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Abstract—This paper focuses on the derivation of an enhanced
transmission-line model allowing for the stochastic analysis of a
realistic multiconductor interconnect. The proposed model, that
is based on the expansion of the well-known telegraph equations
in terms of orthogonal polynomials, includes the variability of
geometrical or material properties of the interconnect due to
uncertainties like fabrication process or temperature. A real
application example involving the frequency-domain analysis of
a coupled microstrip and the computation of the parameters
variability effects on the transmission-line response concludes
the paper.

Index Terms—Circuit modeling, Circuit Simulation,
Transmission-lines, Stochastic analysis, Tolerance analysis,
Uncertainty, Polynomial Chaos.

I. INTRODUCTION

Recently, the interest has grown in developing simulation
techniques for the analysis of high-speed digital links with the
inclusion of the effects of possible uncertainties of the circuit
parameters. A relevant example is provided by the process-
induced variability that unavoidably impacts on the system
performance and that becomes one of the major concerns
for setting realistic design margins. In this framework, the
availability of a tool during the early design phase for the
stochastic analysis of a digital link is highly desirable.

The typical resource allowing to collect quantitative in-
formation on the statistical behavior of the circuit response
is based on the application of the brute-force Monte Carlo
(MC) method, or possible complementary methods based on
the optimal selection of the subset of model parameters in
the whole design space [1]. Such methods, however, are
computationally expensive, and this fact prevents us from their
application to the analysis of complex realistic structures.

An effective solution that overcomes the previous limitation,
has been proposed. This methodology is based on the so-
called polynomial chaos (PC) theory [2], [3], [4] and on the
representation of the stochastic solution of a dynamical circuit
in terms of orthogonal polynomials. This technique enjoys
applications in several domains of Physics; we limit ourselves
to mention recent results on the extension of the classical
circuit analysis tools, like the modified nodal analysis (MNA),
to the prediction of the stochastic behavior of circuits with
uncertain parameters [5], [6], [7], [8]. However, so far, the
application has been limited to dynamical circuits consisting
only of lumped elements.

Igor Stievano, Paolo Manfredi and Flavio Canavero are with Diparti-
mento di Elettronica, Politecnico di Torino, 10129 Torino, Italy (e-mail:
{igor.stievano,paolo.manfredi,flavio.canavero}@polito.it).

In this paper, the modeling of circuit elements via the PC
theory is extended to handle the class of long and distributed
interconnects described by multiconductor transmission-line
equations [9]. In this study, the variability is provided by the
uncertainties affecting the guiding structure (e.g., geometrical
tolerances and material properties depending on fabrication
process, or operating temperature) that are assumed to behave
as random variables with Gaussian distribution. This will
allow the stochastic analysis of realistic structures combining
lumped circuits and distributed interconnects, as required by
the simulation of high-speed digital links.
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Fig. 1. Test structure considered to demonstrate the proposed approach. Top
panel: cross-section; bottom panel: simulation test case.

II. STOCHASTIC TRANSMISSION-LINE EQUATIONS

This section discusses the modification to the transmission-
line equations, allowing to include the effects of the statistical
variation of the per-unit-length (p.u.l.) parameters via the PC
theory. For the sake of simplicity, the discussion is based on a
lossless multiconductor transmission-line as the coupled line
structure shown in Fig. 1 with the relative dielectric constant
εr and the separation d that are assumed to be defined by{

εr = ε̄r(1 + σ1ξ1)
d = d̄(1 + σ2ξ2)

(1)

where ξ1 and ξ2 are independent Gaussian random variables
with zero mean value and unit variance, ε̄r and d̄ are the mean
values of the parameters and σ1 and σ2 are the corresponding
normalized standard deviations.
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The extension of the proposed technique to different multi-
conductor structures that possibly include losses and to a larger
number of random variables is straightforward.

A. Deterministic model

The electrical behavior in frequency-domain of the line of
Fig. 1 is described by the well-known telegraph equations,

d

dz

[
V(z, s)
I(z, s)

]
= −s

[
0 L
C 0

] [
V(z, s)
I(z, s)

]
(2)

where s is the Laplace variable, V = [V1(z, s), V2(z, s)]T and
I= [I1(z, s), I2(z, s)]T are vectors collecting the voltage and
current variables along the multiconductor line (z coordinate)
and C and L are the p.u.l. capacitance and inductance matrices
depending on the geometrical and material properties of the
structure [9].

