558696]

I. INTRODUCTION

While Peltier modules have long been used as cooling
devices, it is only relatively recently that they are increasingly
getting more common, typically in electronics and electro-
optics, in the use as actuators in precision temperature control
servo systems. It is likely for this reason that their frequency
domain transfer function, although so crucial for a careful
design of the control loop, appears to have not been studied
thoroughly as yet in published work. A search through recent
literature turned up only two papers1, 2 focused on the subject.
Both are based on lumped equivalent circuits and, therefore,
assume uniform temperature distribution in objects other than
the thermoelectric components. Within the latter, temperature
is assumed to vary linearly from one junction to the other.
This approach underestimates the relevance of heat diffusion
within the device and surrounding objects. This offers as
a result an excessively simplified solution. The latter may
appear reassuring as it only shows poles and zeros in the
Laplace transfer function, but is unfortunately inadequate as
it misses some interesting features of this unique device.

In this paper a full analysis of a Peltier thermoelectric
module driven by a sine wave current is carried out by means
of the heat diffusion equation. The resulting temperature sine
wave is derived, in amplitude and phase, as a function of the
driving frequency. It is shown that, according to the chosen
spot within the structure, the (frequency domain) Bode dia-
gram of the transfer function of the device can show a more

or less wide range of frequencies within which the amplitude
bilogarithmic slope is −1/2. This realizes what is sometimes
called a half-pole in the automatic control community. This
feature is unique to diffusive processes, as it stems directly
from the diffusion equation, which is second order in the spa-
tial variable but only first order in time. As a consequence,
the characteristic diffusion length comes out proportional to
the square root of the elapsed diffusion time, or half the pe-
riod in a sine wave regime, and is, therefore, inversely pro-
portional to the square root of the driving frequency. Previous
papers seeking the transfer function of these devices missed
the point because this feature is eminently elusive as it can be
easily masked by thermal time constants if the thermal circuit
is not specifically designed to take it up front.

This said, the 10 dB/dec slope can be particularly help-
ful in a servo control because it allows rapid increase of the
open-loop gain below the attack frequency without the risk of
instability. It is well known that the slope of the Bode diagram
at the attack frequency must be smaller than 40 dB/dec in or-
der to avoid oscillations. A slope of 30 dB/dec is considered
ideal in this context, because it allows increasing the low fre-
quency loop gain (and, therefore, the stability of the closed
loop) without increasing the bandwidth of the control. The
latter, in fact, may often be limited by unavoidable additional
poles somewhere else in the loop. In aiming at this, the diffi-
cult part is realizing the half-pole, and this is what makes the
present result attractive. The remaining 20 dB/dec necessary
to turn such 10 dB/dec slope into that magic 30 dB/dec can
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be easily added by introducing a lower frequency pole in the
loop. Another aspect of the same result is the fact that such
shallower slope of the transfer function (10 dB/dec instead
of the usual 20 dB/dec of a single dominant pole) effectively
extends the useful bandwidth of a Peltier module far beyond
what might be expected for a thermal device, irrespective of
the time constant imposed by connected thermal masses.

In the analysis reported here, the Thomson effect was ne-
glected a priori, and the Joule effect was neglected in consid-
eration of the small-signal regime in which the device would
be operated in a precision loop. In fact, it is assumed here
that the Peltier module be used as an actuator working around
an operating point where the direct current (dc) component is
low, while most of the dc needed to approach the servo control
set point is provided by a different device.

The following discussion illustrates the conditions under
which this simplification is acceptable. By assuming uniform
Joule heat generation within the thermoelectric material and
none in the electrical connections (ECs), the total heat flux in
sine wave regime can be written as

�J = (2L0)
ρe j2

P

2
[1 − cos(2ωt)], (1)

where ω = 2π f is the angular frequency of the input signal,
jP is the peak current density, 2L0 is the length of the thermo-
electric material, and ρe is its electrical resistivity. It is clear
that the Joule effect induces both a dc contribution and one
oscillating at the second harmonic of the driving frequency,
which can be studied separately for the superposition princi-
ple. Neither interferes with the operation of the module at ω,
unless the current is so great as to induce nonlinearity, which
is not the case with the assumptions made here. Furthermore,
the second is reduced by the shorter diffusion length, because
it oscillates at the second harmonic. In order to judge what
small-signal means in this context, the Joule flux of Eq. (1)
can be compared with the peak value of the Peltier heat flux
�p = �jP injected at the junction, which can be done by con-
sidering the ratio between the two:

�J

�P
= L0

ρe

�
jP = jP

jlim
. (2)

The quantity jlim is the current density at which Peltier
and Joule heat fluxes are equal, resulting in vanishing cooling
of the cold side. By using typical values for relevant properties
and geometry of a Peltier module, it turns out that jlim is of the
order of 5 A/mm2. The current densities used in this work to
run experimental tests on the theory, as well as the current
levels expected in a precision temperature control, are below
0.1 A/mm2. Therefore, the Joule effect will be neglected in
the analysis.

By the same token, being the Joule effect negligible, the
average temperature on the module’s outer surface remains
in thermal equilibrium with the environment and an adia-
batic boundary working hypothesis can be adopted as a first
approximation.

In the following, a one-dimensional physical model will
be first introduced in Sec. II, based on which a closed form an-
alytical solution will be found for the diffusion equation. The

physical meaning of such solution will then be discussed in
Sec. III, with particular attention to the different features that
the frequency domain transfer function assumes for different
positions in the thermal circuit assembly. In Sec. IV, exper-
imental results will be presented which support the analysis
and confirm as a consequence the validity of the assumptions
made here, at least for the small-signal operational regime.

