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 2 

ABSTRACT 1 

Interpretation of surface electromyograms (EMG) is usually based on the assumption that the 2 

surface representation of action potentials does not change during their propagation. This 3 

assumption does not hold for muscles whose fibers are oblique to the skin. Consequently, the 4 

interpretation of surface EMGs recorded from pinnate muscles unlikely prompts from current 5 

knowledge. Here we present a complete analytical model that supports the interpretation of 6 

experimental EMGs detected from muscles with oblique architecture. EMGs were recorded from 7 

the medial gastrocnemius muscle during voluntary and electrically elicited contractions. 8 

Preliminary indications obtained from simulated and experimental signals concern the spatial 9 

localization of surface potentials and the myoelectric fatigue. Specifically, the spatial distribution of 10 

surface EMGs was localized about the fibers superficial extremity. Strikingly, this localization 11 

increased with the pinnation angle, both for the simulated EMGs and the recorded M-waves. 12 

Moreover, the average rectified value (ARV) and the mean frequency (MNF) of interference EMGs 13 

increased and decreased with fatigue, respectively. Furthermore, the degree of variation in ARV and 14 

MNF did not depend on the pinnation angle simulated. Similar variations were observed for the 15 

experimental EMGs, although being less evident for a higher fiber inclination. These results are 16 

discussed on a physiological context, highlighting the relevance of the model proposed here for the 17 

interpretation of gastrocnemius EMGs and for conceiving future experiments on muscles with 18 

pinnate geometry. 19 

20 



 3 

1. INTRODUCTION 1 

The modeling of surface electromyograms (EMGs) has been sought for the interpretation of 2 

experimental data (Dimitrova and Dimitrov 2003; Merletti et al., 1999b; Roeleveld et al., 1997), for 3 

the development of algorithms aimed at information extraction (Duchene and Hogrel, 2000; Mesin 4 

et al., 2009), and for didactic purposes (Merletti et al., 1999a). Available models for the generation 5 

of surface EMGs rely both on numerical (Lowery et al., 2004; Mesin et al., 2006) and analytical 6 

(Block et al., 2002; Farina et al., 2004b;Gootzen et al., 1991; Mesin, 2006) approaches.  7 

 8 

The assumption that the volume conductor is invariant in the direction of propagation of 9 

intracellular action potentials allowed for the development of fast analytical models for the 10 

simulation of surface EMGs (Farina and Merletti, 2001; Farina et al., 2004a). If a volume conductor 11 

is space invariant, the surface representation of a motor unit action potential does not change with 12 

its propagation. Such space invariance is frequently assumed when simulating, processing and 13 

interpreting experimental EMGs (Lindstrom and Magnusson, 1977; Reucher et al., 1987). 14 

Therefore, much of the insights gained into the interpretations of surface EMGs from the use of 15 

mathematical models are valid, exclusively, for muscles whose geometry fits in the assumption of 16 

space invariance. 17 

 18 

Some of the muscles investigated by surface EMG cannot be approximated assuming the muscle 19 

fibers to be parallel to the skin. The fibers of the gastrocnemius muscle, for example, are inclined 20 

with respect to the skin surface and extend from the deep to the superficial aponeurosis (Kawakami 21 

et al, 1998; Narici et al., 1996). Surface electrodes positioned on the calf are, thus, located above the 22 

superficial aponeurosis, where muscle fibers attach. Considering that action potentials propagate 23 

along the muscle fibers, their propagation along the oblique gastrocnemius fibers contributes to the 24 

surface EMGs with a component toward muscle extremities and another toward the skin/tibia. 25 

Therefore, the area on the skin surface upon which the action potential of a single muscle fiber 26 
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distributes likely depends on how inclined the muscle fibers are (i.e. its pinnation angle) (Vieira et 1 

al., 2011). Currently existing models do not provide indications of how the surface EMG relates to 2 

the pinnation angle. Which physiologically relevant information might be extracted from surface 3 

