
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A QFD framework for quality, innovation and high-tech product development dynamics / Rossetto, Sergio; Franceschini,
Fiorenzo; Demartini, Claudio Giovanni. - In: JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY. - ISSN 1004-0579.
- 19, n.1:(2010), pp. 74-82.

Original

A QFD framework for quality, innovation and high-tech product development dynamics

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2408683 since:

Beijing Institute of Technology

1

A QFD Framework for Quality, Innovation and Hi-Tech Product Development Dynamics
Sergio ROSSETTO1, Fiorenzo FRANCESCHINI1, Claudio DEMARTINI2

(1. Department of Production Systems and Business Economics
2. Department of Computer Science

Politecnico di Torino
C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract
The customer mostly chooses a product on the base of its quality, which therefore arises as the main cause of
its commercial success. In a nearly axiomatic drawing, it follows that the effect of innovation is the
improvement of quality, which itself becomes the aim of innovation. Even though the previous statement
relates quality and innovation, it still does not explain their dynamics. To stress them, the ‘quality’ concept
must be analyzed in more detail. In fact, in addition to the ‘perceived quality’, the quality ensured through
`design, manufacturing and marketing’ combined domains should be dealt with. This paper enhances this
issue taking advantage of principles and models made available by control theory schemes coupled with
quality function development (QFD) and best practice software modeling based on unified modeling language
(UML).

Key words: quality function deployment; software product development; embedded systems development;
CLC number: Document code: Article ID:

Introduction
It is evident that it is not the innovative action by itself, but rather its effect on a good, that influences the
customer. Any action able to augment customer judgment of the offered good is concretely innovative not
only those increasing product performance, but also those improving, for example, delivery time or after-sales
service, as well as those ameliorating product image. These effects, perceived and evaluated in an ordinal or
cardinal manner, are transformed by the customer in a set of attributes that, together, define the `perceived
quality’ (Qpe) of a good. The customer judges and chooses a product on the grounds of its quality, which
therefore is the main cause of its commercial success. In a nearly axiomatic form, it follows that the effect of
the innovation is the improvement of quality, which itself becomes the aim of innovation [5]. Even though
what has been said couples quality and innovation, it still does not explain why the two functions are
dynamic. To understand this, the quality concept must be analyzed more in detail.
In fact, in addition to the perceived quality, there is the quality that is actually assured by the producer
through its `design, manufacturing, commercial’ system. The latter is the so-called `offered quality’ (Qo).
Generally, the two qualities Qp and Qo are different, because of the information asymmetries and the different
system of weights and measures used to evaluate the product attributes. Customer evaluation is based on a
reference model, founded on comparison of different products and subject to the marketing pressure of all
competitors. Generally this model leads to the so-called `expected quality’ (Qe) which, for its puzzle nature,
does not coincide with the Qp of any product [6][7].
To preserve and even increase its own market share, every enterprise strengthens its effort to modify all three
dimensions of quality (Qe, Qo, Qp), in such a way that Qo approaches both Qp and Qe. To achieve this goal, an
enterprise must develop innovative actions. On the other side, since every enterprise has the same problem, all
behave alike, so that Qe and Qp, as effects of the free market’ s competition dynamics, appear as time variable
functions. As a consequence, innovation cannot be an isolated intervention, but is a continuous dynamic
process [9].
A first schematic representation of the innovation process is as follows. An enterprise checking a difference
∆Q between Qe and Qp develops two complex actions to increase customer judgment of its product: the first,
through marketing, is directed to conditioning the customer; the second, through a series of technical-
organizational interventions, is focused on improving the designing, manufacturing, supporting system so as
to obtain an intrinsically superior product. The two actions are always present, although the relative intensity
depends on the market sector, the maturity of the product and the customers’ culture. In any case, in order to
intensify the results, both actions must be coordinated by means of an adequate systemic approach in
enterprise management.
From a control-science point of view, the innovation process can be synthesized in two distinct feedback
loops: the first with a prevalent `communicative-persuasive’ content, the second with a prevalent