II. PHYSICAL MODEL AND MATHEMATICAL
DESCRIPTION

A one-dimensional model was considered for the Peltier
thermoelectric device. The full model features five adjacent
homogeneous slabs, which can be reduced to three, with
the appropriate boundary conditions, by assuming symmetry
about the center of the middle one. Starting from such center
toward the outside of the device, the reduced model is then
made of (0) a slab of p or n-doped semiconductor material
(usually bismuth telluride) as thick as half of the length of
the pillars, referred to in the following as PN layer, (1) a thin
electrically conducting layer (usually indium brazed copper),
referred to in the following as EC layer, and (2) an external
electrical isolator slab (usually made of alumina ceramic), re-
ferred to in the following as EI layer.

Apart from the sign of the Peltier coefficient, no differ-
ence was assumed in the analysis between the thermoelectric
properties of n-doped and p-doped semiconductors. This is
not too far from reality.

Adiabatic and Dirichlet boundary conditions were
respectively applied on external surface and symmetry
plane, while appropriate continuity constraints were imposed
at internal interfaces as detailed below with reference to
Fig. 1.

Since the mathematical model consists of linear partial
differential equations with constant coefficients, the Laplace
transform method and the superposition principle3, 4 were
used to separate oscillating and average temperature distribu-
tion fields. Solutions were found separately for the PN layer
(0 ≤ x ≤ L0) and the user side of the structure, consisting of
EC (−L1 ≤ x ≤ 0) and EI (−L2 − L1 ≤ x ≤ −L1) layers. Such
solutions were then matched and combined with the proper in-
terface constraints. Because the interest here is focused on the
frequency domain transfer function, only the oscillating fields
were considered.

The solution was first obtained for the PN layer, by im-
posing a heat flux density �+ injected at x = 0 (Fig. 1) and a
constant temperature value at x = L0. The resulting steady
state oscillating temperature at x = 0 was then used as a
boundary condition for the EC layer at the junction plane.
With this, the solution for both EI and EC layers was obtained
simultaneously, by imposing both temperature and heat flux
continuity at their separation plane, at x = −L1. Finally, in
order to link the solution obtained for this composite layer
to the one previously obtained for the semiconductor pillars,
temperature continuity and heat flux balance with the Peltier
flux input were also imposed at the junction between EC and
PN layers at x = 0.

Assuming as positive the heat flux directed along the x
axis in Fig. 1, and indicating with � the injected Peltier flux,
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FIG. 1. Schematic diagram for a symmetric part of the thermoelectric device with the coordinate system and the thermal boundary conditions; (0) represent the
half-portion of semiconductor p–n materials, (1) and (2) are the electrical connection and the external isolator layers, respectively.

such flux balance at the junction is given by � = �+ − �−,
where the minus sign appears because �− points in the neg-
ative direction. Given the sine wave regime, and normalizing
with respect to �, the balance equation can be written as

sin(ωt − ψ+) = q+ sin(ωt) − q− sin(ωt − ψ+ + ψ−), (3)

where ψ+ and ψ− are the phases at the junction of the two
propagating heat fluxes with respect to the injected flux,
while q+ = �+/� and q− = �−/� are their respective
normalized amplitudes at the junction. Notice that q− is
expected to be negative coherently with the chosen sign
convention. Both phases and normalized amplitudes depend
on the angular frequency of the injected sine wave electrical
current. Flux phases are described as in Eq. (3) in order to
simplify the analysis of the PN layer, which is done first
in this approach and assumes the input flux as the driving
term.

Dimensionless solutions were obtained for the oscillating
temperature excess field ϑ̃ by following the described pro-
cess and applying the condition of Eq. (3) for each driving
frequency, and are discussed in the following. The tempera-
ture excess is referred to the constant temperature value at the
symmetry plane at x = L0.

The one-dimensional heat diffusion equation, for the os-
cillating part only, is then

∂2ϑ̃0

∂x2
− 1

α0

∂ϑ̃0

∂t
= 0, (4)

and the boundary conditions at x = 0 and x = L0 are

− λ0
∂ϑ̃0

∂x

∣∣∣∣
x=0,t

= � jP q+ sin(ωt); ϑ̃0(L0, t) = 0. (5)

By introducing dimensionless variables as X = x/L0 and
τ = ω t, and the dimensionless oscillating temperature


̃0 = λ0 ϑ̃0

L0 � jP q+ , (6)

Eqs. (4) and (5) can be rewritten as

∂2
̃0

∂ X2
− �

∂
̃0

∂τ
= 0, (7)

with boundary conditions

− ∂
̃0

∂ X

∣∣∣∣
X=0,τ

= sinτ, 
̃0(1, τ ) = 0. (8)

In the following, the dimensionless quantity � = ω/ω0

will be referred to as the relative frequency, where ω0

= α0/L2
0 is the angular frequency at which the thermal diffu-

sion length in the PN layer is equal to
√

2L0. The steady state
solution of Eq. (7) with boundary conditions (8) can be ob-
tained from the Laplace transform in its variable p, which is


̄0(X, p) = sinh
[
(1 − X )

√
�p

]
√

�p(1 + p2) cosh
(√

�p
) . (9)

In Eq. (9), conjugate poles at p = ± i indicate that the
solution is sinusoidal at the driving frequency. The infinite
number of poles on the imaginary axis, implicit in the hy-
perbolic function in the denominator, is instead related to the
transient behavior and their role will not be discussed further.
The steady state periodic solution obtained by Cauchy’s theo-
rem and the method of residues at the mentioned simple poles
is then


̃0(X, τ ) = A0(X,�)cosτ + B0(X,�)sinτ ∀ 0 ≤ X ≤ 1,

(10)
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where coefficients A0(X, �), B0(X, �) are defined in the
Appendix.