EMGs in the pinnate gastrocnemius muscle is unknown. 4 

 5 

In this study we simulate a pinnate muscle, with fibers inclined in the depth direction, to interpret 6 

surface EMGs detected from the gastrocnemius muscles. A complete mathematical model, which 7 

includes muscle fibers with finite length and three layers of tissues, is presented here for the 8 

generation of single fiber action potentials (SFAP). In particular, we simulate the distribution of 9 

motor unit action potentials (MUAPs) on the skin and the interference EMG for different degrees of 10 

inclination of muscle fibers. The implications for the interpretation of how action potentials 11 

distribute on the skin surface and for the estimation of muscle fatigue are addressed as well. 12 

Ultrasound images and experimental EMGs are recorded from the human medial gastrocnemius 13 

(MG) muscle to investigate how much theoretical and empirical data correspond. 14 

 15 

2. METHODS 16 

2.1 Mathematical model 17 

The simulation model was developed by extending our previous work (Mesin and Farina, 2004), 18 

which considered the impulse response of a two layer volume conductor. Three layers were 19 

considered here (skin, fat and muscle; figure 1). Moreover a complete model (including finite-20 

length fibers) was implemented to generate single fiber action potentials (SFAP). 21 

Figure 1 22 

Libraries of MUAPs were generated from the simulated SFAPs. These libraries were used with a 23 

model of spatial and temporal recruitment of motor units (MUs) to simulate interference EMGs 24 

during fatiguing contractions. 25 

 26 



 5 

Full details on the model and the simulated EMGs are described in the Appendix. 1 

 2 

2.2 Experimental signals 3 

Single-differential EMGs were recorded from the medial gastrocnemius (MG) muscle to test for the 4 

correctness of the information gained from simulated signals. In particular, we investigated how the 5 

amplitude of surface potentials varies with the pinnation angle. This is of remarkable interest since 6 

this variation likely provides information of how localized the gastrocnemius activity might be. 7 

Moreover, we were interested in understanding whether experimental and simulated EMGs in 8 

pinnate muscles are comparable during fatiguing contractions.  9 

 10 

Three male subjects (age: 33, 29, 27years; body mass: 78, 80, 75kg; height: 182, 178, 180cm) 11 

participated in two protocols designed to compare experimental and simulated signals. 12 

 13 

Protocol 1: Sixteen surface electrodes (10 mm IED) were used to record EMGs during electrical 14 

stimulation. Two ankle angles were considered; foot in neutral position (~20
o
 pinnation angle) and 15 

plantar flexed (~35
o
 pinnation angle). With an adhesive pre-gelled electrode (cathode; figure 6a) 16 

placed carefully on the leg, bipolar current pulses were delivered at 2 pps and for 20s to the tibial 17 

posterior nerve. The anode electrode (80 × 50 mm; soaked cloth) was positioned immediately above 18 

the patella with elastic Velcro straps. Stimulation amplitude was as minimal as possible to allow for 19 

the detection of the firstly observable M-wave. Low stimulation amplitude was chosen to recruit the 20 

least number of MUs and, thus, to better isolate the effect of ankle angle on the distribution of M-21 

waves amplitude on the skin. Averaged M-waves were obtained after triggering the 15 single-22 

differential EMGs. 23 

 24 

Protocol 2: EMGs were recorded with an array of eight electrodes (5mm interelectrode distance – 25 

IED) when the subjects exerted isometric plantar flexion at 60% MVC. The contraction lasted for 26 



 6 

30s to ensure the occurrence of myoelectric manifestation of fatigue. Fatigue plots were created 1 

from the average rectified value (ARV) and the mean frequency (MNF) calculated on 500ms 2 

epochs (i.e. both descriptors are plotted with respect to their initial values). ARV and MNF indices 3 

were calculated as indicated in Merletti et al. 1990. This protocol was applied once with the foot 4 

dorsal flexed (pinnation angle ~10°) and once in neutral position (pinnation angle ~20°), with 5 min 5 

interval between trials. Plantar flexion torque was measured and displayed to the subjects. Subjects 6 

were in prone position and their feet were firmly secured to a footplate, with the lateral malleolus 7 

being coaxial to the centre of rotation of the torque meter. MVC values were determined for each 8 

pinnation angle as the maximum torque measured across three attempts separated by 5 minutes. 9 

 10 

EMGs were amplified (gain ranged from 1k to 5k; 10–500 Hz EMG-USB amplifier, LISiN and 11 

