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Starting from the definition of the stochastic differential equation for amplitude and
phase fluctuations of an oscillator described by an ordinary differential equation, we
study the associated Fokker–Planck equation by using tools from stochastic integral cal-
culus, harmonic analysis and Floquet theory. We provide an asymptotic characterization
of the relevant correlation functions, showing that within the assumption of a linear per-
turbative analysis for the amplitude fluctuations phase noise and orbital fluctuations at

the same time are asymptotically statistically independent, and therefore the nonlinear
perturbative analysis of phase noise recently derived still exactly holds even if orbital
noise is taken into account.
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1. Introduction

Noise in autonomous circuits has been studied for decades [1–3] because of the large
impact on the performance of many electronic and telecommunication systems. In
presence of noise, the oscillator noiseless solution xS(t) (a periodic function of period
T , leading to the oscillation frequency f0 = 1/T ) is plagued by fluctuations which,
in turn, are decomposed into a perturbation of the phase (or, equivalently, of the
time reference) of the output signal (phase noise) and into an orbital deviation
(amplitude or orbital noise). We consider here the case of stable oscillators, both
because this is the practically more important condition, and because the stability
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of the limit cycle xS(t) is a prerequisite to allow for a perturbative noise analysis.
Under this assumption, amplitude noise is quenched by the very nature of the
oscillator making in many cases phase noise the dominant effect to be taken into
practical consideration [4, 5].

Despite this rather long history, the detailed analysis of some specific features
such as the noise spectrum arbitrarily close to the oscillator frequency harmonics
led to the development of more complex, albeit rigorous, techniques based on the
use of Floquet theory [6]. The nonlinear perturbative approach developed in [6] is
based on two assumptions:

• Orbital deviations are completely neglected before starting the analysis of phase
fluctuations;

• Phase noise is treated defining a time-reference fluctuation α(t) by means of a
nonlinear differential equation based on the Floquet decomposition of the solution
of the oscillator equations linearized around xS(t). The stochastic properties of
α(t) are then rigorously derived making use of the associated Fokker–Planck
equation [7].

In this contribution, we generalize the treatment in [6] by including into the stochas-
tic analysis the effect of orbital deviations under the assumption that they represent
a small deviation of the noiseless solution.

The paper is structured as follows: the stochastic differential system governing
the fluctuations dynamics is discussed in Sec. 2, while its solution is derived in
terms of the corresponding characteristic function in Sec. 3. The results of the
mathematical derivation are given a geometric interpretation in Sec. 4. Finally,
Sec. 5 is devoted to the conclusions.

2. Derivation of the Stochastic System

The oscillator is described by the autonomous ordinary differential equation:

dx
dt

− f(x) = 0, (1)

where x(t) ∈ �n is the state vector, f(·) : �n → �n is a nonlinear function, and
xS(t) the non-zero solution of (1). Noise is added to the right hand side of Eq. (1)

dz
dt

− f(z) = B(z)b(t) (2)

leading to the noisy solution z(t). Noise sources are represented by the set of p

stochastic processes b(t) ∈ �p, while B(z) ∈ �n×p is a solution-dependent matrix
accounting for possible modulation of the noise sources. The noisy solution z(t) is
decomposed as [6]

z(t) = xS(t + α(t)) + y(t), (3)
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where y(t) respresents the orbital deviation. The autocorrelation matrix of the noisy
solution is therefore

Rz,z(t, τ) = E{z(t)z†(t + τ)} = RxS,xS(t, τ) + RxS,y(t, τ)

+Ry,xS(t, τ) + Ry,y(t, τ), (4)

where E{·} is the ensemble average operator, † denotes the complex conjugate and
transpose operation, and

RxS,xS(t, τ) = E{xS(t + α(t))x†
S(t + τ + α(t + τ))}, (5a)

RxS,y(t, τ) = E{xS(t + α(t))y†(t + τ)}, (5b)

Ry,xS(t, τ) = E{y(t)x†
S(t + τ + α(t + τ))}, (5c)

Ry,y(t, τ) = E{y(t)y†(t + τ)}. (5d)

The first term corresponds to phase noise, Eq. (5d) to orbital noise and
Eqs. (5b)–(5c) to phase-orbital correlation.