Turning now to the EC and EI layers, the dimensionless
heat diffusion equation (7) is obviously still valid, provided
� is substituted by �/κ1 and �/κ2, respectively, in the two
layers, where κ1 = α1/α0 and κ2 = α2/α0 are the local relative
thermal diffusivities.

Dimensionless interface positions are X1 = L1/L0 and
X2 = (L1 + L2)/L0, and dimensionless oscillating tempera-
tures 
̂1 and 
̂2 in the two regions are defined as in Eq. (6),
based on the local real oscillating temperatures ϑ̂1 and ϑ̂2.

The diffusion equation was solved for the two layers with
the boundary conditions

∂
̃2

∂ X

∣∣∣∣
X=−X2

= 0, (11)


̃1(0, τ ) = 
̃0(0, τ ), (12)

and the imposition of temperature and heat flux continuity at
X = −X1


̃1(−X1, τ ) = 
̃2(−X1, τ );
∂
̃1

∂ X

∣∣∣∣
X=−X1

= �2

�1

∂
̃2

∂ X

∣∣∣∣
X=−X1

, (13)

where �1 = λ1/λ0 and �2 = λ2/λ0 are the relative thermal
conductivities of EC and EI layers.

By following the same method as above to solve the dif-
fusion equations, the Laplace transforms 
̄1 and 
̄2 of di-
mensionless temperatures in the two layers were found, and
are here reported:


̄1(X, p) =
[

A0(0,�)
p

1 + p2
+ B0(0,�)

1

1 + p2

]

×
cosh

[
(X2 − X1)

√
�
κ2

p
]

cosh
[
(X1 + X )

√
�
κ1

p
]

+ E2
E1

sinh
[
(X2 − X1)

√
�
κ2

p
]

sinh
[
(X1 + X )

√
�
κ1

p
]

cosh
[
(X2 − X1)

√
�
κ2

p
]

cosh
(

X1

√
�
κ1

p
)

+ E2
E1

sinh
[
(X2 − X1)

√
�
κ2

p
]

sinh
(

X1

√
�
κ1

p
) (14)


̄2(X, p) =
[

A0(0, )
p

1 + p2
+ B0(0,�)

1

1 + p2

]

×
cosh

[
(X2 + X )

√
�
κ2

p
]

cosh
[
(X2 − X1)

√
�
κ2

p
]

cosh
(

X1

√
�
κ2

p
)

+ E2
E1

sinh
[
(X2 − X1)

√
�
κ2

p
]

sinh
(

X1

√
�
κ2

p
) , (15)

where E1 = e1/e0 and E2 = e2/e0 are the relative thermal ef-
fusivities of EC and EI layers. Similar to Eq. (10), the time
domain solutions obtained from Eqs. (14) and (15) by the
method of residues in the respective X ranges turn out to be


̃i (X, τ ) = Ai (X,�)cosτ + Bi (X,�)sinτ, (16)

where Ai (X, �) and Bi (X, �) are defined in the Appendix for
i = 1, 2.

The obtained solutions need at this point to be balanced
according to Eq. (3). In order to do that, the outgoing heat flux
�− = q−sin(τ − ψ+ + ψ−) must be calculated. For the EC
layer (i = 1) it is found from Eq. (16) that

�−

q+ = −�1
∂ 
̃1(X, τ )

∂ X

∣∣∣∣
X=0

= −�1
[
A′

1(0,�)cosτ + B ′
1(0,�)sinτ

]
, (17)

where A′
1(0,�) and B ′

1(0,�) are defined in the Appendix.
The quantities q+ and ψ+ can then be found by splitting

Eq. (3) in two equations for the components in phase and in

quadrature with sinτ , obtaining

q+ =
[√[

�1 A′
1(0,�)

]2 + [
1 + �1 B ′

1(0,�)
]2

]−1

,

ψ+ = −tan−1

[
�1 A′

1(0,�)

1 + �1 B ′
1(0,�)

]
. (18)

By feeding these quantities back in Eq. (3), the quanti-
ties q− and ψ can now be found by splitting again Eq. (3) in
two equations for the components in phase and in quadrature
with sin(τ − φ) obtaining, in accordance with the previously
discussed sign convention,

q− = −
√

[q+sinψ+]2 + [1 − q+cosψ+]2,

ψ− = tan−1

[
q+sinψ+

1 − q+cosψ+

]
. (19)

At this point the fluxes have been balanced at the junc-
tion, and the dimensionless temperatures can be calculated at
different positions within the Peltier module. In order to do
that, it is convenient to refer all phases to that of the input
current because it is experimentally available, contrary to the
phase of heat flux � +. Introducing then τ̂ = τ − ψ+ as the
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FIG. 2. Relative peak amplitude vs relative frequency of both inward and outward heat fluxes defined in Eqs. (18) and (19) (solid line) and their approximation
by Eq. (22) (dashed line) obtained with the shown lumped parameters model.