OTBioelettronica, Turin), and sampled at 2048 Hz with a 12bit A/D converter (±2.5V dynamic 12 

range). Ultrasound images were taken with a linear probe (3.86 cm long; Fukuda Denshi, UF 4000, 13 

7.5 MHz) and pinnation angles were estimated with the precision of one degree. A custom-made 14 

neuromuscular stimulator (LISiN, Turin), equipped with a hybrid output stage, was used in the first 15 

protocol. In the second protocol, load cells output was amplified (150Nm full-scale amplifier; 16 

MISOII, OTBioelettronica, Turin) and then converted to values of ankle torque. After cleansing of 17 

the skin with abrasive paste and water, ultrasound scanning was used to place electrodes on the MG 18 

muscle. Specifically, electrodes were positioned above the sheath of aponeurotic tissue and parallel 19 

to the surface projection of the pinnate MG fascicles. Care was taken to ensure that the array and 20 

the ultrasound probe had similar orientation, which provided an ultrasound image with as many 21 

fascicles as possible. 22 

 23 

3. RESULTS  24 

3.1 Preliminary Simulations 25 
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Some preliminary simulations are shown in figures 2 and 3, in order to compare the surface 1 

potentials produced by fibers with different arrangements (parallel or slightly inclined with respect 2 

to the skin). In particular, the potential distribution over the skin surface is considered for fixed time 3 

samples in figure 2, whereas the signals detected as functions of time from arrays of electrodes 4 

sampling the potential in specific points aligned to the fibers are shown in figure 3.  5 

   6 

Simulations showed that the amplitude and the shape of surface potentials change with the obliquity 7 

of muscle fibers (figure 2). When simulating fibers parallel to the skin, the surface distribution of 8 

action potentials was symmetric with respect to the innervation zone (IZ). Conversely, by 9 

increasing the fiber inclination, the surface potential became more asymmetric, as the contribution 10 

of the deeper source was attenuated and more diffused than that of the most superficial source. The 11 

root mean square (RMS) difference between the surface distribution of potentials simulated for 10° 12 

and those computed for the other pinnation angles (0°, 5°, 15°, and 20°) is shown as a function of 13 

the source position (figure 2b). As expected, greater RMS differences were obtained for higher 14 

variations between angles. The greatest difference occurred when the source was close to the 15 

extinction region. 16 

 17 

Regardless of whether simulating monopolar or single-differential signals, variations in the 18 

amplitude of surface potentials across electrodes depended on the pinnation angle. By simulating an 19 

electrode array placed parallel to the x-z projection of a superficial muscle fiber with 0
o
 pinnation 20 

angle, both monopolar and differential potentials appeared with equal amplitudes on either sides 21 

from the IZ (left panel in figure 3a). For deep fibers, only the standing waves produced by the 22 

generation and extinction of simulated potentials are seen in the EMGs, respectively (right panel in 23 

figure 3a). By inclining muscle fibers, the amplitude distribution of surface potentials concentrated 24 

progressively more toward the superficial tendon (left panels in figure 3b,c). Interestingly, pinnate 25 

fibers simulated 10cm away from the electrodes contributed to the surface EMGs with potentials of 26 
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markedly smaller amplitude (3-5 times smaller; right panels in figure 3b,c). Therefore, surface 1 

electrodes on pinnate muscles sample only from sources located nearby and nowhere else. 2 

 3 

The inclination of muscle fibers affects also the shape and the propagation of surface potentials. 4 

Close inspection of figure 3 reveals that the surface potential from fibers parallel to the skin has the 5 

same duration, wherever it is sampled on the skin. Propagation of these potentials is also evident in 6 

the figure. Potentials from pinnate fibers undergo large shape variations when recorded from 7 

different channels, so that conduction velocity (CV) cannot be estimated properly (Farina and 8 

Merletti, 2004). Specifically, they have shorter duration when detected closer to the superficial 9 

tendon. Moreover, the delay between successive peaks or valleys of potentials simulated for 10 

adjacent channels is not the same for pinnate fibers. Then, surface EMGs detected from muscles 11 

with fibers not parallel to the skin unlikely show the propagation of action potentials along muscle 12 

fibers. 13 

Figures 2 and 3 14 

 15 

3.2 Amplitude distribution of EMGs 16 

In figure 4, simulated single fiber potentials are investigated to quantify how much the spatial 17 

distribution of surface EMGs changes as a function of the pinnation angle. Surface potentials were 18 

compared for volume conductors with various pinnation angles, from 0° to 45°, and for two 19 

thicknesses of the fat layer. Contour plots of simulated surface potentials are shown at a given time 20 