B. Hermite polynomial chaos

In order to account for the uncertainties affecting the
guiding structure, we must consider the p.u.l. matrices C
and L as random quantities, with entries depending on the
random vector ξ = [ξ1, ξ2]T . In turn, (2) becomes a stochastic
differential equation, leading to randomly-varying voltages and
currents along the line.

A powerful tool allowing to solve in a clever way stochastic
equations is the so-called Hermite PC [3]. The idea behind
this technique is the spectral expansion of a random variable
in terms of a truncated series of Hermite polynomials that
are functions of the random vector ξ. These polynomials play
the same role as sinusoidal functions in the Fourier series
expansion. Table I collects the basic definitions and properties
of Hermite polynomials.

For the current application, the random p.u.l. matrices in (2)
are represented through the Hermite expansion as follows,

C =

P∑
k=0

Ck · φk(ξ), L =

P∑
k=0

Lk · φk(ξ) (3)

where {Ck} and {Lk} are the expansion coefficients with
respect to the orthogonal components {φk} defined in Tab. II.

It should be remarked that the entries of the p.u.l. capaci-
tance and inductance matrices of (2) are nonlinear functions
the geometrical and material parameters defining the structure.
Each entry of the matrices C and L can be considered as
known nonlinear function of the random vector ξ, playing the
same role of the parameter Y (ξ) of Tab. I. Thus, the expansion
coefficients of the above matrices can be computed according
to the projection operation defined in Tab. I. Additional details
on the computation of the expansion matrices Ck and Lk for
a realistic test case are given in Sec. III and in the Appendix
(e.g., see eq. (15)).

For a given number of random variables n and order p of
the expansion (that corresponds to the highest order of the
polynomials in (3) and generally lies within the range from

two to five for practical applications), the total number of terms
is

(P + 1) =
(n+ p)!

n!p!
(4)

that turns out to be equal to ten for the case n = 2 and p = 3.
Readers are referred to [2], [3] and references therein for

a comprehensive and formal discussion of polynomial chaos,
including the formulae for the computation of the Hermite
polynomials of Tab. II for an arbitrary number of random
variables and expansion order.

TABLE I
HERMITE POLYNOMIAL CHAOS DEFINITIONS AND PROPERTIES.

Object e.g., parameter Y that depends on

ξ = [ξ1, ξ2, . . . , ξn]T

Expansion Y (ξ) =
∑P
k=0 Yk · φk(ξ)

Orthogonal basis Hermite polynomials {φk(ξ)}
(e.g., see Tab. II for the case n = 2)

Inner product < φk, φj >=
∫
<n φk(ξ)φj(ξ)W (ξ)dξ

Weighting function W (ξ) = 1√
(2π)n

exp(− 1
2
ξT ξ)

Orthogonality < φk, φj >=< φ2k > δkj

Expansion coefficients Yk =< Y, φk > / < φ2k >

Mean Y0

TABLE II
HERMITE POLYNOMIALS FOR THE CASE OF TWO RANDOM VARIABLES

(n = 2, ξ = [ξ1, ξ2]T ) AND A THIRD ORDER EXPANSION (p = 3).

index k order p k-th basis φk < φ2k >

0 0 1 1

1 1 ξ1 1

2 1 ξ2 1

3 2 ξ21 − 1 2

4 2 ξ1ξ2 1

5 2 ξ22 − 1 2

6 3 ξ31 − 3ξ1 6

7 3 ξ21ξ2 − ξ2 2

8 3 ξ1ξ22 − ξ1 2

9 3 ξ32 − 3ξ2 6

C. Stochastic model

For a predefined order (e.g., p = 1), the use of equation (3),
along with a similar expansion of the unknown voltage and
current variables, yields a modified version of (2), whose
second row is provided below in extended form, as an ex-
emplification
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d
dz (I0(z, s)φ0(ξ) + I1(z, s)φ1(ξ) + I2(z, s)φ2(ξ)) =

−s(C0φ0(ξ) + C1φ1(ξ) + C2φ2(ξ))(V0(z, s)φ0(ξ)+

+V1(z, s)φ1(ξ) + V2(z, s)φ2(ξ))
(5)

where the interpretation of the new variables is straightfor-
ward.