new dimensionless time variable, the dimensionless tempera-
tures in the respective X ranges within the three layers (i = 0,
1, 2) are


̂i (X, τ̂ ) = λ0ϑ̃i

L0 � jp
= q+[Ai (X,�)cos(τ̂ + ψ+)

+Bi (X,�)sin(τ̂ + ψ+)]

= Âi (X,�)cosτ̂ + B̂i (X,�)sinτ̂ , (20)

where Âi (X,�) and B̂i (X,�) are detailed in the Appendix.
Finally, peak amplitudes and phases of the dimensionless

temperatures are easily obtained at the specified positions:

P
̂i (Xi ,�) =
√

Âi (Xi ,�)2 + B̂1(Xi ,�)2,

ϕi (Xi ,�) = tan−1

[
Âi (Xi ,�)

B̂i (Xi ,�)

]
, (21)

where Xi represents in turn for i = 0, 1, 2 the coordinates 0,
−X1, and −X2 of the layer interfaces.

In the next paragraph the frequency domain behavior of
heat fluxes shown in Eqs. (18) and (19) and temperatures ob-
tained from Eq. (21) will be discussed.

III. DISCUSSION OF ANALYTICAL SOLUTIONS

In order to discuss analytical solutions with the help of
suitable plots, assumptions were made on geometry and ther-
mophysical properties of involved materials. In particular,
values were chosen which are reasonably close to those of
commonly available modules. These are: X1 = 0.1 and X2

= 0.5 for the geometry, and �1 = 400; �2 = 10; κ1 = 100
and κ2 = 1 for the relative properties of EC and EI layers.

It is convenient to first discuss how the Peltier heat flux
injected at the junction (X = 0) is divided in two fractions
flowing inward and outward, respectively.

Relative amplitudes and phases of such fluxes are de-
scribed by Eqs. (18) and (19) and shown in Figs. 2 and 3 as a
function of the relative frequency �. A comparison with the
lumped equivalent circuit solutions (dashed lines) is also pro-
vided in these figures. At low frequencies the full calculation
appears to be well approximated by the lumped model solu-
tions, written as

q+ ≈ �

q
+ = sinψ−; −q− ≈ −�

q
− = cosψ−. (22)

As expected, it appears that the two fluxes are in quadra-
ture for low frequencies, starting at � = 0 with the Peltier
injected flux flowing totally inward to yield the temperature
difference across the conductance of the PN layer, and with
the outward flux gradually growing for increasing frequencies
to fill the thermal capacitance of the EI layer, so that temper-
ature continuity be guaranteed at the junction.

At the relative angular frequency �p of the thermal pole,
the two fluxes are still close to being in quadrature, phased
as expected about π /4 either side of the Peltier injected flux,
in good agreement with the electrical analogy of a resistance
(PN layer) in parallel with a capacitance (EC and EI layers).
For the position of this thermal pole, a good estimate is easily
found from the values of such resistance and capacitance, and
can be written as

�p
∼=

[
�1

κ1
X1 + �2

κ2
(X2 − X1)

]−1

. (23)

At higher frequencies the flux is increasingly driven
predominantly into the external EI layer as its thermal
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FIG. 3. Phase vs relative frequency for heat fluxes defined in Eqs. (18) and (19) (solid line) and their approximation shown in Fig. 3 (dashed line).

impedance gradually decreases due to its capacitive behavior,
and the phase of this outward flux tends to zero as predicted
by the simple electrical analogy. In this range, the amplitude
q+ of the inward flux does indeed decrease correspondingly
according to Eq. (22), but its phase ψ+ soon deviates from
the simplified model above �p, clearly indicating that at
higher frequencies such lumped model is no longer adequate.
Eventually, both fluxes will carry heat into thermally thick
layers and will, therefore, be both aligned in phase with
Peltier injected flux.

In Fig. 3 the lower solid curves show the real behavior of
ψ+ and ψ −, the dashed lines refer to the simplified lumped
model in which the fluxes flowing into capacitance and ther-
mal resistance are expected to be always in quadrature. At
even higher frequencies Fig. 3 shows again a bump in the
behavior of ψ+. This effect is related to the presence of the
EC layer; in fact, it disappears if the thickness of the latter is
forced to vanish in the model.

In Figs. 4 and 5, peak amplitude and phase of resulting
dimensionless temperatures calculated at X = 0, X = −X1,
and X = −X2 according to Eq. (21) are shown as a function
of the relative frequency �.

In particular, it is worth discussing the asymptotic behav-
ior of P
̂0 at X = 0 for high frequencies, as it highlights
the role played by the different layers. In fact, for � → ∞
Eq. (21) with i = 0 is well approximated by

P
̂0(0,�) ≈ 1√
�

· 1

1 + E1
, (24)

where E1 = e1/e0 is the relative effusivity of the EC layer
with respect to the PN layer, shown in Fig. 4 by the dashed
straight line a. This asymptote is approached when the fre-
quency is so high that the thermal diffusion length in the EC
layer is shorter than its thickness. It is interesting to point out

that such asymptote moves to the position b, also shown in
the figure, if the thickness of the EC layer is forced to vanish
in the model. In fact, the layer directly facing the junction is
in this case the EI layer, and Eq. (24) must be rewritten with
E2 = e2/e0 instead of E1.

