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Is	it	possible	to	define	a	fully	digital	state	
model	for	Kalman	filtering?

The Kalman filter is a mathematical method, purpose of which is to process 
noisy measurements in order to obtain an estimate of some relevant param-
eters of a system. It represents a valuable tool in the GNSS area, with some of 
its main applications related to the computation of the user position/veloc-

ity/time (PVT) solution and to the integration of GNSS receivers with an inertial 
navigation system (INS) or other sensors. 

The Kalman filter is based on a state space representation that describes the 
analyzed system as a set of differential equations that establishes the connections 
between the inputs, the outputs, and the state variables of the analyzed system.

Although the state space differential equations are expressed in the continuous 
time domain, the filter itself is implemented in the discrete time domain, as 
required by the periodic availability of data/measurements. The typical approach 
to this problem is to linearize the continuous time system using a Taylor series and 
then obtain a discrete time approximation therefrom. However, it can be helpful to 
approach the problem from a discrete time point of view directly. 

Several such approaches have previously been developed in the signal 
processing field and can be extended to the Kalman filter. In the following, we 
compare the classical method based on the Taylor approximation with a method 
based on the Laplace-domain (s-domain) to z-domain transformations. 

Our purpose is to give some simple rules and methods with which to write 
the state equations and to prove that the results of the classical methods are only 
a special case of the more general class of s-z transformations, beause the already 
known results will be obtained with the presented method.

The	Position-Velocity-Acceleration	(PVA)	Model
For illustration purposes, we consider the three-state (position, velocity and accel-
eration) model shown in Figure 1 in the Laplace domain (s-domain). 

In Figure 1, η(t) represents the white noise input function that models the 
acceleration a(t) as a random walk. Without any loss of generality, a deterministic 
input will not be considered in the following analysis. The continuous time-
invariant state-space model can be defined as
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FIGURE 1  State model in Laplace domain
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We can obtain the continuous time states by solving 
the differential inhomogeneous system of equations given 
by Equation (2). The analytical solution of the continuous 
model is 

where the term eFt is the matrix exponential of F and x(0) is 
the initial condition.

In our GNSS applications we are mainly interested in 
state evolution in the discrete-time domain. Therefore, we 
need to find a way to represent the continuous-time state 
vector x(t) as a discrete-time state vector x(n) and to write the 
state equations accordingly.

Method	based	on	Taylor	expansion
The typical approach to obtain the state evolution in the dis-
crete time-domain consists of sampling (3) by t = nTs, where 
Ts = 1/fs is a proper sampling interval that satisfies the Nyquist 
theorem and fs is the sampling frequency. Then, the exponen-
tial in Equation (3) is expanded using a Taylor series expan-
sion, truncated to the second order, as follows: 

After some manipulations, the final result is given by the 
following equation, which is the result often found in the 
literature:

where the white noise η(t), introduced in (2), explicitly 
appears. 

This expression, in this form, is not ready yet to be 
implemented in a digital processor, because of the presence 
of the integral, which is a typical continuous-time operator. 
Moreover, η(t), our input noise in (2), is a continuous-time 
white random process with a theoretically infinite variance, 
and a flat power spectrum density. We know that this kind 
of noise is an ideal model, generally adopted to analytically 
solve some equations, but which cannot be directly digitized. 

The way around this is to digitize a filtered version of 
the white noise. In our application we have to understand 
how to deal with this and how to directly represent ω[n], the 
integrated and digitized version of η(t), given by the last term 
in Equation (5). We will see that this problem is easily solved 
with the methods described in the next section.
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Method	Based	on	s-z	Transformations
We present now an alternative approach, which is based on 
the idea of representing the signals and the systems in Figure 
1 in the discrete-time domain, where the continuous-time t 
becomes the digital time n and the complex plane s becomes z. 

These transformations are ruled by some well-known 
methods of the theory of digital signal processing. We first 
need to recall two important results of this discipline to find 
the way to transform the analog systems of Figure 1 into an 
all-digital system: the concept of a white sequence and the 
simulation theorem.

The	White	Sequence. In order to prevent aliasing of the 
white noise process, it is common to prefilter the signal prior 
to sampling. This eliminates the frequencies that cannot 
be represented in the sampled signal (i.e., those outside the 
Nyquist bandwidth) and avoids impairing the frequencies 
that can be represented. 

The discrete-time version of the driving function η(t), 
namely η[n], is therefore the sampled version of the output 
of an anti-aliasing analog system Hη(f) with two-sided 
bandwidth fs. The random sequence η[n]  preserves the zero-
mean property of the analog process, while the variance 
becomes finite, being the variance of the white noise filtered 
through the anti-aliasing filter Hη(f). If N0/2 is the noise 

spectral density of η(t) the variance of η[n] will be 
 
.
 