(figure 4b). To quantify the diffusion of the surface potential, the median and the first and third 21 

quartiles were investigated along orthogonal sections of contour plots (figure 4c). The potential 22 

generated using a model of parallel fibers was more diffused (interquartile interval: ~40mm) over 23 

the skin with respect to that generated with a pinnate geometry (interquartile interval: less than 24 

25mm for pinnation angles higher than 10°; figure 4). 25 

 26 
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As for the simulated SFAPs, the amplitude distribution of electrically elicited EMGs depended on 1 

the degree of inclination of MG fibers. When MG fascicles were ~20° oblique, the firstly emerging 2 

M-waves appeared on the most proximal muscle portion, from the channel 1 to 5 (figure 5b). The 3 

ARV amplitude of M-waves distributed evenly across these channels (interquartile interval: 4 

53.7mm). Strikingly, for the same stimulation amplitude and higher pinnation angle (~35°), the 5 

distribution of ARV amplitude changed chiefly across channels (interquartile interval: 32.2mm), 6 

with the most proximal channels detecting the largest M-waves (figure 5c). Additionally, M-waves 7 

recorded from the pinnate gastrocnemius muscle showed neither a delay nor a phase opposition 8 

between consecutive channels. 9 

Figure 4 and 5 10 

3.3. Simulated and experimental manifestation of fatigue in surface EMGs 11 

Simulations indicate that amplitude and spectral descriptors might be used to study the myoelectric 12 

manifestations of fatigue in the pinnate gastrocnemius muscle. Single-differential EMGs, simulated 13 

and recorded with seven channels aligned to the longitudinal projection of muscle fibers, are shown 14 

for two pinnation angles (10° and 20°; figure 6). Both simulated (session 2.4) and experimental 15 

signals showed myoelectric manifestation of fatigue, with ARV and MNF increasing and 16 

decreasing with time, respectively (fatigue plots; figure 6). Interestingly, changes in amplitude and 17 

frequency were more variable for the experimental EMGs; and this high variability increases with 18 

the pinnation angle (Table 1). 19 

Figure 6, Table 1 20 

4. DISCUSSION 21 

A model for the simulation and interpretation of surface EMGs in pinnate muscles is proposed here. 22 

Simulations indicate that the obliquity of muscle fibers has a marked effect on the surface EMG 23 

(figure 2). The higher the fibers pinnation the more localized was the surface distribution of action 24 

potentials, with electrodes closer to the fibers end detecting remarkably higher potentials. This 25 

localized distribution of surface potentials is more evident for single-differential than for monopolar 26 
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signals, likely due to the higher selectivity of differential derivations. Experimental EMGs from the 1 

MG substantiated the predictions posed by our simulations. 2 

 3 

While there are architectural differences between skeletal muscles, it seems worthy to ask whether 4 

the surface EMGs recorded from pinnate muscles are as informative as those recorded from 5 

fusiform muscles. Understanding how the amplitude distribution of surface potentials changes with 6 

the pinnation angle and the possibility of using surface EMGs to study muscle fatigue are of 7 

particular interest. 8 

 9 

4.1 Localization of surface EMGs depends on the pinnation angle of the gastrocnemius muscle 10 

Our simulations revealed that surface electrodes on muscles with fibers not parallel to the skin 11 

sample from nearby sources and from nowhere else. This key result is substantiated from our 12 

observations that: i) surface potentials were localized over the superficial tendon of pinnate fibers, 13 

with the main contribution being due to the extinction phase of intracellular action potentials (figure 14 

3); ii) although the representation of surface potentials was 50% less localized when trebling the fat 15 

thickness, it was still considerably more concentrated on the superficial tendon than the surface 16 

representation of potentials in parallel fibers (figure 4); iii) two pinnate fibers with distal tendons 17 

separated by 10cm produced surface potentials with separated amplitude distributions. 18 