Defining the n + 1 dimensional (column) vector stochastic process Y(t)

Y(t) =

[
α(t)

y(t)

]
(6)

the discussion in [6] (see Eq. (12) and Theorem 6.1) allows to obtain the dynamic
equation for Y(t)

dY
dt

= F[Y(t), t]Y(t) + G[Y(t), t]b(t), (7)

where matrices F ∈ �
(n+1)×(n+1) and G ∈ �

(n+1)×p are

F [Y(t), t] =
[
0 0
0 A(t + α(t))

]
, (8)

G [Y(t), t] =




vT
1 (t + α(t))B(t + α(t))

n∑
k=2

uk(t + α(t))vT
k (t + α(t))B(t + α(t))


. (9)

In Eqs. (8) and (9)

A(t + α(t)) =
∂f
∂x

∣∣∣∣
xS(t+α(t))

, B(t + α(t)) = B[xS(t + α(t))] (10)

are T periodic functions of time, as well as the n Floquet eigenvectors uk(t) ∈ �n

and vk(t) ∈ �n associated, respectively, to the direct and adjoint linear systems
derived linearizing (1) around the limit cycle xS(t) and corresponding to the Floquet
exponent µk: details on Floquet theorem can be found in [6, 8]. Notice that we have
assumed k = 1 for the zero Floquet exponent (i.e., µ1 = 0) always present for the
periodic solution of autonomous systems.
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3. Analysis of the Characteristic Function

The statistical properties of Y(t) are assessed by studying the characteristic func-
tion ϕ(ω, t) defined as the (n + 1)-dimensional integral

ϕ(ω, t) = E{eiωTY(t)} =
∫ +∞

−∞
eiωTη pY(η, t) dη, (11)

where ω = [ω1, . . . , ωn+1]T, i is the imaginary unit and pY(η, t) is the probability
density of the vector stochastic process Y(t).

Since Eqs. (8) and (9) are both T -periodic functions, they can be expanded into
a Fourier series obtaining

F[Y(t), t] =
∑

j

F̃j eijω0(t+α(t)), (12)

G[Y(t), t] =
∑

j

G̃j eijω0(t+α(t)), (13)

where the sums span all integer values from −∞ to +∞, and ω0 = 2π/T . Inspection
of Eqs. (8) and (9) allows to define

F̃j =

[
0 0

0 Ãj

]
, (14)

where Ãj ∈ �n×n is the j-th harmonic component of A(t), and

G̃j =




ṼT
1j

n∑
k=2

Ṽkj


, (15)

where ṼT
1j

∈ �
1×p is the j-th Fourier component of vT

1 (t)B(t), and Ṽkj ∈ �
n×p

represents the j-th harmonic component of uk(t)vk(t)TB(t).

Lemma 1. The characteristic function ϕ(ω, t) satisfies the following equation:

∂ϕ(ω, t)
∂t

=
n+1∑
k=1

ωk

∑
h

F̃T
hk
∇ωϕ(ω + hω0, t)eihω0t −

n+1∑
k=1

ωk

∑
h,r


ω0λδk,1hG̃T

hk
G̃−rk

+
1
2

n+1∑
j=1

ωjG̃T
hk

G̃−rj


ϕ(ω + (h − r)ω0, t)eiω0(h−r)t, (16)

where ∇ω is the (column) gradient operator with respect to the ω variables, δ is
Kronecker’s symbol, ω0 = [ω0, 0, . . . , 0]T, and F̃T

hk
, G̃T

hk
are the k-th rows of F̃h, G̃h,

respectively.

Proof. See Appendix A.
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Once the governing equation for the characteristic function (16) has been derived,
the next step is to verify whether a Gaussian random variable is obtained, at least
asymptotically for t → +∞. Since we will not be able to prove the full Gaussianess
of Y(t), we provide a weaker definition.

Definition 1. A vector stochastic variable X(t) = [X1(t), . . . , Xn+1(t)]T is called
weakly Gaussian if its characteristic function has the form

ϕ(ω, t) = exp
(

iωTm(t) − 1
2
ωTK(t)ω

)
, (17)

where m(t) ∈ �n+1 and K(t) ∈ �(n+1)×(n+1).