2

`engineering-organizational’ character. The `communicative-persuasive’ channel, managed by the marketing
function, has the target of modifying Qp, and of inserting in Qe some peculiar attributes of the offered product.
The main aim of the engineering-organizational channel, on the contrary, is to improve Qo. If the conceptual
model has some appeal for its theoretical use, two main problems have to be solved. The first one concerns
the construction and the identification of:

I(δQo/δt, Qo, PI) = 0 and J(δQp/δt, Qp, MI) = 0 (1)

where PI and MI are production and marketing interventions, and δQo/δt, δQp/δt the first derivatives in time of
the offered and perceived quality. The second problem regards both the evaluation and the comparison of Qe,
Qp and Qo; for the last point, multi-criteria decision analysis techniques seem to be particularly suitable [3].
In order to take theoretical aspects into account together with qualitative issues, quality function deployment
(QFD) [1][2][8] is recalled in section one, analyzed according to the ICT perspective in section two;
connections with UML features and tools are described in section three, while issues on the `engineering-
organizational’ scenario taking advantage of an action-feedback-correction schema are dealt with in section
three. This approach provides a model to identify solutions for (1), as section four describes in detail, where
the QFD framework plays a relevant role for building both control and regulation mechanisms.

1. Quality function deployment and customer requirements
QFD is a method for product/service planning and development that enables design teams to specify
customer’s needs supporting evaluation of each proposed product or service capability by processing data
gathered to describe its impact with respect to those needs [4]. It was born in Japan during the 1960s and was
planned to develop a new product meeting customer needs and providing quality control process charts to
manufacturing before production starts. QFD provides a structured concurrent framework to translate
customer requirements into corresponding technical ones drawing subsequently component characteristics,
process and operational steps. Each translation uses a complex matrix usually defined HoQ, as shown in
Figure 1 [4]. The HoQ process is often summarized into the following steps:
1. Defining customer attributes (CAs); 2. Assigning weightings to CAs; 3. Conducting customer competitive
analysis; 4. Producing engineering characteristics (ECs) in response to CAs; 5. Studying technical
correlations between ECs; 6. Determining relationships between ECs and CAs 7. Processing importance
weightings of ECs; 8. Setting target values of ECs; 9. Weighting technical competitiveness of ECs.

The applications of QFD have reported a variety of benefits to many organizations. During this period, the
product development cycle was reduced by one third with a corresponding increase in quality because of a
reduction of the number of engineering changes.
However, the practical implementations of QFD in the various contexts of industry have encountered
difficulties and, in some cases, even strong oppositions, as happened in the software development domain. In
any case, although design-relevant software process knowledge and information are usually fuzzy,
incomplete, and even conflicting in nature, the conventional QFD applications, always assuming that the

Fig. 1 The House of Quality (adapted from Cohen)

3

input data are precise, force the QFD team to build consensus views, overcoming entropy and divergence with
respect to user requirements collection and classification.
It is also difficult for QFD to support the process of software development in which design teams need firstly
to satisfy client requirements and then use at best the software knowledge and expertise to achieve an
improved design with a suitable or increased client satisfaction. Furthermore they also have to assess the
degree of satisfaction of client and software implementation needs respectively. In particular, in the field there
is lack of a supportive environment to successfully apply QFD due to the tight interlacement of design and
development of modern software process life cycle.
Hence, in principle, QFD in its classic form can be used to develop software products [10] even if at least two
essential differences must be taken into account when applying QFD to software development. In the software
industry the production process in a strict sense is a mere duplication process, just as the definite
implementation process cannot be influenced by special adjustable parameters. Therefore, the problem for the
software scenario lies in a still higher degree than in manufacturing in the early phases of development.
Applying QFD to software development, therefore, has to focus on the ability to prioritize the engineering
activities and pay less attention to deployment down to the software's last line of code [10].