Consequently, the pinnation brings a wider cross section of the muscle into the view of surface 19 

electrodes than that available for parallel-fibered muscles. It is worth to mention that the localized 20 

distribution shown in figures 3 and 4 refers to the amplitude of SFAPs. As the amplitude of MUAPs 21 

corresponds to the algebraic summation of several SFAPs, the localized representation of individual 22 

MUAPs in the surface EMGs depends on whether MUs have small territories (Vieira et al., 2011), 23 

Here, we are not interested on the size of MUs territories but on how much the amplitude 24 

distribution of SFAPs changes with the pinnation angle. 25 

 26 
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Electrical stimulation of the tibial nerve revealed a somewhat similar localization of surface M-1 

waves detected from the MG muscle (figure 5), with respect to that observed for simulated 2 

potentials. The smallest stimulation amplitude leading to the first observable M-waves was chosen 3 

to ensure that only a few MUs were stimulated. By keeping constant the stimulation amplitude, the 4 

effect of pinnation angle on the localization of M-waves was isolated. M-waves with similar 5 

amplitude were observed for the four most proximal channels when stimulation pulses were 6 

delivered with the foot in neutral position (figure 5b,  = 20°). With the foot plantar flexed (figure 7 

5c,  = 35°), the amplitude of M-waves distributed unevenly across the four most proximal 8 

channels. Larger M-waves appeared for the more proximal channels. While the variation in ankle 9 

joint angle could have induced variation in the stimulation site, as the nerve moves beneath the 10 

stimulation electrode, the similitude of EMGs likely indicates that the same population of MUs was 11 

stimulated in both foot conditions. 12 

 13 

Surface EMGs convey unique information regarding the activation of the pinnate gastrocnemius 14 

muscle. In muscles whose fibers are parallel to the skin, surface electrodes detect the propagation of 15 

MUAPs (Farina et al, 2002; Merletti et al., 2003). In the gastrocnemius muscle, the amplitude of 16 

surface EMGs varies with the number of active fibers beneath the recording electrodes. Very 17 

recently, for example, we used the model presented here to validate our estimations of the 18 

longitudinal size of MUs territory in the human MG muscle (Vieira et al., 2011). Specifically, we 19 

observed that with respect to the MG length, the fibers of individual MUs extended for only a short 20 

distance (less than 4cm). Then, activation of individual MUs leads to regional activation of the MG 21 

muscle. Indeed, the extensive evidence positing localized activation of the calf muscles in humans 22 

and cats is not surprising (Eng and Hoffer, 1997; English and Weeks, 1989; McLean and Goudy, 23 

2004; Staudenmann et al., 2009; Vieira et al., 2010a,b; Wolf et al., 1998). If the nervous system 24 

takes advantage of muscle architecture to shape the recruitment of MUs (Kennedy and Cresswell, 25 
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2001; Vieira et al., 2011), the high-density surface electromyography (Merletti et al., 2010) could 1 

provide a mean to study the regional organization of activity in the pinnate gastrocnemius muscle. 2 

 3 

4.2 Myoelectric manifestation of fatigue in pinnate muscles 4 

Testing for the possibility of studying fatigue manifestation in skeletal muscles from the surface 5 

EMG is not simple. Several factors affect the muscles undergoing fatigue: 1) different strategies of 6 

MU recruitment and firing rate; 2) variations in load sharing between synergistic muscles, 7 

especially for those spanning the same joint as soleus and gastrocnemius (McLean and Goudy, 8 

2004); 3) changes in shape of intracellular action potentials (Arabadzhiev et al., 2005); 4) 9 

synchronization of MUs (Mesin et al., 2009); 5) variable decrease of CV for muscle fibers of 10 

different physiological types (Rainoldi et al., 2008). To keep simulations simple, we considered the 11 

same percentage of CV changes for all MUs. Additionally, the same spatial and temporal 12 

recruitment of MUs was simulated for two different pinnation angles, so as to isolate the effect of 13 

fibers inclination on surface EMGs. 14 

 15 

Even though it was not possible to observe the changes in CV directly, it was possible to observe 16 

myoelectric manifestations of gastrocnemius fatigue in the amplitude and spectral EMG descriptors. 17 

Because of the muscle oblique architecture, and considering the scattering of IZs, the extinction of 18 

action potentials at the superficial aponeurosis contributed chiefly to the surface EMGs simulated 19 