Projection of (5) on the first three Hermite polynomials
leads to the following set of equations, where the argument
(z, s) of the voltage and current variables has been neglected
for notation convenience

d
dz (I0<φ0, φj>+ I1<φ1, φj>+ I2<φ2, φj>))

= −s(C0<φ
2
0, φj>V0 + C0<φ0φ1, φj>V1+

+ . . .+ C2<φ
2
2, φj>V2), j = 0, 1, 2.

(6)

The above equation, along with the companion relation
arising from the first row of (2), can be further simplified by
using the orthogonality relations of Tab. I for the computation
of the inner products <φk, φj> and <φkφl, φj>, leading to
the following augmented system, where the random vector ξ
does not appear.

d

dz

[
Ṽ(z, s)

Ĩ(z, s)

]
= −s

[
0 L̃

C̃ 0

] [
Ṽ(z, s)

Ĩ(z, s)

]
(7)

In the above equation, the new vectors Ṽ = [V0,V1,V2]T

and Ĩ= [I0, I1, I2]T collect the coefficients of the PC expansion
of the unknown variables.

It is worth noticing that equation (7) belongs to the same
class of (2) and plays the role of the set of equations of
an extended multiconductor transmission-line, whose number
of conductors is (P + 1) times larger than in the original
line. However, for limited values of P (as typically occurs in
practice) the additional overhead in handling the augmented
equations is much less than the time required to run a large
number of MC simulations.

D. Boundary conditions and simulation
For the deterministic case, the simulation of an interconnect

like the one of Fig. 1 amounts to combining the port electrical
relations of the two terminal elements defining the source
and the load with the transmission-line equation, and solving
the system. This is a standard procedure as illustrated for
example in [9] (see Ch.s 4 and 5). As an example, when a
multiport Thevenin equivalent (defined by a voltage source
vector E and a series impedance matrix ZS) and an impedance
matrix (ZL) are used to describe block (a) and block (b) of
Fig. 1, respectively, the port equations of the terminations in
the Laplace domain become{

Va(s) = E(s)− ZS(s)Ia(s)

Vb(s) = ZL(s)Ib(s)
(8)

where the port voltages and currents need to match the
solutions of the differential equation (7) at line ends (e.g.,
Va(s) = V(z=0, s), Vb(s) = V(z=L, s)).

Similarly, when the problem becomes stochastic, the aug-
mented transmission-line equation (7) is used in place of
(2) together with the projection of the characteristics of the
source and the load elements (8) on the first (P + 1) Hermite
polynomials. It is worth noticing that in this specific example,
no variability is included in the terminations and thus the
augmented characteristics of the source and load turn out to
have a sparse structure with null contributions of the projection
of (8) on the k-th Hermite polynomials, with k > 0.

Once the unknown voltage and currents are computed, the
quantitative information on the spreading of circuit responses
can be readily obtained from the analytical expression of the
unknowns. As an example, the frequency-domain solution of
the magnitude of voltage Va1 with p = 1, leads to |Va1(jω)| =
|Va10(jω)φ0(ξ)+Va11(jω)φ1(ξ)+Va12(jω)φ2(ξ)|. The above
relation, that turns out to be a known nonlinear function of the
random vector ξ, can be used to compute the PDF of |Va1(jω)|
via numerical simulation or analytical formulae [10].

III. NUMERICAL RESULTS

In this Section, the proposed technique is applied to the
analysis of the coupled microstrip structure of Fig. 1, where
w = 100µm, h = 60µm, t = 35µm and L = 5 cm. The
source and load elements are defined according to the notation
in (8) with

ZS = RS

[
1 0
0 1

]
,

ZL = (GL + sCL)−1
[

1 0
0 1

]
,

(9)

being RS=50 Ω, GL=10−4 S and CL=10 pF.
Also, one line is active and the other is quiet and kept in the

low state, i.e., the corresponding voltage source at the near-end
is zero. As already outlined before the variability is provided
by the relative permittivity εr and the trace separation d, that
are assumed to behave as two independent Gaussian random
variables with 3.7 and 80µm mean values, respectively, and
identical 10% relative standard deviation. The approximate
relations collected in [13], [14], [15] have been used to
compute the third-order PC expansion of the unknowns and
of the p.u.l. parameters of the structure. Additional details on
the computation of the expansion matrices defined by (3) are
collected in the Appendix.

