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Design process for IE

 Intelligent environments

gaining acceptance

 More installations

 Standard solutions

 Need more structured

design process

 Less “art”

 More “engineering”
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Reference model
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General Goals

 Adopt formal representations to allow a sound design 

process

 Enable validation and verification throughout the design 

process

 Integrate the solution in the Dog2.1gateway toolset
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Adopted formalisms

Level Design artifact Technique Formalism

User Interface
System 

requirements
Temporal Logics UCTL

Intelligence
Intelligent

algorithms
State machines UML Statecharts

Middleware

Device categories Ontology DogOnt classes

System

configuration
Ontology DogOnt instances

Devices

Device models State machines UML Statecharts

Whole system 

behavior

Parallel state 

machines
UML Statecharts
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The DogOnt ontology
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DogOnt instances: DimmerLamp
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Overall system components
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Device modeling

 Ontologies are declarative formalisms: device properties

 For device behavior we need an operational formalism

 Statecharts (Harel, 1987, now in UML 2.0)
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Use cases

 Ontologies are declarative formalisms: device properties

 For device behavior we need an operational formalism

 Statecharts (Harel, 1987, now in UML 2.0)

 We use Statecharts for

 Modeling the behavior of each device type

 Implementing the Intelligent Algorithms within the gateway

 Building a whole-system model allowing simulation and 

emulation

 Statecharts have a formal semantics: formal verification is

possible
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Overall system components
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Overall system components
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Temporal logic

 UCTL logic

 Branching-time

 State-based and action-based

 Operators

 Next (X,N)

 Future (F)

 Globally (G)

 All (A)

 Exists (E)

 Until (U)

 UMC Model Checker

 Supports Statecharts as a model
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Overall system components
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But… (goal of this paper)

 Formal verification relies on the composition of device

state charts

 Environment control relies on information in DogOnt

device properties

 How to ensure their consistency?

 Solution: use formal verification, too
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The problem

Formal VerificationIE'2011, Nottingham UK17



The problem
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• Naming consistency for states

• Naming consistency for commands

• Naming consistency for notifications

• Acceptance of commands

• Reachability of declared states

• Generation of declared notification

• Range of numeric status variables



Approach

 From DogOnt, extract

UCTL properties

 From DogOnt, build a 

synthetic environment for

the device

 Integrate Device State 

Chart in the synthetic

environment

 For every property

 Run Model checher
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Building a closed system model, ready for verification
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Example: DimmerLamp generated & verified

properties

--Action Properties
--the acceptance of all the commands in DSC

EF {sending(stepDown)} true
EF {sending(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true
EF {sending(on)} true

--
EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true
EF {accepting (off)} true
EF {accepting (on)} true

--the generation of all the notifications in DSC
EF {sending(stateChanged)} true
EF {accepting(stateChanged)} true

--State Properties
--the reachability of all the states in DSC 

EF (offState) 
EF (onState) 
EF (LightIntensityState)



Experimental Results

 UCTL Model Checker

 Dog2.1 standard device classes

 Device classes verified: 11

 Number of verifies properties: 114

 Some design errors found and corrected

 CPU time: < 1 sec / property

 Formally validated device statechart library in 

Dog2.1
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Conclusions

 Engineering the Design 

Process for Intelligent

Environments

 Formalisms and tools are 

needed

 Ontologies, Statecharts, 

Temporal Logics
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