Starting from low frequencies, after the extinction of the
thermal pole effect, the P
̂0 curve tries first to reach the b
asymptote as the diffusion length in the EI layer becomes
shorter than its thickness, but is eventually attracted by the
a asymptote when the same happens in the EC layer. In fact,
by reducing the thickness of the EC layer by factor of 3 in
the model, without changing the thickness of the EI layer, this
transition is moved to higher frequencies and the b asymptote
can be approached more closely before the effect of the EC
layer is felt (dotted line in Fig. 4). The opposite happens if the
EC layer is made thicker.

In Fig. 5 it can be seen that ϕ0 approaches −π /2 at rel-
ative frequencies slightly higher than 1, where the amplitude
P
̂0 follows the asymptote c sloping as 1/� called for by the
thermal pole. This happens because in this frequency range
the injected flux flows mainly into the capacitive EI layer,
as shown in Fig. 2. At higher frequencies, ϕ0 turns back up
toward −π /4 as the EI layer becomes thermally thick. It is
interesting to point out that here too, as for ψ+, the high fre-
quency bump observed in the phase ϕ 0 disappears if the EC
layer is removed, clearly showing that it is produced by its
presence. At even higher frequencies, such phase eventually
settles asymptotically on −π /4 as expected for a semi-infinite
slab.

In Fig. 4, peak temperatures P
̂1and P
̂2 at positions
−X1 and −X2 are also shown as a function of frequency. It can
be noticed that P
̂1 follows closely P
̂0 until the EC layer
turns thermally thick. A thicker EC layer would move such
deviation to lower frequencies. In fact, for any position on the
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FIG. 4. Dimensionless peak amplitude of the oscillating temperatures vs relative frequency (solid lines) calculated at the main interface positions X = 0,
X = −X1, and X = −X2. �p is the relative frequency of the thermal pole. Asymptotic trends a, b, and c are called for by the EC layer, the EI layer, and the
thermal pole, respectively. The dotted curve represents the peak amplitude at the junction (X = 0) obtained by reducing the thickness of the EC layer.

user side of the device (−X2 ≤ X ≤ 0) a relative knee fre-
quency �k,X exists at which the local temperature starts to fall
quickly for that reason. This happens, for example, in the EC
layer when the diffusion length becomes shorter than

√
2L1.

This is very relevant if one intends to use the Peltier device
as a transducer in a servo control loop, because the rapid am-
plitude decrease and the dramatic phase rotation occurring in

its transfer function beyond �k make it unusable in that fre-
quency range.

In Fig. 6, a much thicker EI layer is assumed (X2

≈ −6) with the result of moving the thermal pole to a much
lower frequency, uncovering in this way a behavior of P
̂0

which follows the −1/2 sloped trend of asymptote b down to
where the latter reaches 1, at the relative corner frequency �c

FIG. 5. Phases for temperature vs relative frequency calculated at the main interface positions X = 0, X = −X1, and X = −X2.
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FIG. 6. Dimensionless peak amplitude of the oscillating temperatures vs relative frequency expected for a thicker EI layer (solid lines) calculated at the main
interface positions X = 0, X = −X1, X = −X2, and at the random pick X = −0.2, with their relative knee frequencies �k . Relative corner frequencies �c are
shown for asymptotes a and b.

given by

�c = (1 + E2)−2. (25)

Also shown in Fig. 6 are the dimensionless temperature
curves at positions X = −X1, X = −X2, and X = −0.2 (a
random pick), together with their respective relative knee fre-
quencies �k,1, �k,2, and �k,X = −0.2. The range over which
this magic slope of −1/2 occurs at location X is given by
�K ,X/�C and can be seen in Fig. 6 for chosen values of X. In
a case in which both layers were made of the material hereto
assumed for the EC layer, such range would be about seven
decades.

IV. EXPERIMENTAL VALIDATION

In order to run an experimental check of the exposed
analysis, adaptations must be first introduced in the model to
take into account deviations from one-dimensionality occur-
ring in the real device.

To this aim, constriction and spreading resistances are in-
troduced to account for heat flows from one region to another
of different cross sectional area. In fact, depending on the ge-
ometry of the considered Peltier device, area filling factors
can be defined as the ratio between the cross sectional areas
of adjacent materials at their interface. Filling factor ξ 0–1 is
then given by the ratio between the cumulative cross section
of semiconductor pillars and that of the electrical intercon-
nections. Similarly, ξ 1–2 is the ratio between the latter and the
area of the external face of the module.

Extensive literature about constriction and spreading re-
sistances is available for electronic devices operating in dc

conditions. A simplified model of suitable geometry usable
for the analysis of available devices was proposed by Lee
et al.5 The model considers, with various boundary condi-
tions, the thermal coupling between a source pillar and a cen-
tered plate of finite dimensions. In addition to the area filling
factor ξ , the ratio between thickness and width of the plate
is needed to fully describe the geometry. To this aim the as-
pect ratio ζ given by the plate thickness divided by the square
root of its surface area is used here. The spreading resistance
obtained with this approach was added to the intrinsic resis-
tance of the plate through an alteration of its material thermal
conductivity by means of the coefficient β defined below.

In the case of a Peltier module, the constriction and
spreading resistance model must be applied twice with differ-
ent boundary conditions: once for the interface between the
semiconductor pillar and the electrical interconnection, and
once for the interface between the latter and the external in-
sulator. An isothermal boundary was assumed for the analysis
of the first interface, and adiabatic conditions were imposed in
the second. This assumption was, however, adopted for sim-
plicity and no inquiry was tried on its validity. Two different
values ζ 1 and ζ 2 were used for the two plates.