(figure 3). As a consequence, electrodes located over the aponeurotic layer do not detect the same 20 

potential propagating toward either the superficial or deep aponeurosis. Instead, they record 21 

standing waves likely resulting from the end-of-fiber effect (Stegeman et al., 1997). This 22 

interpretation is supported by spike-triggered EMGs, which did not show physiological delays 23 

between surface potentials detected by consecutive electrodes located upon the superficial 24 

aponeurosis (Vieira et al., 2011). Thus, estimation of CV, which showed remarkable properties in 25 

the investigation of myoelectric fatigue in parallel-fibered muscles (Mesin et al., 2009), cannot be 26 
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obtained from the gastrocnemius muscle, at least not upon its superficial aponeurosis. Nevertheless, 1 

simulations showed that ARV and MNF of surface EMGs are both affected by variations in CV. 2 

 3 

Although at different extents, the experimental and simulated manifestations of fatigue were 4 

observed in the pinnate gastrocnemius muscle. Simulations did not show any reliance of the 5 

variations in ARV and MNF on the pinnation angle. Nevertheless, the variability of ARV and MNF 6 

were different for experimental data recorded for two pinnation angles (Table 1). This suggests that 7 

some factors, which were kept constant in the simulations, were involved in the contraction of the 8 

MG muscle at different pinnation angles. It has been shown, for example, that variations in activity 9 

within and between calf muscles occur when subjects are asked to sustain a low and isometric 10 

torque of plantar flexion (McLean and Goudy, 2004; Tamaki et al., 1998). Variable activation 11 

within the same gastrocnemius muscle was observed even for different directions of ankle force 12 

(Staudenmann et al., 2009) and in quiet standing (Vieira et al., 2010a,b). Considering the more 13 

localized distribution of surface potentials for the more oblique geometry (figures 4), and the small 14 

territories of gastrocnemius MUs (Vieira et al., 2011), surface electrodes seem to provide very 15 

selective recordings for high pinnation angles. Therefore, variations in recruitment and firing rate of 16 

MUs during a fatiguing contraction would affect more severely the surface EMGs detected from 17 

more oblique MG fibers. 18 

 19 

4.3 Future perspectives 20 

The model presented here opens new perspectives for investigating the calf muscles activation, 21 

either by supporting the interpretation of experimental data or by providing theoretical grounds 22 

upon which future studies will be designed. The surface distribution of simulated action potentials 23 

(figures 3 and 4), for example, supports our prediction that postural activation of the MG muscle is 24 

organized regionally for the control of quiet standing posture (Vieira et al., 2010a). Similarly, our 25 
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simulation results indicate that amplitude and spectral EMG descriptors could be potentially useful 1 

to study fatigue in the gastrocnemius muscle. 2 

 3 

5. CONCLUSIONS 4 

A new model for the simulation of surface EMGs in pinnate muscles was developed and applied to 5 

interpret experimental data obtained from the gastrocnemius muscles. The most striking result was 6 

the localized representation of surface potentials. Because of the gastrocnemius pinnate 7 

architecture, simulated EMGs and experimental M-waves were both detected only by few 8 

consecutive electrodes. Higher pinnation angles led to more localized potentials. The regional 9 

organization of gastrocnemius activity in different motor tasks could, then, be investigated with 10 

surface electromyography. The potentiality of the model was also shown for the investigation of 11 

myoelectric fatigue with amplitude and spectral indexes. Both descriptors varied during fatigue, 12 

either for experimental or simulated EMGs. The greater variability in the amplitude and frequency 13 

of experimental EMGs, observed for higher pinnation angles, was likely due to different 14 

recruitment strategies.  15 
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Table 1: Variability of the amplitude (ARV) and frequency (MNF) descriptors of experimental and 1 

simulated surface EMGs, calculated as the standard deviation of residuals resulting from the fitting of 2 

a first order polynomial to the observed data (dashed lines in figure 4). 3 

 Experimental EMGs Simulated EMGs 

Pinnation 

angle (deg) 
ARV (μV) MNF (Hz) ARV (a.u.) MNF (Hz) 