Remark 1. If K(t) is a symmetric matrix, then X(t) is a Gaussian vector random
variable.

Remark 2. Since for any characteristic function

∂ϕ

∂ωj

∣∣∣∣
ω=0

= −iE{Xj(t)}, (18)

the expected value of X(t) is given by

E{X(t)} = m(t). (19)

Remark 3. Since for any characteristic function

∂2ϕ

∂ωj∂ωk

∣∣∣∣
ω=0

= −E{Xj(t)Xk(t)}, (20)

the covariance matrix of X(t) is given by

E{X(t)X†(t)} − m(t)m†(t) =
1
2
[K(t) + KT(t)]. (21)

Proposition 1. If a vector stochastic variable X(t) is weakly Gaussian, then each
component Xj(t) is a Gaussian scalar stochastic variable.

Proof. From Definition 1, it follows

ϕ(ωj , t) = E{eiωXj(t)} = eiωmj(t)−Kj,j(t)ω
2/2, (22)

where ωj is a null vector except for the j-th component, equal to ω. The previous
equation is the characteristic function of a scalar Gaussian variable.

Theorem 2. The solution of Eq. (16) becomes, for t → +∞, the characteristic
function of a weakly Gaussian stochastic variable

ϕ∞(ω, t) = exp
(

iωTm∞ − 1
2
ωTK∞(t)ω

)
, (23)

meaning that ϕ(ω, t) ∼ ϕ∞(ω, t) for t → +∞. In Eq. (23) m∞ = [m, 0, . . . , 0]T is
time-independent and matrix K∞(t) is defined in Eqs. (B.19), (B.20), (B.25) and
(B.33).
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Proof. See Appendix B.

Theorem 1 can be used to assess the asymptotic properties of the correlation
function RxS,y(t, 0) expressing, according to Eq. (5b), the correlation between
xS(t + α(t)) and the orbital deviation y(t). Developing xS(t) in Fourier series,
and denoting its Fourier coefficients as X̃h, the asymptotic correlation R∞

xS,y(t, 0)
is easily expressed as a function of the asymptotic characteristic function

R∞
xS,y(t, 0) =

∑
h

X̃h eihω0t E{eihω0α(t) y†(t)}

= −i
∑

h

X̃h eihω0t ∇T
ωy

ϕ∞(ω, t)
∣∣∣
ωh

, (24)

where ∇T
ωy

is the (row) gradient operator acting on the ω2, . . . , ωn+1 variables only,
and ωh = [hω0, 0, . . . , 0]T. Therefore, from Eq. (23) and Appendix B (see Eq. (B.4)
for the definition of K∞

:,α and K∞
α,:)

R∞
xS,y(t, 0) = −i

∑
h

hω0

2
X̃h eihω0t

(
K∞

:,α(t) + K∞
α,:(t)

)T eihω0m e−h2K∞
α,α(t)/2,

(25)

which asymptotically tends to zero because of Eq. (B.19). This means that, after
a proper system relaxation time t0, the fluctuations along the limit cycle xS(t +
α(t)) (i.e., the phase noise contribution) and the orbital deviation y(t) become
statistically independent.

4. A Geometrical Interpretation of the Phase/Amplitude
Decomposition

The decomposition of noise in phase and amplitude fluctuations as defined in
Eq. (3) leads to the expressions for the (asymptotic) correlation functions derived
in Theorem 1. At first glance, the asymptotically zero value of R∞

xS,y(t, 0) seems
surprising since it appears to suggest a null correlation between amplitude noise
and fluctuations along the orbit. A more detailed analysis, based on geometrical
considerations, reveals that this is ultimately not the case.