The equivalent relative thermal conductivities �1 and �2

can then be written as5

�1 = β1
λ1

λ0
;

β1 =
{

1 + (1 − √
ξ0−1)3/2

2ζ1
√

ξ0−1
tanh

[
ζ1

(
π3/2 + 1√

ξ0−1

)]}−1

,

(26)
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�2 = β2
λ2

λ0
;

β2 =
⎧⎨
⎩1 + (1 − √

ξ1−2)3/2

2ζ2
√

ξ1−2tanh
[
ζ2

(
π3/2 + 1√

ξ1−2

)]
⎫⎬
⎭

−1

.

(27)

By the same token, the volumetric heat capacity of
the plate materials must also be altered, with a division by
the filling factor, to account for the varying cross sections.
The relative thermal diffusivities of the two materials will then
be calculated as follows:

κ1 = β1 ξ0−1
α1

α0
, κ2 = β2 ξ1−2

α2

α0
. (28)

As for the experimental approach, the Seebeck voltage
Vε developed across the whole series of junctions and appear-
ing at the leads of the Peltier module was identified as the
quantity most easily measurable and accurately related with
the thermal response of the device to the injected current, and
was, therefore, used to support the validity of the calculated
behavior of the junction temperature ϑ0.

In fact, such voltage is given by Vε = 2 nϑ0 ε, where
n is the total number of semiconductor pillars, ε is the junc-
tion’s Seebeck coefficient, and ϑ0 is the actual temperature
at the very spot X = 0 considered in the analysis. For the
Peltier device used to validate the analysis, for which n = 34
and ε ≈ 200 μV/K, the module’s Seebeck coefficient amounts
to about 14 mV/K, which means that measurement sensitivi-
ties of a few tenth of a mK are relatively easy to reach with
this approach. This in turn means that a temperature dynamic
range of four decades can be explored in measuring the trans-
fer function without exceeding the limit of 1 K differential
temperature, which allows us to keep the injected current on
the order of 1% of the current limit of the device. The as-
sumption adopted in the analysis that the Joule effect can be
neglected is then well justified.

The only real hurdle faced in measuring the Seebeck volt-
age is the need to accurately discriminate it from the Ohmic
voltage drop on which it sits. This is a nontrivial operation
which in principle requires accurate modeling of the electri-
cal series resistance. While it would be probably feasible, with
adequate effort, to reach the percent level in this way, it would
be certainly cumbersome.

The approach taken here was to measure the amplitude of
the sole quadrature component of Vε, in the assumption that
reactive parasitic parameters of the module’s impedance can
be neglected. The latter do in fact introduce a non-Seebeck
contribution to the quadrature voltage. As it turns out, in the
used device, the quadrature voltage due to the module’s para-
sitic inductance starts to overwhelm the Seebeck signal only
above 50 Hz. This paves the road to a much more accurate and
easier measurement, which also has the additional advantage
of enabling a combined test of both amplitude and phase of
the calculated junction temperature.

More promising measurement strategies can certainly
be devised for the implementation of this approach, includ-
ing compensation of the parasitic inductance, narrow band

FIG. 7. Schematics of the electronic measurement circuit. Low noise OP177
operational amplifiers are used for the OPAs. The DA was an AD621
configured for a gain of 100 and white input voltage noise density of
10 nV/

√
Hz.

filtering to improve the signal-to-noise ratio, and above all the
use of better calibrated instrumentation. However, in the ab-
sence of accurate information on the physical characteristics
of the device under test, in particular on geometry and thermo-
physical properties of materials, the quick-and-dirty solution
shown in Fig. 7 was found adequate for the desired support to
the analysis and was, therefore, adopted in the present work.

In fact, the total type B uncertainty produced by the cho-
sen instrumentation turned out to be negligible with respect
to type B uncertainties imposed on analytical results by the
scarcity of available information. The comparison type B un-
certainty is, therefore, dominated by the latter, which suggests
that it is not worth the effort to improve the measurement sys-
tem at this level of a priori knowledge on the device under
test.

As shown in Fig. 7, the input sine wave voltage signal
forces a proportional current through the Peltier device with
the assistance of the operational amplifier OPA1, while it is
also separately processed with the help of OPA2 and the fol-
lowing variable attenuator to produce a signal that matches
the in-phase component of the voltage appearing at the out-
put of OPA1. The latter consists of the input voltage, plus
the Ohmic drop across the module, plus the in-phase compo-
nent of the Seebeck voltage. The differential amplifier (DA)
takes the difference between these two signals and amplifies it
as needed. At each driving frequency, the variable attenuator
is adjusted to reduce the differential output to the quadrature
component before its amplitude is measured. Low noise, low
offset, and low drift amplifiers were used in the setup in or-
der to optimize stability and signal-to-noise ratio, which made
measurements precise and easy to perform. In particular, the
OP177 and the AD621 models were chosen for operational
amplifiers and differential amplifier, respectively. In the ab-
sence of bandwidth reduction, the resulting total rms voltage
noise at the output of the 40 dB gain DA turned out to be 0.3
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FIG. 8. Comparison between experimental and analytical results for the quadrature component of the dimensionless peak temperature. Uncertainties are 1σ .
Bars around data are type A only. The model dominated type B uncertainty is indicated by the band between the two curves, which, however, includes no
contribution from the adopted constriction and spreading resistance model. Dashed lines are reported for slope reference only (−1/2).

mVrms, which is consistent with typical data sheet values for
the adopted devices.