2. QFD and the software development process
QFD is gaining attention in software development contexts, in fact it has been proposed as a means to
formalize collection and translation of customer needs into a set of system design features since software
complexity has began to overcome sustainable effort according to the offered performance of the traditional
development tools available. Hence, Software QFD (SQFD) was introduced to provide formal approaches to
link high-level customer requirements to specific system requirements [11][13]. Various global corporation
active in software and complex system development reported employing QFD in software development such
as IBM, SAP, Siemens, Toshiba, Texas Instruments, and Hughes Aircraft [20].
Most of improvement comes from Zultner's model for applying QFD to software development, being it
extensive, detailed and based on the use of several basic matrices [15].
In this scenario the intangible nature of software does not help customers, who often find it difficult to deal
with quality when expressing requirements.
A major advantage achieved implementing QFD include the capability to orient the discussion in order to deal
with the kernel of the problem instead of working on peripheral problems involving statements on what
customer requirements are with respect to what design is in the context of the scene to be analyzed. Relevant
issues on which the tool focuses are:

• Identification and classification of customers according to the market segment they belong also
paying attention to their different and specific needs;

• Weighting customer needs in order to build a representative requirements space as a framework into
which exploiting measurable quality issues;

• Differentiation and clear identification of product and service features that customer requires
• Sustainability of the correlation among product/service properties and the pooled wishes declared by

the customer.
Richardson and Ryan in [17] have developed a generic method based on QFD that can be used by small
software development companies in the derivation of their software process improvement strategies. The
authors implemented the method, the software process matrix (SPM), in two small software development
companies in Limerick, Ireland. The SPM is based on the first matrix of this model, the HOQ which can be
applied to software design, and the resulting software requirements are diverse in their scope and coverage.
The result takes the shape of a product acceptance extended beyond basic functionalities to serve as an
indicator of reliability, usability, and other customer preferences and design considerations. This contributes
to face the problem that in software, 50 to 60 percent of defects originate in the requirements phase.
Following the line, QFD showed to be a proven technique able to reduce the number of defects, subsequently
resulting in gains for product development and customer satisfaction.
In this cases a slightly different approach was proposed, compared to that one introduced by Zultner’s. In fact
despite the fact that SQFD must focus on early phases of development, Zultner proposed a framework
centered on how to apply Akao’s comprehensive QFD to software development, including quality
deployment according to the four phase scheme. The most important additional aspect is the emphasis on
customer deployment treated before quality deployment takes place, this approach is derived from the feeling
that software, as happens with most other products, rarely is conceived to satisfy the needs of only one

4

homogeneous customer. To identify customer groups and their importance for the engineering ahead, a table
showing potentially relevant customer characteristics and prioritization matrix of selected criteria is used.
Quality deployment as a second step combines classic and software HoQ to form one single HoQ, so that
functional as well as non functional product characteristics are being considered in line with Akao’s
framework. It is through information deployment that at least the first two phases of the four-phase model
may be easily mapped on software development cycle. In information deployment the product characteristics
that have been prioritized in the HoQ are turned into entities, relationships, attributes, processes or objects,
depending on the development techniques used. Furthermore, Zultner’s function deployment still proceeds
similarly also when hardware design is required and task deployment is concerned with activities of the
development process itself. Vertical deployments are intended to guarantee that general aspects such as
reliability and costs are taken into account in any development activity. In these contexts measurable quality
features taken from the HoQ are particularly important.