In order to fix the ideas, and to make the discussion more concrete, we consider
as an example the simple oscillator in [12, 13], although the discussion holds also
in the general case. In polar coordinates, the defining system equations read

ρ̇ = ρ − ρ2 + βξρ(t), (26a)

θ̇ = 1 + ρ + βξθ(t), (26b)

where ρ and θ are, respectively, the radial and angular coordinates, β is a parameter,
and ξ(t) represent unit white Gaussian noise sources. The two-dimensional system
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is converted in cartesian coordinates obtaining a system in the form of Eq. (2)
where (zi is the ith component of z)

f(z) =

[
z1 − z2 − (z1 + z2)

√
z2
1 + z2

2

z1 + z2 + (z1 − z2)
√

z2
1 + z2

2

]
, (27)

B(z) = β

[
z1/
√

z2
1 + z2

2 −z2

z2/
√

z2
1 + z2

2 z1

]
, (28)

b = [ξρ, ξθ]T. (29)

The noiseless limit cycle is calculated for b = 0, obtaining

xS(t) = [cos(2t), sin(2t)]T. (30)

For this simple system, Floquet analysis can be carried out analytically [12] yielding
the two Floquet exponents µ1 = 0 and µ2 = −1 and the associated direct and
adjoint Floquet eigenvectors:

u1(t) = 2

[
− sin(2t)

cos(2t)

]
, v1(t) =

1
2

[
cos(2t) − sin(2t)

− cos(2t) − sin(2t)

]
, (31)

u2(t) =

[
− cos(2t) − sin(2t)

cos(2t) − sin(2t)

]
, v2(t) =

[
− cos(2t)

− sin(2t)

]
. (32)

The eigenvectors were calculated using the standard orthonormalization condition
uT

j (t)vk(t) = uT
j (0)vk(0) = δjk.

These expressions allow us to provide an explicit form for the stochastic differ-
ential system (7)–(9), where Y(t) = [α(t), y1(t), y2(t)]T (yi(t) is the i-th component
of y(t)) and

F[Y(t), t] =
1
2



0 0 0

0 −1 − cos(4t̂) − sin(4t̂) −5 + cos(4t̂) − sin(4t̂)

0 5 + cos(4t̂) − sin(4t̂) −1 + cos(4t̂) + sin(4t̂)


, (33)

G[Y(t), t] = β




1/2 1/2

cos(2t̂) + sin(2t̂) 0

sin(2t̂) − cos(2t̂) 0


. (34)

Notice that t̂ = t + α(t).
Starting from Eqs. (7) and (9) in [6], we have that the time reference (phase)

fluctuation α(t) is governed by an equation independent of the orbital deviation:

α̇(t) =
β

2
[ξρ(t) + ξθ(t)] . (35)

The very definition of α transforms it into a “secondary” source term for the
equations setting the dynamics of the oscillator fluctuations along the noiseless
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orbit xS(t)

ẋS(t + α(t)) = 2

[
− sin(2t̂)

cos(2t̂)

]
(36)

and for the orbital noise

ẏ(t) =
1
2

[
−1 − cos(4t̂) − sin(4t̂) −5 + cos(4t̂) − sin(4t̂)
5 + cos(4t̂) − sin(4t̂) −1 + cos(4t̂) + sin(4t̂)

]
y(t)

+β

[
cos(2t̂) + sin(2t̂)

sin(2t̂) − cos(2t̂)

]
ξρ(t). (37)

Notice that Eqs. (36) and (37) can be solved independently of each other: this is a
direct consequence of the very definition of α(t) exploited in [6] on the basis of [10],
in contrast with the decomposition proposed in [11] where the projection chosen to
define the phase fluctuation αK(t) gives rise to a dynamic equation which in turn
depends on the orbital deviation y. This property makes it impossible to interpret
αK(t) as a source term for the fluctuations of the state variables. Demir et al.’s
approach [6], on the other hand, defines a stochastic variable (the time-reference
fluctuation α(t)) which makes (at least asymptotically) statistically independent
xS(t + α(t)) and y(t) which, in turn, satisfy dynamic equations mathematically
independent of each other. As a consequence oscillator fluctuations, through the
projection on the subspaces defined by the Floquet eigenvectors, are completely
decomposed into:

(1) A noise component pertaining to the space defined by the eigenvector u1 = ẋS,
i.e., the phase noise defined through the fluctuations xS(t + α(t)) taking place
only along the orbit;

(2) A second noise component (the orbital deviation y(t)) pertaining, for each time
instant t, to a hyperplane defined by the remaining n− 1 Floquet eigenvectors.
Notice that this hyperplane is always orthogonal to v1 but it is not, in general,
orthogonal to u1 = ẋS (i.e., to the oscillator orbit), and therefore depends on
the fluctuations due to the stochastic variable α.