Figure 2 shows a comparison of the Bode plot (magnitude)
of the transfer function H(jω) defining the near-end crosstalk
computed via the advocated PC method and determined by
means of the MC procedure. The solid black thin curves of
Fig. 2 represent the ±3σ interval of the transfer function,
determined from the results of the proposed technique. For
comparison, the deterministic response with nominal values
of the circuit elements is reported in Fig. 2 as a solid black
thick line; also, a limited set of MC simulations (100, out
of the 40,000 runs, in order not to clutter the figure) are
plotted as gray lines. Clearly, the thin curves of Fig. 2 provide
a qualitative information of the spread of responses due to
parameters uncertainty. A better quantitative prediction can be
appreciated in Fig. 3, comparing the PDF of |H(jω)| com-
puted for different frequencies with the distribution obtained
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Fig. 2. Bode plots (magnitude) of the near-end crosstalk transfer function
H(jω) of the example test case (see text for details). Solid black thick line:
deterministic response; solid black thin lines: 3σ tolerance limit of the third
order polynomial chaos expansion; gray lines: a sample of responses obtained
by means of the MC method (limited to 100 curves, for graph readability).

via the analytical PC expansion. The frequencies selected
for this comparison correspond to the dashed lines shown
in Fig. 2. The good agreement between the actual and the
predicted PDFs and, in particular, the accuracy in reproducing
the tails and the large variability of non-gaussian shapes of the
reference distributions, confirm the potential of the proposed
method. For this example, it is also clear that a PC expansion
with p = 3 is already accurate enough to capture the dominant
statistical information of the system response.
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Fig. 3. Probability density function of |H(jω)| for the example of this study,
computed at different frequencies. Of the two distributions, the one marked
MC refers to 40000 MC simulations, and the one marked PC refers to the
response obtained via third order polynomial chaos expansion.

In addition, Fig. 4 shows the surface of |H(jω)| computed at
f = 2.5 GHz as a function of the two random variables ξ1 and
ξ2, corresponding to relative permittivity and trace separation,
respectively. The comparison between the actual surface and
the one predicted via the PC method for a predefined order of
the expansion is provided as well. The two plots in the figure
correspond to a third and a fifth order of the PC expansion,
thus highlighting that the expansion order p can be effectively
used to improve the accuracy of the approximation for a wide
range of parameter variability.
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Fig. 4. Plot of |H(jω)| at f = 2.5GHz as a function of the two random
parameters, i.e., the relative permittivity and the trace separation. Light gray:
reference; dark gray: PC approximation. The two panels represent the results
obtained with different expansion orders (3 and 5).

Finally, Tab. III collects the main figures on the efficiency of
the MC and of the proposed PC-based methods implemented
in the Matlab R© environment. The CPU time and memory
allocation required by the simulation of the setup of Fig. 1
for the computation of the curves of Fig. 2 are reported in
the table. The numbers in the third column represent the
memory consumption needed to store the system matrix used
by the different methods for a single frequency iteration. For
a fair comparison, the fourth column of the table includes the
overhead for the construction and solution of the augmented
set of transmission-line equations (7), that is only required by
the PC method. The above comparison confirms the strengths
of PC that allows to generate accurate predictions of the
statistical behavior of a realistic interconnect with a great
efficiency improvement, with a limited timing and memory
overhead.

It is important to remark that the proposed PC technique can
be effectively used without any modification of the method
for a number of random variables on the order of ten. With a
larger number of variables, the computation of the expansion
coefficients of (3) requires the solution of multiple integrals
(see the definition of the inner product of Tab. I), thus leading
to an unavoidable initial overhead that is not negligible. In
this case, a clever integration strategy needs to be used. Also,
the size of the augmented set of transmission-line equations
defined by (7) increases with the number of variables. As an
example, a third order expansion for the case of ten random
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TABLE III
CPU TIME REQUIRED BY THE SIMULATION OF THE SETUP OF FIG. 1 BY

THE MC AND THE PROPOSED PC-BASED METHODS.