Both operations of isolating and measuring the quadra-
ture component of the Seebeck voltage were performed with
an oscilloscope. The Lissajous method6 was used to find the
quadrature, and the instrument’s calibration of vertical scales
was relied on for amplitude measurements, for the reasons de-
tailed above.

In Fig. 8, experimental results are presented for the
quadrature component of the Seebeck voltage, obtained with
the outlined method. Data points are shown with the associ-
ated type A uncertainty introduced by instrumentation noise.
Clearly, the latter becomes relevant only for the higher fre-
quency points, where signals are small. It may be helpful to
point out that the size of uncertainty intervals appears variable
in Fig. 8 from point to point because the scale is logarithmic
and the absolute uncertainty is constant. As mentioned above,
type B uncertainty is attributed to the model in this compari-
son. Its magnitude is shown in Fig. 8 on the calculated curve
as an uncertainty band within which analytical curves cal-
culated with realistic input values are found. The values of
thermophysical properties were chosen for each curve within
the spread of values found in published literature.7–9 Model
adaptations discussed above to account for constriction and
spreading resistances were included in the calculation. Resid-
ual questions on the validity of the adopted first approxima-
tion approach for the superposition of the two layers were
not considered here, which may induce an underestimation
of type B uncertainty at high frequencies, where the effect of
the copper layer is felt.

The geometrical dimensions of the used device, a 34 pil-
lars module (68 junctions), were measured wherever possible
with a centesimal caliper. Results were conservatively taken

to be (5.2 ± 0.02) mm for the total thickness and (0.9 ± 0.02)
mm for the thickness of alumina ceramic insulator plates (L2).
The side width of the square cross section Bi2Te3 semicon-
ductor pillars was measured to be (1.33 ± 0.02) mm and their
length (2L0) was assumed to be somewhere between 2.8 and
3.0 mm. The thickness (L1) of copper electrical connections
was consequently assumed to be between 0.2 and 0.3 mm.
Better measurements could not be taken without disassem-
bling the module.

The overall area filling factor ξ = ξ 0–1 · ξ 1–2 was mea-
sured to be 0.124 ± 0.02, while ξ 0–1 was estimated by inspec-
tion to be between 0.4 and 0.6.

The Peltier module was driven by a sine wave current
with peak value of 100 mA, yielding a 60 mA/mm2 peak cur-
rent density in the semiconductor pillars. Data points shown
in Fig. 8 are normalized with respect to the low frequency
(ω ≈ ωp/10) Seebeck voltage Vε, which effectively makes
them an experimental measurement of the quadrature com-
ponent P
̂⊥

0 of the dimensionless temperature.
Dashed lines shown in Fig. 8 are included mainly for

slope reference and are drawn a factor of
√

2 lower than
asymptotes shown in Fig. 4 because they refer to a situation in
which the temperature phase is π /4 from the injected current.
As expected, the quadrature component vanishes at very low
frequencies because at that end the heat flux is totally directed
inward.

The good match obtained between measured values and
analytical results shows that experimental data do not dis-
agree with the theory and, therefore, stand to support it. More
precise measurements might become strategic in the effort to
turn the exposed theory into a tool usable to inquire into ther-
mophysical properties of materials, but this goes beyond the
scope of this paper.
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NOMENCLATURE

A, B = dimensionless coefficients defined in the Appendix
e = thermal effusivity λ/α(W s1/2 m−2 K−1)
f = frequency (Hz)
j = electric current density (A m−2)

L = layer thickness (m)
n = number of PN pillars of the Peltier module
p = Laplace transform variable
q = relative peak amplitude of heat fluxes
t = time (s)

Vε = Seebeck voltage (V)
x = longitudinal coordinate (m)
X = dimensionless longitudinal coordinate

Greek symbols

α = thermal diffusivity (m2 s−1)
ε = Seebeck coefficient (V/K)
ζ = aspect ratio
ϑ = temperature excess (K)

 = dimensionless temperature excess
κ = relative thermal diffusivity
λ = thermal conductivity (W pm−1 K−1)
� = relative thermal conductivity
ξ = area filling factor
� = Peltier coefficient (V)
ρe = electrical resistivity (� m)
τ = dimensionless time
ϕ = phase for temperatures (rad)
� = heat flux density (W pm−2)
ψ = phase for heat fluxes (rad)
ω = angular frequency (rad s−1)

ω0 = characteristic angular frequency of PN layer (rad s−1)
ωp = angular frequency of the thermal pole (rad s−1)
� = relative frequency

� c = relative corner frequency
� k = relative knee frequency
� p = relative frequency of the thermal pole

Superscripts

− = identifies a Laplace transform
∼ = identifies the oscillating component
^ = identifies a balanced quantity
˘ = identifies the lumped parameters model approximation

+ = refers to the positive x direction
− = refers to the negative x direction
′ = indicates the first derivative

⊥ = identifies the quadrature component
P = identifies the peak value

Subscripts

0 = PN layer
1 = EC layer
2 = EI layer
i = generic layer

APPENDIX

Coefficients of Eq. (10)

A0(X,�) = M1(N2 − N1) − M2(N2 + N1)

2
(
N 2

1 + N 2
2

)√
�
2

;

B0(X,�) = M1(N2 + N1) + M2(N2 − N1)

2
(
N 2

1 + N 2
2

)√
�
2

, (A1)

where

M1 = sin

[
(1 − X )

√
�

2

]
cosh

[
(1 − X )