Ultimately this analysis allows to prove that the results in [6], although demon-
strated neglecting orbital fluctuations altogether, still hold even if amplitude noise
is accounted for, thus providing a sound foundation to the analysis in [14–16].

According to these remarks, notice that the asymptotic statistical independence
between the fluctuations taking place for τ = 0 in the (n − 1)-dimensional hyper-
plane and along the orbit does not imply null phase-orbit correlations (i.e., between
xS(t+α(t)) and y(t+τ) for τ > 0), since these are actually taken into account indi-
rectly by means of the secondary source term defined above. In fact the expressions
derived in [14] show that asymptotically with time

R∞
xS,y(t, τ) = 0 if τ > 0 and R∞

y,xS
(t, τ) = 0 if τ ≤ 0, (38)

thus implying that y(t1) is uncorrelated with xS(t2 + α(t2)) for t2 > t1.
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5. Conclusion

Exploiting a rigorous analysis based on the Fokker–Planck equation associated to
the stochastic equation defining the dynamics of the phase and orbital fluctuations
in oscillators, and making use of the Floquet decomposition proposed in [6], we
have demonstrated that the phase noise and orbital fluctuations can be asymptot-
ically decoupled, at least as far as a linearized approach for the amplitude noise is
assumed, thus implying that the analysis in [6] still holds even for non-negligible
y(t). Notice however that this does not correspond to a null correlation between
phase and orbital noise for different observation times, since the latter is influenced
by the α(t) process by means of an equivalent source term in the corresponding
dynamic equation.

Appendix A. Proof of Lemma 1

To prove Lemma 1, we first consider a rigorous treatment of the stochastic differen-
tial equation (7). According to [6, 9], the Langevin equation (7) can be transformed
into the Fokker–Planck equation for the probability density pY(η, t) of Y(t)

∂pY(η, t)
∂t

= −
n+1∑
k=1

∂

∂ηk

[
FT

k (η, t)ηpY(η, t)λ
∂GT

k (η, t)
∂ηk

Gk(η, t)pY(η, t)
]

+
1
2

n+1∑
k,j=1

∂2

∂ηk∂ηj
[GT

k (η, t)Gj(η, t)pY(η, t)], (A.1)

where η = [η1, . . . , ηn+1]T, FT
k (η, t) is the k-th row of matrix F[Y(t), t] and GT

k (η, t)
is the k-th row of matrix G[Y(t), t]. Finally, λ is a real parameter as defined in [6].

Multiplying (A.1) times an arbitrary, limited and regular function a(η) and
integrating it over the entire (n+1)-dimensional η space allows, after some algebra,
to derive

∂

∂t
E{a} = E

{
n+1∑
k=1

∂a

∂Yk

(
FT

k Y + λ
∂GT

k

∂Yk
Gk

)}
+

1
2
E




n+1∑
k,j=1

∂2a

∂Yk∂Yj
GT

k Gj


.

(A.2)

Choosing a(Y) = exp(iωTY), making use of the Fourier representations (12)
and (13), and performing the derivatives the following expression is obtained:

∂ϕ(ω, t)
∂t

=
n+1∑
k=1

iωk

∑
h

F̃T
hk

eihω0t E{Y(t) ei[ωT+hωT
0 ]Y(t)}

+ λiω1

∑
h,r

ihω0G̃T
h1

G̃−r1 eiω0(h−r)t E{ei[ωT+(h−r)ωT
0 ]Y(t)}

+
1
2

n+1∑
k,j=1

iωkiωj

∑
h,r

G̃T
hk

G̃−rj eiω0(h−r)t E{ei[ωT+(h−r)ωT
0 ]Y(t)},

(A.3)
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where ω0 = [ω0, 0, . . . , 0]T, and F̃T
hk

, G̃T
hk

are the k-th rows of F̃h, G̃h, respectively.
Since

E{Y(t) ei[ωT+hωT
0 ]Y(t)} = −i∇ω{ei[ωT+hωT

0 ]Y(t)}
= −i∇ωϕ(ω + hω0, t) (A.4)

Eq. (A.3) yields directly Eq. (16).