Method Order p Memory Overhead Simulation time

MC - 0.25 kB 0 sec 2h 33 min

PC 3 25 kB 12 sec 1.1 sec

PC 5 110 kB 16 sec 1.3 sec

PC 10 1.1 MB 2 min 49 sec 2.2 sec

variables leads to a system that is 286 times larger. Owing to
this, if needed, possible model order reduction techniques can
be combined with PC to improve the efficiency of the method,
as proposed in [12].

IV. CONCLUSIONS

This paper addresses the generation of an enhanced mul-
ticonductor transmission-line equation describing a realistic
interconnect structure with the inclusion of external uncer-
tainties. The proposed method, that is based on the expansion
of the voltage and current variables into a sum of a limited
number of orthogonal polynomials, allows to compute the
quantitative information on the transmission-line response
sensitivity to parameters variability. The advocated technique,
while providing accurate results, turns out to be more efficient
than alternative state-of-the-art solutions like Monte Carlo. The
feasibility and strength of the method have been demonstrated
on a realistic PCB coupled microstrip structure with two un-
certain parameters described by independent Gaussian random
variables.
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APPENDIX

This Appendix briefly summarizes the formulae used for the
computation of the p.u.l. parameters of the coupled line structure
of Fig. 1 and of the corresponding PC expansions defined by (3).

Matrices C and L of (2) are computed from the empirical relations
in [13], [14], [15], defining the characteristic impedances of the even
and the odd propagation modes of a symmetric coupled line structure:

Ze =
Z0

√
(εeff,0/εeff,e)

1− Z0/η0
√
εeff,0Q4

Zo =
Z0

√
(εeff,0/εeff,o)

1− Z0/η0
√
εeff,0Q10

(10)

where η0 = 377 Ω is the free-space impedance, Z0 and εeff,0 are the
characteristic impedance and the effective relative permittivity of the
isolated strips, respectively, and Q4 and Q10 are non-linear functions
of the thickness t, normalized land width (w/h) and separation (d/h).
In the above relations, εeff,e and εeff,o are the effective relative
permittivities of the modes, defined by{

εeff,e = 0.5 (εr + 1) + 0.5 (εr − 1) (1 + 10/v)−ae·be

εeff,o = [0.5 (εr + 1) + a0 − εeff,0] e−c0·(d/h)
d0

+ εeff,0
(11)

where v, ae, be, a0, c0 and d0 are non-linear functions of w/h, d/h
and εr .

As outlined in [9], the p.u.l matrices can be readily obtained via
the following standard transformation

LC−1 = T

[
Z2
o 0

0 Z2
e

]
T−1

LC = T

[
1/v20 0
0 1/v2e

]
T−1

(12)

where vo and ve are the modal propagation velocities defined as
the speed of light divided by the square root of the modal effective
permittivity and

T =
1√
2

[
−1 1

1 1

]
. (13)

From the above equations, the sought for parameters write{
C =

√
(CL−1)(LC)

L = (LC−1)C
. (14)

Once the p.u.l. matrices defined by (14) are known as nonlinear,
possibly complex, functions of the geometrical and material proper-
ties of the structure, the expansion coefficients of (3) can be obtained
via the projection of the matrix entries on the Hermite polynomials
according to the properties of Tab. I. As an example, the coefficient
ci,j,k defining the entry (i, j) of the expansion matrix Ck writes

ci,j,k =

∫
<n

ci,j(ξ)φk(ξ)√
(2π)n

exp(−1

2
ξT ξ))/ < φ2

k > (15)

where ci,j is the (i, j) element of matrix C, that turns out to be
a function of the random vector ξ as outlined in Sec. II. It is
worth noticing that the projection integral (15) can be effectively
calculated by means of readily available numerical techniques, such
as the adaptive Simpson or Gauss-Kronrod quadratures (e.g., see the
Matlab R© routines quad.m or quadgk.m).
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