Politecnico di Torino

Dipartimento di
Automatica e Informatica

1" 4 Torino, Italy
: ;f lﬁ“ ﬁﬁ p' n""" SR
. R il - g el 1,l|r,/
The 7th Internatlonal Conference on Intelllgent Enwronments ___‘:* -~ .
25-28 July 2011, (workshops on 25-26 July 2011), Nottingham, United Kingdom - f— e- L lte
™

http://elite.polito.it

Formal Verification of
Device State Chart Models

Fulvio Corno, Muhammad Sanaullah

e-L
Outline
» Design process
» Formalisms
» Verification Methodology
» Results

» Conclusions

2 I[E201 I, Nottingham UK Formal Verification

J

Design process for IE

» Intelligent environments
gaining acceptance
More installations
Standard solutions
» Need more structured
design process
Less “art”

More “engineering”

Requirements

e

Analysis, Design

Project

¢

Implementation

System

HW SW

3 I[E201 I, Nottingham UK

e-L

Validation

Verification

Simulation

Emulation

Formal Verification

e-L
Reference model

Wall switch ' Tangible PC Smartphone User Interface
l
Agents Fuzzy Rules Algorithm Intelligence
l
Access point Protocols Gateway Model Framework Middleware
l
Sensor Meter Actuator Bus Wearable WWireless Devices

4 I[E201 I, Nottingham UK Formal Verification

e-L
General Goals

» Adopt formal representations to allow a sound design
process

» Enable validation and verification throughout the design
process

» Integrate the solution in the Dog2.|gateway toolset

http://domoticdog.sourceforge.net

5 I[E201 I, Nottingham UK Formal Verification

Adopted formalisms

. |
h

o= e-Lite

m

System

User Interface]
requirements

, Intelligent
Intelligence :
algorithms
Device categories
Middleware
System
configuration
Device models
Devices

Whole system
behavior

Temporal Logics
State machines
Ontology
Ontology

State machines

Parallel state
machines

6 I[E201 I, Nottingham UK

UCTL

UML Statecharts
DogOnt classes
DogOnt instances
UML Statecharts

UML Statecharts

Formal Verification

o= e-Lite

The DogOnt ontology

Discrete
tate Value
Continuous
State Valueg/ :

hasStateValue

isA

Network
isA

Componen

isA .~ “Thi \\
\ .

. owl:Thing hasStateVaIu.é

Building
Environment

Continuous
State

b‘ésStateValue
isA 3

Discrete UCTL
State

hasC:‘pm mand UML Statecharts

Building
; Thing
|sAl
UnControllable

hasF-tmctlonaIlty

Controllable) hasNotification DogOnt classes
iSA Notification Functionality, .
¢ isA Query Dogont Instances
UML Statecharts
UML Statecharts

7 I[E201 I, Nottingham UK Formal Verification

DogOnt instances: DimmerLamp

Inherited from Lamp

[off] i LightintensityStateValue
I
OffStateValue hasStateVal [60]
'\as‘tate alue i hasStateValue
I
OonOffStaten /eSS s s s s s s s s I
i1 | LightintensityState | | StateChangeNotificationFunctionality
OnStateValue | hasStateValue I g y I |
hasNotification |
__[on] . . _— S W | [getState()] \
7
hasState hasState &0{‘ | getCommand stateChangeNotification I
S
\((a‘;(i I hasCommand [stateChanged()]
. I I
[LivingRoom] isln hasFunctionality I

. QueryFunctionality
Room Dlmmer Lamp I ™ _ T T I m
h
4,

SetCommand UCTL
hasCommand | "m0 I
[set{Value)] i OnOffFunctionality UML Statecharts
1
LightRegulationFunctionality I
hasCommand hasCommand Dogont C|asseS
hasCommand i
hasCommand 1 .
onCommand offCommand | Dogont Instances
1
stepUpCommand stepDownCommand L_[TE]____ . _[i{ﬂ}] L I UML Statecharts
[stepUp()] [stepDown()] Inherited from Lamp
UML Statecharts

8 I[E201 I, Nottingham UK Formal Verification

552 e-Lite
Overall system components

...to be continued...

System
> Configuration

DogOnt Load
model

Gateway

Sense &
Control

v

Real devices

9 I[E201 I, Nottingham UK Formal Verification

e-L
Device modeling

» Ontologies are declarative formalisms: device properties

» For device behavior we need an operational formalism
Statecharts (Harel, 1987, now in UML 2.0)

/o
stepUp()

) UCTL

lightIntensityState | set(value)
L >L D UML Statecharts
/ set(value) — J/ DogOnt classes

U DogOnt instances
\ stepDown () / UML Statecharts

UML Statecharts

10 I[E201 I, Nottingham UK Formal Verification

e-L
Use cases

» Ontologies are declarative formalisms: device properties
» For device behavior we need an operational formalism
Statecharts (Harel, 1987, now in UML 2.0)
» We use Statecharts for
Modeling the behavior of each device type

Implementing the Intelligent Algorithms within the gateway

Building a whole-system model allowing simulation and
emulation

» Statecharts have a formal semantics: formal verification is
possible

I I[E201 I, Nottingham UK Formal Verification

Overall system components

System
> Configuration

DogOnt Load
model
Run G
Intelligent ol 12l
Algorithms
Sense &
Control
\ 4
Real devices

12 I[E201 I, Nottingham UK

2 e-Lite

...to be continued...

Formal Verification

e-L

Overall system components

System
> Configu ration

DogOnt Load
model

Intelligent Y
Algorithms !