Appendix B. Proof of Theorem 1

To prove that Eq. (23) solves asymptotically Eq. (16), we substitute ϕ∞ into
Eq. (16) obtaining the following expression:

iωT dm
dt

− 1
2
ωT dK

dt
ω

= ωT
∑

h

eihω0t F̃h

[
im − 1

2
(
K + KT

)
(ω + hω0)

]

× eihωT
0 m e−h(hωT

0 Kω0+ωTKω0+ωT
0 Kω)/2

−
∑
h,r

ei(h−r)ω0t ωT

(
λω0hC(h,−r) +

1
2
G(h,−r)ω

)

× ei(h−r)ωT
0 m e−(h−r)2ωT

0 Kω0/2 e−(h−r)(ωTKω0+ωT
0 Kω)/2,

(B.1)

where vector C(h,−r) ∈ �n+1 has elements

C
(h,−r)
k = δk,1G̃T

hk
G̃−rk

, (B.2)

while matrix G(h,−r) ∈ �(n+1)×(n+1) is defined by the elements

G
(h,−r)
k,j = G̃T

hk
G̃−rj . (B.3)

To proceed further, we decompose matrix K (and G(h,−r)) as follows:

K =

(
Kα,α KT

α,:

K:,α Ky,y

)
, (B.4)

where Kα,α is a scalar, KT
α,: a row vector and K:,α a column vector with n elements,

and finally Ky,y a n × n matrix. Accordingly, we have

ωT
0 Kω0 = ω2

0Kα,α. (B.5)

Furthermore, the exponential function can be developed in power series as a function
of ω:

e−q(ωTKω0+ωT
0 Kω)/2 = 1 − q

ω0

2
(KT

:,α + KT
α,:)ω + · · · (B.6)
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Substituting Eqs. (B.5) and (B.6) into Eq. (B.1), equating the coefficients of order
one in ω we find

dm
dt

= −i
∑

h

eihω0t F̃h

[
im − h

2
(
K + KT

)
ω0

]
eihωT

0 m e−h2ω2
0Kα,α/2

+
∑
h,r

iλω0hC(h,−r) ei(h−r)ω0t ei(h−r)ωT
0 m e−(h−r)2ω2

0Kα,α/2 . (B.7)

Similarly, the order two coefficients yield

dK
dt

=
∑

h

eihω0t F̃h

{(
K + KT

)

+ hω0

[
im − h

2
(
K + KT

)
ω0

] (
KT

:,α + KT
α,:

)}
eihωT

0 m e−h2ω2
0Kα,α/2

+
∑
h,r

[G(h,−r) − λω2
0h(h − r)C(h,−r)(KT

:,α + KT
α,:)]

× ei(h−r)ω0t ei(h−r)ωT
0 m e−(h−r)2ω2

0Kα,α/2 . (B.8)

According to [6], Kα,α (the variance of the phase deviation α(t)) is a (positive)
linearly growing function of time. Therefore, Eqs. (B.7) and (B.8) can be asymp-
totically (for t → +∞) simplified by neglecting the terms with h �= 0 in the simple
sums, and the terms with h �= r in the double sums. The resulting equations are

dm∞

dt
= F̃0m∞ +

∑
h

iλω0hC(h,−h), (B.9)

dK∞

dt
= F̃0(K∞ + K∞T) +

∑
h

G(h,−h). (B.10)

