
Formal Verification of

Device State Chart Models

Fulvio Corno, Muhammad Sanaullah

Politecnico di Torino
Dipartimento di

Automatica e Informatica

Torino, Italy

http://elite.polito.it

Outline

Formal VerificationIE'2011, Nottingham UK2

 Design process

 Formalisms

 Verification Methodology

 Results

 Conclusions

Design process for IE

 Intelligent environments

gaining acceptance

 More installations

 Standard solutions

 Need more structured

design process

 Less “art”

 More “engineering”

Formal VerificationIE'2011, Nottingham UK3

Requirements

Project

Analysis, Design

Implementation

HW SW

System

Verification

Simulation

Validation

Emulation

Reference model

Formal VerificationIE'2011, Nottingham UK4

Devices

Middleware

Intelligence

User Interface

Sensor Actuator Bus WirelessMeter

GatewayAccess point Framework

Wearable

Protocols

Agents Fuzzy Rules Algorithm

SmartphoneWall switch Tangible PC

Model

General Goals

 Adopt formal representations to allow a sound design

process

 Enable validation and verification throughout the design

process

 Integrate the solution in the Dog2.1gateway toolset

Formal VerificationIE'2011, Nottingham UK5

Adopted formalisms

Level Design artifact Technique Formalism

User Interface
System

requirements
Temporal Logics UCTL

Intelligence
Intelligent

algorithms
State machines UML Statecharts

Middleware

Device categories Ontology DogOnt classes

System

configuration
Ontology DogOnt instances

Devices

Device models State machines UML Statecharts

Whole system

behavior

Parallel state

machines
UML Statecharts

Formal VerificationIE'2011, Nottingham UK6

The DogOnt ontology

Formal VerificationIE'2011, Nottingham UK7

Formalism

UCTL

UML Statecharts

DogOnt classes

DogOnt instances

UML Statecharts

UML Statecharts

DogOnt instances: DimmerLamp

Formal VerificationIE'2011, Nottingham UK8

Formalism

UCTL

UML Statecharts

DogOnt classes

DogOnt instances

UML Statecharts

UML Statecharts

Overall system components

Formal VerificationIE'2011, Nottingham UK9

System

Configuration

DogOnt

Gateway

Real devices

Load

model

Sense &

Control

…to be continued…

Device modeling

 Ontologies are declarative formalisms: device properties

 For device behavior we need an operational formalism

 Statecharts (Harel, 1987, now in UML 2.0)

Formal VerificationIE'2011, Nottingham UK10

Formalism

UCTL

UML Statecharts

DogOnt classes

DogOnt instances

UML Statecharts

UML Statecharts

Use cases

 Ontologies are declarative formalisms: device properties

 For device behavior we need an operational formalism

 Statecharts (Harel, 1987, now in UML 2.0)

 We use Statecharts for

 Modeling the behavior of each device type

 Implementing the Intelligent Algorithms within the gateway

 Building a whole-system model allowing simulation and

emulation

 Statecharts have a formal semantics: formal verification is

possible

Formal VerificationIE'2011, Nottingham UK11

Overall system components

Formal VerificationIE'2011, Nottingham UK12

System

Configuration

DogOnt

Gateway

Real devices

Load

model

Sense &

Control

Intelligent

Algorithms

Run

…to be continued…

Overall system components

Formal VerificationIE'2011, Nottingham UK13

System

Configuration

DogOnt

Gateway

Real devices

Load

model

Sense &

Control

Whole

Environment Model

Device

Statechart

Composition

Simulation

Emulation

Intelligent

Algorithms

Run

Whole System

Model

Composition

Simulation

…to be continued…

Temporal logic

 UCTL logic

 Branching-time

 State-based and action-based

 Operators

 Next (X,N)

 Future (F)

 Globally (G)

 All (A)

 Exists (E)

 Until (U)

 UMC Model Checker

 Supports Statecharts as a model

Formal VerificationIE'2011, Nottingham UK14

Formalism

UCTL

UML Statecharts

DogOnt classes

DogOnt instances

UML Statecharts

UML Statecharts

Examples

Overall system components

Formal VerificationIE'2011, Nottingham UK15

System

Configuration

DogOnt

Gateway

Real devices

Load

model

Sense &

Control

Whole

Environment Model

Device

Statechart

Composition

Simulation

Emulation

Intelligent

Algorithms

Run

Whole System

Model

Composition

System

requirements

Formal

Verification

Simulation

Formal

Verification

But… (goal of this paper)

 Formal verification relies on the composition of device

state charts

 Environment control relies on information in DogOnt

device properties

 How to ensure their consistency?

 Solution: use formal verification, too

Formal VerificationIE'2011, Nottingham UK16

The problem

Formal VerificationIE'2011, Nottingham UK17

The problem

Formal VerificationIE'2011, Nottingham UK18

• Naming consistency for states

• Naming consistency for commands

• Naming consistency for notifications

• Acceptance of commands

• Reachability of declared states

• Generation of declared notification

• Range of numeric status variables

Approach

 From DogOnt, extract

UCTL properties

 From DogOnt, build a

synthetic environment for

the device

 Integrate Device State

Chart in the synthetic

environment

 For every property

 Run Model checher

Formal VerificationIE'2011, Nottingham UK19

DogOnt

Device

Statechart

UCTL

properties

Hostile synthetic

environment

Closed system

model

Model

Checking

OK ERR

Approach

 From DogOnt, extract

UCTL properties

 From DogOnt, build a

synthetic environment for

the device

 Integrate Device State

Chart in the synthetic

environment

 For every property

 Run Model checher

Formal VerificationIE'2011, Nottingham UK20

DogOnt

Device

Statechart

UCTL

properties

Hostile synthetic

environment

Closed system

model

Model

Checking

OK ERR

Building a closed system model, ready for verification

Approach

 From DogOnt, extract

UCTL properties

 From DogOnt, build a

synthetic environment for

the device

 Integrate Device State

Chart in the synthetic

environment

 For every property

 Run Model checher

Formal VerificationIE'2011, Nottingham UK21

DogOnt

Device

Statechart

UCTL

properties

Hostile synthetic

environment

Closed system

model

Model

Checking

OK ERR

Example: DimmerLamp generated & verified

properties

--Action Properties
--the acceptance of all the commands in DSC

EF {sending(stepDown)} true
EF {sending(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true
EF {sending(on)} true

--
EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true
EF {accepting (off)} true
EF {accepting (on)} true

--the generation of all the notifications in DSC
EF {sending(stateChanged)} true
EF {accepting(stateChanged)} true

--State Properties
--the reachability of all the states in DSC

EF (offState)
EF (onState)
EF (LightIntensityState)

Experimental Results

 UCTL Model Checker

 Dog2.1 standard device classes

 Device classes verified: 11

 Number of verifies properties: 114

 Some design errors found and corrected

 CPU time: < 1 sec / property

 Formally validated device statechart library in

Dog2.1

Formal VerificationIE'2011, Nottingham UK22

Conclusions

 Engineering the Design

Process for Intelligent

Environments

 Formalisms and tools are

needed

 Ontologies, Statecharts,

Temporal Logics

Formal VerificationIE'2011, Nottingham UK23

http://elite.polito.it

http://domoticdog.sourceforge.net

fulvio.corno@polito.it