3. A link between QFD and UML
In contrast with this comprehensive QFD framework, Zultner himself reduced his QFD approach to
absolutely essential activities [16]. This model called ‘Blitz QFD’, focuses entirely on the reception, analysis
and weighting of customer requirements, after customers have been identified (customer deployment) and
before the HoQ has been set up (quality deployment). This simplified model has been assumed as the starting
point in this work to develop a smart connection to UML diagrams able to provide full support to information
deployment within the whole software development cycle.
In order to take into account the various perspectives according to which different user experiences take place
[14], two main categories are introduced to classify persons and organizations. In both the cases managers,
operators, developers, maintainers and end users are often considered to be relevant counterparts to get
specific sets of requirements representing those roles perspectives. Fig. 2 draws the HoQ translating user
requirements clustered, according to the previous rationale, into engineering characteristics, which in turn are
also classified according to functional and non-functional super classes further subdivided into Hardware,
Software and Infrastructure classes. This approach makes the link between QFD and UML possible and
easier, given the opportunity offered by QFD to identify any single functionality to be placed in
correspondence with a Use Case. This link enforces the capability to describe technical features in terms of
detailed specifications extended beyond pure user requirement reinterpretation and taking advantage of the
whole suite of UML diagrams [11][12].
Another issue promoted by the model proposed in this work concerns a wider classification of both user
requirements and engineering characteristics, which are described on the base of properties which allow
analysts to distribute them into the following categories: ergonomics, economy, ethic, capability and
dependability [18].

3.1 Ergonomics
Ergonomics, also defined ‘human factors’, concerns the understanding of interactions among humans and
devices, being them often part of a wider system.
In particular ‘physical ergonomics’ deals with human properties, biological and mechanical characteristics as
they relate to activities addressing working postures, objects handling, repetitive single translations of parts of
the body, work connected disorders, layout, health and safety. On the other side of the coin there is
‘Cognitive ergonomics’ which is concerned with perception, memory, reasoning, motor response, affecting
action-reaction among human actors and other components of a system. In this domain relevant topics
include process decision, skilled performance, human-computer interface, socio-technical system reliability,
work overload and training as these may be linked to social systems design and development [19].

3.2 Economy
Being economics the social science that studies production, distribution, and use of goods and services, in the
following it is intended to limit its semantics only to a category useful to gather issues relevant for costs of
goods and services. To this purpose attention is mainly paid to equipment operating costs, since our interest is
mainly focused on product/service end-user, including maintainers and operators rather than developers,
leaving all the rest to future debate outside the perimeter of this work. In the case of equipment, that is a
device, a component or facility, they are the usual and customary recurring costs of operating the equipment
itself, costs which arise regularly in time, and do not include the capital cost of constructing or purchasing it.
Operating costs are incurred by all equipment, unless they have no cost to operate, require no person to be run

5

or applied or no space as it may happen with intangibles like software modules or applications which, in some
cases, may even appear to have low or no operating cost because either the cost is not identified or is being
absorbed in whole or part by that charged on the hosting hardware. Hence equipment operating costs may
include: salaries of human resources, advertising, components and raw materials, license, registration fees,
real estate expenses such as rent or lease, office spaces and related furniture and equipment, mortgage of
funds used to buy land for ownership, property taxes, operation taxes, transport fees, fuel costs for operation
and production, public utilities, maintenance, office consumable, insurance, income taxes, and so forth [18].

3.3 Ethic
In this framework many European countries, such as the Netherlands, Germany and other northern countries,
promote environmental issues and even regulate them and underpinned by laws. The paradigm of the product
fitting everyone took shape through the rise of the design for all concept aiming at developing products that
would be usable by as many people as possible, being them often part of the aging population domain.
However the interest has recently shifted from this to a wider perspective on accessibility since the frustration
derived from packaging complexity which makes products difficult to be accessed or products too
complicated to be intuitively understood by users independent of their age or capability. In any case two
paradigms co-exist now in total conflict with each other: the sustainability model, describing the world as a
system of ecological checks and balances based on finite resources, and the expansion model, which
represents the world in terms of markets where products play the role of tokens of economic change [22].