Sense &

Control

Real devices

13 I[E201 I, Nottingham UK

...to be continued...

Device
Statechart

Composition

Whole

Environment Model Simulation

Emulation

Composition
Whole System

Model Simulation

Formal Verification

e-Lite
Temporal logic

» UCTL |OgiC Examples

Branching-time AG[openRequest(T1)]
A [T {ﬂopenRequesr(Tl)}U{tsDone(Tl)} T]

State-based and action-based
O perators AG[daDoorOpen(DAExt)]

Next (X,N) AT {-daDooropen(DAImer)YUlextDoorClosed()} Tk
Future (F)
Globally (G) m
All (A) UCTL
Exists (E) UML Statecharts
Until (U) DogOnt classes
» UMC Model Checker DogOnt instances
Supports Statecharts as a model UML Statecharts
UML Statecharts

14 I[E201 I, Nottingham UK Formal Verification

Overall system components

System
requirements
Device
Statechart
S System Composition
Configuration I Formal
DogOnt Load Whole Verification
model Environment Model Simulati%
- Emulation _—"
Intelligent 1 By
Alsgithms - Compositio
B Sense & T P Formal
Control Whole System Verification
Model Simulation
i, >
Real devices

|5 I[E201 I, Nottingham UK Formal Verification

e-L
But... (goal of this paper)

» Formal verification relies on the composition of device
state charts

» Environment control relies on information in DogOnt
device properties

» How to ensure their consistency?

» Solution: use formal verification, too

16 IE'201 I, Nottingham UK Formal Verification

The problem

Inherited from Lamp

[off]
OffStateValue

‘Qitate\lalue

LightIntensityStateValue

OnOffState

[60]

hasStateValue

OnStateValue

hasStateValue

LightIntensityState

StateChangeNotificationFunctionality

MasN otification

[on} [getState()]
é\‘c\
hasState & ificati
hasState @é}\ getCommand stateChangeNotification
<&] hasCommand [stateChanged()]
[LivingRoom] isln hasFunctionality
. QueryFunctionality
Room Dimmer Lamp
hagy Inherited from Controllable
(7P
SetCommand Cr’oﬁa;;,y
hasCommand \
[set{Value]] OnOffFunctionality
LightRegulationFunctionality
hasCommand hasCommand
hasCommand
hasCommand
onCommand offCommand
stepUpCommand stepDownCommand [on()] [off()]
[stepUpl)] [stepDown()] Inherited from Lamp

set(value)

I[E201 I, Nottingham UK

e-L

on

lightIntensityState

stepUp()

H

sét(value)

N

stepDown()

-

/

Formal Verification

The problem

Inherited from Lamp

[off)

OffStateValue

'Qitate\lalue

OnOffState

[on}

OnStateValue -ﬂg:ateva“‘e \ [

[LivingRoom]

hasState
isln

Room

SetCommand

[set{Value)]

Dim

hasComman d

LightRegulatior

hasComman d :

stepUpCommand

[stepUp()]

stepDoy

Naming consistency for states
Naming consistency for commands
Naming consistency for notifications
Acceptance of commands
Reachability of declared states
Generation of declared notification

Range of numeric status variables

I[E201 I, Nottingham UK

e-L

stepUp()

H

Yl
tensityState

o

stepDown()

set(value)

Formal Verification

Approach

» From DogOnt, extract
UCTL properties A@[\

» From DogOnt, build a DogOnt
synthetic environment for |
the device Hostile synthetic

environment

» Integrate Device State
Chart in the synthetic)
environment UCTL

properties

» For every property
Run Model checher

19 I[E201 I, Nottingham UK

—

e-L

Device

Statechart

v

Closed system

O\

model

|

Model
Checking

OK

ERR

Fo

rmal Verification

e-L
Approach

> From DosOnt.extract . _
_— . : Device
Building a closed system model, ready for verification
Statechart
Environment
N\ v
Environment |--- - ——-3] Environment : Closed system
Generate |--- ----31 Receive model
Commands === Device ---=3] Notifications
(EGC) |booo -3 (ERN)
-)____*

Model

Run Model checher
OK ERR

20 I[E201 I, Nottingham UK Formal Verification

Approach

Example: DimmerLamp generated & verified

properties g
Statechart
--Action Properties
--the acceptance of all the commands in DSC DogOnt
EF {sending(stepDown)} true
EF {sending(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true c v
EF i stile synthetic i losed system
{sending(on)} true . Y y
a environment model
EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true
EF {accepting (off)} true ""'q
EF {accepting (on)} true i
UCTL Model
--the generation of all the notifications in DSC properties —> Checking
EF {sending(stateChanged)} true — 2

EF {accepting(stateChanged)} true lf////\\\\ii

--State Properties K ERR
--the reachability of all the states in DSC ©

EF (offState)
EF (onState)
EF (LightIntensityState)

v oz semmen'| , Nottingham UK Formal Verification

4
4
4
4

Experimental Results

UCTL Model Checker
Dog2.| standard device classes

Device classes verified: | |

Number of verifies properties: | |4

Some design errors found and corrected

CPU time: < | sec / property

e-L

Formally validated device statechart library in

Dog2.1

22

I[E201 I, Nottingham UK

Formal Verification

e-Lite
Conclusions

» Engineering the Design
Process for Intelligent ==n_ n 0
Environments

» Formalisms and tools are
needed

» Ontologies, Statecharts,
Temporal Logics

http://elite.polito.it

http://domoticdog.sourceforge.net
fulvio.corno@polito.it

23 I[E201 I, Nottingham UK Formal Verification