√
�

2

]
;

M2 = cos

[
(1 − X )

√
�

2

]
sinh

[
(1 − X )

√
�

2

]
; (A2)

N1 = sin

(√
�

2

)
sinh

(√
�

2

)
;

N2 = cos

(√
�

2

)
cosh

(√
�

2

)
. (A3)

Coefficients of Eq. (16)

A1(X,�) = A0(0,�)

[
PD Q D + PP Q P

Q2
D + Q2

P

]

+B0(0,�)

[
PD Q P − PP Q D

Q2
D + Q2

P

]
, (A4)

B1(X,�) = B0(0,�)

[
PD Q D + PP Q P

Q2
D + Q2

P

]

−A0(0,�)

[
PD Q P − PP Q D

Q2
D + Q2

P

]
, (A5)

A2(X,�) = A0(0,�)

[
Ta Q D + Tb Q P

Q2
D + Q2

P

]

+B0(0,�)

[
Ta Q P − Tb Q D

Q2
D + Q2

P

]
, (A6)

B2(X,�) = B0(0,�)

[
Ta Q D + Tb Q P

Q2
D + Q2

P

]

−A0(0,�)

[
Ta Q P − Tb Q D

Q2
D + Q2

P

]
, (A7)

where

PD = P1 + P3(E2/E1); PP = P2 + P4(E2/E1), (A8)

Q D = Q1 + Q5(E2/E1); Q P = Q2 + Q6(E2/E1),
(A9)

Ta = T1 − T2; Tb = T1 + T2, (A10)
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with

P1 = U2(W1 − W2) + U1(W1 + W2);

P2 = U2(W1 + W2) − U1(W1 − W2);

P3 = U3(W4 + W3) − U4(W4 − W3);

P4 = U3(W4 − W3) + U4(W4 + W3); (A11)

Q1 = V2(W1 − W2) + V1(W1 + W2); Q5 = V3(W4 + W3) − V4(W4 − W3);

Q2 = V2(W1 + W2) − V1(W1 − W2); Q6 = V3(W4 − W3) + V4(W4 + W3);

Q3 = V1W3 − V2W4; Q7 = V3W1 − V4W2;

Q4 = V2W3 + V1W4; Q8 = V3W2 + V4W1.

, (A12)

U1 = sin

[
(X1 + X )

√
�

2κ1

]
sinh

[
(X1 + X )

√
�

2κ1

]
;

U2 = cos

[
(X1 + X )

√
�

2κ1

]
cosh

[
(X1 + X )

√
�

2κ1

]
;

U3 = sin

[
(X1 + X )

√
�

2κ1

]
cosh

[
(X1 + X )

√
�

2κ1

]
;

(A13)

V1 = sin

(
X1

√
�

2κ1

)
sinh

(
X1

√
�

2κ1

)
;

V2 = cos

(
X1

√
�

2κ1

)
cosh

(
X1

√
�

2κ1

)
;

V3 = sin

(
X1

√
�

2κ1

)
cosh

(
X1

√
�

2κ1

)
;

V4 = cos

(
X1

√
�

2κ1

)
sinh

(
X1

√
�

2κ1

)
.

(A14)

W1 = sin

[
(X2 − X1)

√
�

2κ2

]
sinh

[
(X2 − X1)

√
�

2κ2

]
;

W2 = cos

[
(X2 − X1)

√
�

2κ2

]
cosh

[
(X2 − X1)

√
�

2κ2

]
;

W3 = sin

[
(X2 − X1)

√
�

2κ2

]
cosh

[
(X2 − X1)

√
�

2κ2

]
;

W4 = cos

[
(X2 − X1)

√
�

2κ2

]
sinh

[
(X2 − X1)

√
�

2κ2

]
.

(A15)

T1 = sin

[
(X2 + X )

√
�

2κ2

]
sinh

[
(X2 + X )

√
�

2κ2

]
;

T2 = cos

[
(X2 + X )

√
�

2κ2

]
cosh

[
(X2 + X )

√
�

2κ2

]
.

(A16)

Coefficients of Eqs. (17) and (18)

A′
1(0,�) = ∂ A1(X,�)

∂ X

∣∣∣∣
X=0

=
√

�

2κ1

{
A0(0,�)

[
Qa Q D − Qb Q P

Q2
D + Q2

P

]

+B0(0,�)

[
Qa Q P + Qb Q D

Q2
D + Q2

P

]}
, (A17)

B ′
1(0,�) = ∂ B1(X,�)

∂ X

∣∣∣∣
X=0

=
√

�

2κ1

{
B0(0,�)

[
Qa Q D − Qb Q P

Q2
D + Q2

P

]

−A0(0,�)

[
Qa Q P + Qb Q D

Q2
D + Q2

P

]}
, (A18)

where

Qa = 2[Q8 + Q4(E2/E1)]; Qb = 2[Q7 + Q3(E2/E1)].

(A19)

Coefficients of Eq. (20) ∀ i = 0, 1, 2

Âi (X,�) = Ai (X,�)σa − Bi (X,�)σb, (A20)

B̂i (X,�) = Bi (X,�)σa + Ai (X,�)σb, (A21)

where

σa = 1 + �1 B ′
1(0,�)

[�1 A′
1(0,�)]2 + [1 + �1 B ′

1(0,�)]2
,

σb = �1 A′
1(0,�)

[�1 A′
1(0,�)]2 + [1 + �1 B ′

1(0,�)]2
(A22)
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