3.4 Capabilities
Functional requirements express the intended behavior of the system which may be described referring to
services, tasks or functions the system is required to perform according to user needs and specific objectives
defined. Product development is carried out distinguishing between baseline functionalities necessary for any
system to compete in that product domain, and other features that differentiate the system from competitors’
products, and from variants already made available within the company product family. A strategy to
penetrate the market, even for software products, is to produce the core of the basic product, adding features
to its variants and release them shortly thereafter. In many sectors, companies produce product lines with
different cost/feature variations per product, collecting them in families targeted at different market segments
or application types, identifying specific product lines having some common elements which specify their
functionality and better represent their identity. Software architecture are leveraged by these strategies since it
is not just the functional requirements of the first product release that must be supported by the architecture,
but also later releases should be considered and adjusted through added architectural properties such as
flexibility, extensibility, performance and so forth, being them mostly non-functional requirements. In this
context use cases provided by UML have quickly become a widespread practice for capturing functional
requirements within the object-oriented community where they originated [21].

3.5 Dependability
Dependability ensures that availability, reliability, security and safety targets be achieved before a new
product goes into full-scale production during product development and pilot production phases. When
planning new product features and capabilities, issues concerning risk are inevitably to be dealt with. Risk
assessment and mitigation take place on the base of systematic measures and comparisons among alternative
solutions carried out early in the project life cycle. This implies investment in planning, analysis,
specification, engineering and validation reducing warranty costs, enhancing quality and enforcing reliability
also managing other expenses associated with infringed dependability. The aim is to pursue the overall system
reliability through specific engineering activities carried out to frame the best prototype dependability level,
through systematic identification and resolution of problems which might have not been anticipated and
correctly estimated in earlier design stages. This is particular true for critical systems for which the most
important system property is effectively the dependability of the system which reflects the user’s degree of
trust in that system [18].

4. QFD Ontology and the closed-loop feedback control
The diagram reported in Fig. 2 describes a part of a data base structure planned to collect and maintain
information related to the closed-loop control put in place to follow the market response with respect to the
product/service made available to consumers at the end of the development process. The following drawing
gives evidence to control system where a sensor monitors the output, as happens for example with a vehicle

6

speed, and provides data to a computer which continuously adjusts the control input, just as behaves the
throttle when it is repositioned as required to keep the control error to a minimum in order to maintain the
desired speed. Feedback on how the system, whatever it may be, is actually performing allows the controller,
as happens with a vehicle's on-board computer, to dynamically compensate for disturbances applied to the
system itself. For example disturbances may be expressed by changes in slope of a road or even the wind
speed pushing or delaying the running vehicle.

It is expected that an ideal feedback control system can compensate completely any error, balancing the
effects of any force that might arise during system operation, providing a response that perfectly matches the
system reference or device target. Of course this is an unachievable scenario due to measurement errors
occurring in the sensors, delays experienced in the controller, and also to imperfections in the input fostering
the controller itself.

The general model reported in Fig. 3 is then updated in order to make it apt for the product development
scenario which has been drawn in the previous paragraphs. The new diagram in Fig. 4 is in fact built
enhancing the previous one by adding an adaptation block in order to keep track of market dynamics. It is still
organized as a closed-loop schema, but acting as an adaptive control, since the controller itself can change its
own configuration parameters in order to follow updated market response.
The diagram includes the following main blocks:

• Controller: it is composed by the whole HoQ composed of the user requirements and the
product/service characteristics vectors, together with the relationship matrix and the product features
importance; benchmark evaluation vectors are also included;

• System development: which represents the product/service development processes and includes
product development life cycle and communication plans;

Fig. 3 Closed loop control

Fig. 4 Closed-Loop Control and HoQ

Fig. 3 The ontology representation

7

• Market sensing: it is based on solutions adopted to analyze the market, often based on real time web
based solutions to get opinions and wishes from segmented user domains of the product/service;

• Strategy for adjusting control: it senses the market to update the HoQ relationships matrix values and
also to shape requirements and product features vectors.