10 67 4.16 4.21 3.61 

20 108 4.68 4.20 3.62 

 4 

5 
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FIGURE CAPTIONS 1 

Figure 1 a) Schematic representation of the volume conductor model, including the definition of 2 

the coordinate system and the geometry of the simulated muscle fibers. The muscle layer is 3 

considered as homogeneous and anisotropic, with fibers inclined with respect to the skin surface. 4 

Fat and skin layers are homogeneous and isotropic. b) Ultrasound image of the gastrocnemius, 5 

showing the pinnation of muscle fibers. c) Longitudinal section of the simulated volume conductor, 6 

indicating the notation used for determining the analytical solution. d) Sampling of the 7 

phenomenological model of the transmembrane current proposed in Rosenfalck (1969), using 10 8 

impulse sources. 9 

Figure 2 a) Surface potential generated in muscle fibers with three different pinnation angles (0°, 10 

5°, and 10°). The signals were simulated using the model shown in Figure 1a,c. b) Root mean 11 

square (RMS) difference between the EMG map generated for the pinnation angle of 10° and the 12 

maps computed for pinnation angles of 0°, 5°, 15°, and 20°. Two different thicknesses of the fat 13 

layer were simulated. RMS values are expressed in percentage and as a function of the position of 14 

the source (measured as the distance of each of the two transmembrane current sources from the 15 

innervation zone).  16 

Figure 3 Simulation of surface EMG signals detected with an electrode array located over the 17 

longitudinal projection of a single muscle fiber on the skin surface. Monopolar and single-18 

differential signals are shown for different fibers, corresponding to different pinnation angles or to 19 

different positions. 20 

Figure 4 Simulated (a; see Appendix) and experimental (b; see section 2.2) EMGs are shown for 21 

two pinnation angles (10° and 20°) during an isometric fatiguing contraction at 60% of maximal 22 

voluntary contraction (MVC). Interference EMGs were simulated with the muscle fiber conduction 23 

velocity - CV - decreasing by 1%/s of the initial value. The volume conductors simulated and 24 

ultrasound images of the MG muscle are shown on top (arrows indicate detection points). The same 25 

firing pattern and population of 340 motor units were simulated for two pinnation angles (10° and 26 
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20°). A short time epoch of raw signals is depicted in the middle panel. Fatigue plots are shown in 1 

the bottom, including averaged rectified values (ARV) and mean frequency (MNF), estimated for 2 

epochs of 500 ms duration (n = 60 epochs) and for each pinnation angle. Values were averaged 3 

across channels (n = 7 channels). Dashed lines indicate the best linear fitting to ARV and MNF 4 

traces, calculated with the least square method. 5 

Figure 5 Spatial distributions of surface potentials as a function of the pinnation angle. a) 6 

Longitudinal view of the volume conductors considered. When the pinnation angle is higher than 7 

zero, one of the tendons is located at the muscle/fat interface, representing the superficial 8 

aponeurosis. The case in which fibers are parallel to the skin surface is also considered, for two 9 

muscle depths. b) Contour plots of the rectified value, averaged over time (ARV), of the simulated 10 

surface potential, indicating the median and the first and third quartiles for orthogonal sections 11 

crossing the location of maximal amplitude. Note the asymmetry of contours for pinnation angles 12 

greater than zero; ARV amplitude concentrates close to the fiber end (the superficial aponeurosis). 13 

c) Median, first and third quartiles of ARV in the direction longitudinal (x) and transversal (z) to the 14 

fibers are shown for different pinnation angles and for two fat layers. 15 

Figure 6 Spatial distribution of single-differential M-waves detected from the medial 16 

gastrocnemius (MG) muscle at two pinnation angles. a) Array of 16 surface electrodes, positioned 17 

on the MG muscle, and the stimulation electrode, located above the tibial nerve branch supplying 18 

the same muscle. Note that the most proximal EMG electrodes were nearer to the stimulation 19 

electrode. b) Raw triggered (black traces) and averaged (gray traces) M-waves detected with the 20 

foot positioned so as to result in a pinnation angle of about 20°. The ultrasound image obtained with 21 

the foot in this same position is shown on the top. c) the same as in b) for ~35° pinnation angle. 22 

Note that the stimulation artefact was most evident for the most proximal channels, which were the 23 

closest to the cathode electrode. 24 

 25 

 26 
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