Let us consider Eq. (B.9) first. Because of Eqs. (15), (B.2) and (B.3), it can be
casted into the form

dm∞

dt
=


 λ

T

∫ T

0

d(vT
1 B)
dt

BTv1 dt

Ã0[m2, . . . , mn+1]T


, (B.11)

where the first element of the rhs vector is zero because both v1(t) and B(t) are
T -periodic functions. Thus, the general solution of Eq. (B.11) is

m∞(t) =

[
m

etÃ0 [m2(0), . . . , mn+1(0)]T

]
, (B.12)

where m ∈ � is constant. The initial values m∞
j (0) (j = 2, . . . , n+1) can be assumed

zero, since they represent the average value at t = 0 of the orbital deviation y(t),
therefore we finally have:

m∞(t) = [m, 0, . . . , 0]T. (B.13)
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According to Eq. (B.4), Eq. (B.10) can be splitted into four differential equa-
tions, to be solved one after the other

dK∞
α,α

dt
=
∑

h

G(h,−h)
α,α , (B.14)

dK∞
α,:

dt
=
∑

h

G(h,−h)
α,: , (B.15)

dK∞
:,α

dt
= Ã0[K∞

:,α + K∞
α,:] +

∑
h

G(h,−h)
:,α , (B.16)

dK∞
y,y

dt
= Ã0[K∞

y,y + K∞T
y,y ] +

∑
h

G(h,−h)
y,y . (B.17)

The first two equations can be immediately solved, yielding a solution linear with
time t. Equation (B.14) has been already derived in [6] neglecting the orbital devi-
ation altogether (while here we use Eqs. (15) and (B.3))

dK∞
α,α

dt
=

1
T

∫ T

0

vT
1 BBTv1 dt = c. (B.18)

Assuming a zero initial condition, we find the same result as in [6]

K∞
α,α(t) = tc. (B.19)

Similarly, Eq. (B.15) yields

K∞
α,:(t) = t

∑
h

G(h,−h)
α,: , (B.20)

where according to Eqs. (15) and (B.3)∑
h

G(h,−h)
α,: =

1
T

∫ T

0

[vT
1 BG2, . . . ,vT

1 BGn+1] dt. (B.21)

Turning to Eq. (B.16), we substitute Eq. (B.20) obtaining

dK∞
:,α

dt
= Ã0

[
K∞

:,α + t
∑

h

G(h,−h)
α,:

]
+
∑

h

G(h,−h)
:,α . (B.22)

The general solution of Eq. (B.22) reads

K∞
:,α(t) = eÃ0t K∞

:,α(0) + eÃ0t

∫ t

0

e−Ã0s

[
sÃ0

∑
h

G(h,−h)
α,: +

∑
h

G(h,−h)
:,α

]
ds

= eÃ0t K∞
:,α(0) + [−tI + Ã−1

0 (eÃ0t −I)]
∑

h

G(h,−h)
α,:

+ Ã−1
0 (eÃ0t −I)

∑
h

G(h,−h)
:,α , (B.23)

where I is the identity matrix. The exponential time-dependence of K∞
:,α(t) can

be readily eliminated (notice that the phase deviation α(t) is expected to grow
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unbounded linearly with t [6]) by choosing as initial condition

K∞
:,α(0) = −Ã−1

0

[∑
h

G(h,−h)
α,: +

∑
h

G(h,−h)
:,α

]
(B.24)

since substituting Eq. (B.24) into Eq. (B.23) yields a linear time dependence

K∞
:,α(t) = −(tI + Ã−1

0 )
∑

h

G(h,−h)
α,: − Ã−1

0

∑
h

G(h,−h)
:,α . (B.25)

Notice that, although K∞
:,α(t) is linear in t, the sum K∞

:,α + K∞
α,: is constant: in

fact, substituting Eq. (B.25) into Eq. (B.16) we have that the left hand side and
the second term at the rhs are constant, thus implying that K∞

:,α(t) + K∞
α,:(t) is

t-independent.
In order to solve Eq. (B.17) it is convenient to rewrite the matrix unknown K∞

y,y

into a column vector K of size n2 built by collecting the columns of K∞
y,y. A similar

procedure on the constant term at the rhs of Eq. (B.17) allows to express it as

dK
dt

= DÃ0
K + VGy,y

, (B.26)

where DÃ0
is the n2 × n2 matrix

DÃ0
= diag{Ã0, . . . , Ã0}(I + P), (B.27)

I being the identity matrix of size n2, and P a permutation matrix transforming
K into a vector corresponding to the collection of the rows of K∞

y,y.a Notice that
I + P is not invertible, and a direct calculation allows to verify that its rank is
nr = n(n + 1)/2. The nr non-zero eigenvalues of DÃ0

are denoted as λ1, . . . , λnr .
The general solution of Eq. (B.26) is expressed as

K(t) = eDÃ0
t K(0) + eDÃ0

t

∫ t

0

e−DÃ0
s VGy,y

ds, (B.28)

where the integral cannot be directly calculated because DÃ0
is not invertible.