The reference signal is obtained by sensing the market with respect to benchmark data collected gathering
information provided by customers who use the best competing products in the market described according
to the customer requirement space CRi (1 ≤ i ≤ n), whose dimensions are shaped by all identified
requirements. The same dimensions, that are the customer requirements, are those used to structure the house
of quality able to work as a controller within the regulation loop. Sensing the market, besides customer
opinion expressed through requirements, also brings to light specific engineering characteristics of a
product/service, relevant issue for being able to specify the controller shape and response profile when
solicited by the error signal. The latter is computed in terms of difference between expected and perceived
quality, both expressed within the same customer requirements space already defined for benchmarks
representations. The first suggestion coming from the model is that dimensions of customer requirements and
engineering characteristics (ECj, 1 ≤ j ≤ m) are always provided by the market whenever appropriately sensed.
The adjusting control block gets sampled data to shape jointly both CR and EC, assigning relationships value
for any requirement-characteristic correspondence and specific relative weights to any CR.
Estimating EC weights is the next step, being subsequently used to determine which particular technical
requirements (EC) are important to improve first, so that effort could be concentrated on them for quality
enhancement. In other words the model states that the quality plan (Qpl) fosters the ‘System Development’
block, and that plan must be composed of a set of vectors including ‘Importance Weighting’, ‘Target Values
of EC’ together with the one representing the ‘planning phase’ of the company in terms of associated quality.
The whole input is used as information to carry out all other phases which, in software development domain,
are based for the most part on UML diagrams devoted to software modules description and supporting semi-
automatic coding process. It is interesting to stress the role of the sensor, which in this specific case, is framed
as customers, suitably segmented, and questionnaires used ‘to sense’ them in order to measure the “perceived
quality” (Qpe) to be compared to that expected (Qe) in order to generate the error signal operating as a driver
for the controller. It is evident in this scenario that the special sensor introduced in this process control is
highly affected by various kind of disturbances, which can cause a relevant distortion of the sampled signal,
the perceived quality, which is of course represented within the same space defined for customer evaluation
and already used to sample benchmarks and planning phase within the loop. It is interesting to emphasize the
fact that quality perceived is built through the use of proper questionnaire shaped on the customer
requirements to be analyzed (Qpe), and the opinion customers express are formed on the real products they
handle, use, apply and live on a day by day basis, hence those assessment are in most of cases derived directly
from a physical experience shaped on the effective features of those product or services.
The ‘System Development’ block includes main operating domains basically founded on: ‘process’,
‘communication’ and ‘technology’, being them the three macro areas within which Qpl can be spent. The
expected output of this block is twofold, the real product, on one side, whose properties should perfectly
match the specification given at the block input and laid out in terms of ‘Target Values of EC’, having the
same descriptor accompanying the block output, on the other side there is the communication plan established
to make the product/service virtually captured by the market segments potentially interested in it. To bring to
light the new role and relevance of technologies, social media should be mentioned, which has become a
platform that is available to anyone provided with internet access, opening doors for organizations to increase
their brand awareness and facilitate interaction with the customer. Additionally, social media serves as a
relatively inexpensive platform for organizations to implement marketing analysis where direct feedback from
customers and targeted markets can be efficiently processed.

5. Conclusions
Knowing that the effect of innovation is the improvement of quality, which itself becomes the aim of
innovation, this work focuses on their dynamics. To stress them, the ‘quality’ concept is analyzed in more
detail arguing on ‘perceived quality’, that ensured through `design, manufacturing and marketing’ combined
domains and promotes solutions able to compare it with the expected quality taking advantage of principles
and models made available by control theory schemes coupled with quality function development and best
practice software modeling based on unified modeling language. To define the whole schema, database and
software engineering techniques have been used in order to reduce the time required to extract information

8

got sensing the market and necessary to sustain the closed loop feedback control, the latter implemented
according to an adaptive approach.