The power spectrum of the noise sequence is constant 
in the bandwidth (–fs/2, + fs/2) and the sequence is of the 
type iid (independent and identically distributed). We can 
conclude that an iid sequence is the digital counterpart of 
the analog white noise and conveniently models filtered and 
digitized white noise. If in a real ADC (analog-to-digital 
converter) the anti-aliasing filter is not ideal, the iid model 
can be still used and the shape of the anti-aliasing filter can 
be modeled at the ADC output in the digital version of the 
system.

The	Simulation	Theorem. To obtain a numerical 
version H(z) of a generic analog transfer function Ha(f), the 
Papoulis simulation theorem has to be considered: a discrete 
representation of an analytical version Ha(f) can be simulated 
if a generic input x[n] = x(nTs) provides an output discrete 
signal that is a sampled version of the analog output y(t) of 
the system Ha(f), (Figure 2).

If H(z) exists, then it represents the numeric simulator 
of Ha(f). Starting from the relation in the analog branch of 
Figure 2,

we can obtain the discrete time version by 

However, according to the simulation theorem detailed in 
A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1997), 
it can also be shown that 

Compared to (7), it leads to the following conditions for 
the simulation theorem if x(t) is a band-limited signal:  
1.  
2. 

where Bx is the input signal limited bandwidth.

From	the	s	Plane	to	the	z	Plane
Having defined the discrete-time forcing function and the 
conditions to design the digital transfer functions, the next 
step is to convert a transfer function Ha(s) from the s domain 
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FIGURE 2  Simulation of linear time-invariant systems
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to the z domain, so as to satisfy the requirements imposed by 
the simulation theorem. 

A unique method to perform this transformation does 
not exist. In fact, we can obtain the transfer function H(z) 
from Ha(s) by different mappings of the s plane on the unit 
circle of the z plane. 

Whatever the mapping, the infinite imaginary axis of the 
Laplace domain has to be turned down on the unit circle, 
and, hence, an approximation has to be performed. A very 
common choice is to use the Bilinear Transformation. In 
this case the s plane is represented in the z domain by the 
following replacement: 

The bilinear transformation is also called the trapezoidal 
rule, as it approximates a generic integral Ha(s) = 1/s with the 
trapezoidal formula. Other s-z transformations are possible, 
corresponding to different integration methods. The most 
important ones are summarized in Figure 3, where the 
transformations applied to H(s) = 1/s are indicated, together 
with the corresponding integration formulas expressed in 
recursive form.

Digital	representation	of	the	PVA	system
Starting from the previous example, we can derive a new 
form of (5), starting from a discrete-time driving function 
η[n] and considering three different mappings of the integra-
tors of Figure 1.  Specifically, the first through third integra-
tors are respectively replaced by the rectangular method, the 
bilinear transform, and the Cavalieri-Simpson method.

We should point out that the order of these transforma-
tions is only required to obtain the results already known in 
the literature, but it is not mandatory. In fact, any other order 
or transformation will lead to equally valid results, which 
are based on different approximations and implementation 
complexity.

By the chosen transformations, we can obtain the H(z) 
functions for each integrator of Figure 4, so that each output 
can be described as a function of its input. Considering the 
input-output relations in the z domain and then computing 
their z inverse transforms, the discrete time input-output 
relations, shown in Figure 3, are easily obtained: 

Finally, the relation between the states and the input noise 
in the time domain is the following:

Hence, the new state transition matrix, Φd can be defined 
as 

that is equal to the first matrix on the right hand side of 
Equation (5). 

Finally, we obtain

As can be observed, the noise term in (15) differentiates 
from (5). We can easily verify that the noise covariance 
matrices obtained by applying the two different methods 
are the same if η(t) is considered constant in the intervals 
[nTs:(n+1)Ts].

Again we note that the sequence of s-z transformations 
adopted in Figure 4 is not unique, and other choices are 
possible. A great advantage of the method is that it can be 
applied to any kind of rational transfer function Ha(s), not 
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only to the integral of Figure 3. 
The three proposed s-z 

transformations are easily obtained 
from Figure 3 by inverting 1/s and 
the corresponding functions in the z 
domain. Once applied to any rational 
Ha(s), they give a rational H(z), which 
admits a simple recursive input/output 
relationship.

Conclusion
The equivalence of the results pro-
vided by the two different methods 
shows how the fully digital method is 
equivalent to the classical procedure, 
limiting the calculations to discrete 
equations and vectors operations. The 
presented discrete time method can 
be useful for a novice of Kalman filter 
theory, for anyone who has to deal with 
complicated model definitions, and/or 
for those more familiar with discrete 
systems. 

The fully digital approach is 
easily applied to any kind of H(s); for 
example, a first order Gauss-Markov 
process can be modeled in the digital 
domain applying one among the 
transformations shown in Figure 3, 
with different levels of approximation. 
Even more complex systems such 
as INS/GPS integrated systems can 
be described using the fully digital 

method, obtaining also different 
results from the ones already described 
in the literature.
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FIGURE 3  s plane to z plane transformations

FIGURE 4  State model in the z domain
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