However, we can find an invertible matrix Q such that

DÃ0
= Q diag{λ1, . . . , λnr , 0, . . . , 0}Q−1, (B.29)

and since

eDÃ0
t = Q diag{eλ1t, . . . , eλnr t, 1, . . . , 1}Q−1, (B.30)

Eq. (B.28) takes the form

K(t) = Q diag{eλ1t, . . . , eλnrt, 1, . . . , 1}Q−1K(0)

+Q diag
{

eλ1t −1
λ1

, . . . ,
eλnrt −1

λnr

, t, . . . , t

}
Q−1VGy,y

. (B.31)

aThis corresponds to the K∞T
y,y term in Eq. (B.17).
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The oscillator limit cycle is orbitally stable, thus we choose again to avoid the
exponential dependence by assuming:

K(0) = −Q diag
{

1
λ1

, . . . ,
1

λnr

, 0, . . . , 0
}

Q−1VGy,y , (B.32)

in order to obtain a linear t-dependence of the solution

K(t) = Q diag
{
− 1

λ1
, . . . ,− 1

λnr
, t, . . . , t

}
Q−1VGy,y

, (B.33)

and therefore K∞
y,y(t) and K∞T

y,y (t) are linear functions of time. Notice that this
is only apparently inconsistent with the remark on orbital stability, since, as for
Eq. (B.25), substituting Eq. (B.33) into Eq. (B.17) K∞

y,y(t) +K∞T
y,y (t) results to be

t-independent.
To completely prove the theorem, we still need to address the issue of the higher

order moments of the stochastic variable. We give here a sketch of the complete
proof by considering a simplified case: we treat a one-dimensional case and include
all the non significant constant terms into the Fourier coefficients used in Eq. (B.35).
Including all the moments, the characteristic function has the form

ϕ(ω, t) = exp

(
iωm − ω2

2
K +

+∞∑
n=3

ωn

n!
Hn

)
, (B.34)

where Hn represents the n-th order moment. Let us assume first that Hn = 0
∀n > 3, so that H3 only needs to be accounted for. Substituting into Eq. (16) we
find (here ẋ represents the time derivative of x(t))

iωṁ − ω2

2
K̇ +

ω3

6
Ḣ3

= ω
∑

h

Ãh

[
im − (ω + h)K +

(ω + h)2

2
H3

]
eiht × eihm −2hω + h2

2
K

+
h3 + 3hω2 + 3h2ω

3
H3 +

∑
h,r

(
ωB̃h,r +

i
2
ω2C̃h,r

)
ei(h−r)t ei(h−r)m

− 2(h − r)ω + (h − r)2

2
K × e

(h − r)3 + 3(h − r)ω2 + 3(h − r)2ω
3

H3
.

(B.35)

Developing the exponentials in power series of ω, and equating the terms of order
1, 2 and 3 in ω we find, for t → +∞, the following three differential equations for
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the first three moments:

ṁ∞ = −Ã0m
∞ +

∑
h

B̃h,h, (B.36)

K̇∞ = 2Ã0K
∞ + i

∑
h,r

C̃h,r, (B.37)

Ḣ∞
3 = 3Ã0H

∞
3 . (B.38)

From Eq. (B.38) we can estimate

H∞
3 (t) = e3Ã0t H∞

3 (0), (B.39)

therefore if Ã0 < 0 H∞
3 (t) is asymptotically zero. On the other hand, if Ã0 > 0 we

choose H∞
3 (0) = 0 to avoid a moment exponentially growing with t, thus concluding

that H3(t) = 0 asymptotically for t → +∞.
Similarly, for n > 3 the following equation holds

Ḣ∞
n (t) = nÃ0H

∞
n n > 3, (B.40)

therefore we can conclude that Hn = 0 ∀n ≥ 3 asymptotically with t.
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