References
[1] Akao V. (1988), Quality Function Deployment, Productivity Press, Cambridge (MA).
[2] Chan, L.-W. and M.-L.Wu., (2002), “Quality function deployment - A literature review.”, European

Journal of Operational Research, v. 143, pp. 463–497.
[3] Roy, B. (1991) The outranking approach and the foundation of ELECTRE methods, Theory and Decision,

31, pp. 49 - 73.
[4] Cohen, L., (1995) “Quality Function Deployment”, Addison-Wesley, Reading.
[5] Franceschini, F. and Rossetto, S. (1995), ``Quality & innovation: a conceptual model of their interaction'',

Total Quality Management, Vol. 6 No. 3, pp. 221-229.
[6] Franceschini F., Rossetto S. (1995), “QFD: The Problem of Comparing Technical Design Requirements,

«Research in Engineering Design», v. 7, pp. 270-278.
[7] Franceschini F., Rossetto S., (1997), Design for Quality: Selecting Product’s Technical Features, «Quality

Engineering», v. 9, n. 4, pp. 681-688.
[8] Franceschini F. (2002), Advanced Quality Function Deployment, St. Lucie Press/CRC Press LLC, Boca

Raton, FL, USA.
[9] Franceschini, F., Galetto, M., & Maisano, D. (2007). Management by measurement: Designing key

indicators and performance measurement systems. Springer Verlag , Berlin.
[10] Helferich A., Herzwurm, G.; Schockert, S, (2005) “QFD-PPP: Product Line Portflio Planning Using

Quality Function Deployment”, Lecture Notes in Computer Science, v. 3714/2005, pp.162-173, Springer
Berlin, DOI: 10.1007/11554844.

[11] Herzwurm, G., Schockert, S., Mellis W. (2000) “Joint requirements engineering: QFD for rapid customer-
focused software and Internet-development, Vieweg, Wiesbaden, Germany.

[12] Herzwurm. G., Schockert, S., Friebel S. (2004) “Quality Function Deployment objectoriented – a method
for the combination of Quality Function Deployment and object-oriented modeling”. In: Proceedings of
the 10Th International Symposium on QFD, Monterrey, Mexico.

[13] Nuseibeh, B., Easterbrook S., (2000) “Requirements Engineering: A Roadmap”. Proc. of the Conference
on The Future of Software Engineering, Limerick, Ireland (2000), pp. 35 – 46.

[14] Georg Herzwurm, Sixten Schockert, Wolfram Pietsch: QFD for Customer-Focused Requirements
Engineering. RE 2003: 330-345.

[15] Zultner, R.E. (1990), "Software Quality [Function] Deployment. Applying QFD to software", in QFD
Institute (Eds),Transactions from the 2nd Symposium on Quality Function Deployment, QFD Institute,
Novi, MI, pp.132-49.

[16] Zultner, R.E. (1995), "Blitz QFD: better, faster, and cheaper forms of QFD", American Programmer,
pp.24-36.

[17] Ita Richardson, Eamonn Murphy, KevinRyan, "Development of Generic Quality Function Deployment
Matrix", Quality Management Journal, Vol. 9, No. 2, April 2002, pp. 25--43.

[18] Ian Sommerville, Software engineering 9, March 2010, Pearson Education.
[19] Kathryn Cormican; David O'Sullivan (2007) A groupware system for virtual product innovation

management, Human Factors and Ergonomics in Manufacturing, 17(6), p499-510, Wiley InterScience.
[20] Cristiano, J.J.; Liker, J.K.; White, C.C. III., (2001), Key factors in the successful application of quality

function deployment (QFD), Engineering Management, IEEE Transactions on, 48(1), p81-95.
[21] Wei Xiong; Xiao-Tun Wang, (2008), Software Requirements Management using QFD: A Process

Perspective, Computational Intelligence and Design, 2, p295-299.
[22] Margolin, Victor (2002): The Politics of the Artificial. Essays on Design and Design Studies, The

University of Chicago Press, Chicago.

