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1. Introduction    
Electrical distribution networks are structurally weakly meshed, but are typically operated 
in radial configurations to simplify the network protection schemes. This implies the need to 
carry out suitable selection of the redundant network branches to open in normal 
conditions, as well as to define the control variables to set up in order to guarantee effective 
system operation and voltage quality. Furthermore, the structure of the distribution 
networks has to be upgraded to meet future needs, according to economic objective 
functions defined for distribution system planning. Finally, distribution systems need to 
face possible interruptions through the formulation of appropriate service restoration 
strategies, based on switching on and off a number of branches, reducing the effects of faults 
occurring in the networks by defining a time-dependent path to restore electricity supply to 
all consumers. All these aspects can be addressed by formulating and solving suitable 
optimization problems for distribution network operation and planning. Typically these 
problems are defined within discrete domains for the decision variables. However, for large 
real distribution systems the highly-dimensional and/or combinatorial nature of the 
optimization problems make it impracticable to resort to exhaustive search, since the 
number of combinations would be excessively high to be processed in reasonable 
computation times. Global optimizations can then be solved in terms of adopting suitable 
meta-heuristics.  
In this context, ant colony optimization (ACO) provides viable solutions to the various 
distribution system optimization problems. Key features of ACO, such as parallel search, 
shortest path finding, adaptability to changes in the search space, long-term memory and 
information sharing, have been fully exploited in their classical formulations, in advanced 
versions such as the hyper-cube ACO framework, as well as in hybrid formulations 
combining the ACO properties with those of other meta-heuristics. 
This chapter summarizes the formulation and use of ACO algorithms and variants to solve 
different types of electrical distribution system optimization problems, namely: 
• Distribution system optimal reconfiguration and voltage support. Various objective functions 

to minimize can be set up in the presence of a set of structural and operational 
constraints. The objectives include total distribution system losses, voltage deviations 
with respect to their reference values, maximum load on system components, load 
balancing, and capacitor placement. Performing network configuration changes and 
setting up the level of insertion of compensating devices or distributed generation and 
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resources connected to the network nodes are the main actions needed, according to 
which the decision variables are defined.  

• Optimal planning of distribution networks and resources. The classical objective function is 
composed of the total (fixed and variable) costs for network reinforcement, taking into 
account structural network components, as well as possible introduction of distributed 
energy resources. For the purpose of application of an ACO algorithm to a 
minimization problem, the inverse of the total costs can be considered as objective 
function.  

• Optimization of service restoration and reliability. The typical objective in this case is 
maximization of distribution network reliability under specific constraints. For this 
purpose, composite reliability indices are formulated by taking into account frequency 
and duration of the interruptions. Multi-objective formulations with reliability and 
economic terms have also been adopted. The decision variables for distribution system 
upgrade are defined with the purpose of increasing the level of automation or 
exploiting the potential of distributed generation and resources to assist service 
restoration.  

The specific aspects concerning the implementation of ACO algorithms are illustrated and 
discussed in the next sections, taking into account the representation of the search space 
with definition of the variables, the parameters and their initialization, the formulation of 
global and local heuristic rules for pheromone update, and finally the stop criterion. The 
dedicated solutions adopted to take into account the nature of the distribution system 
optimization problems addressed are highlighted, as well as the role of ACO parameters 
within hybrid formulations of the solution algorithms. 
Dedicated reference is made to literature papers, mainly to those appeared in scientific 
journals. Uniform notation and symbols are used throughout this chapter. As a 
consequence, the symbols may differ with respect to the ones included in the original 
referenced papers. 

2. Ant colony optimization characteristics and general framework 
2.1 Basic features of the ant colony optimization algorithms  
ACO algorithms are stochastic search procedures based on a parametrized probabilistic 
model called pheromone model (Dorigo & Blum, 2005). ACO algorithms adopt an iterative 
solution process in which each iteration corresponds to the parallel search operated by M 
ants. The pheromone quantity is typically initialized to a constant positive value and is 
updated during the solution process, enhancing its relative concentration in the most 
promising regions of the search space, in such a way to increase the probability of accessing 
these regions during the successive phases of the stochastic search.  
Dorigo et al., 2006, indicate that the most widely adopted ACO algorithms in general 
applications are the ant system (Dorigo et al., 1996), the max–min ant system (Stützle & 
Hoos, 2000), and the ant colony system (Dorigo et al., 1996). The latter is the most widely 
used for solving electrical distribution system optimization problems. The general scheme of 
ACO algorithms adopted for these problems is summarized in the flow-chart shown in Fig. 
1. Besides the user-defined number of ants M, the general parameters include a number of 
specific parameters that are introduced in the following subsections. At the beginning of the 
solution process, the ants are placed in locations randomly selected or defined with specific 
criteria. At each iteration, the ants move within the search space on the basis of a state 
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transition rule. The ant movement and the objective functions corresponding to the solution 
points reached during the search determine the pheromone update according to a global 
heuristic rule. An optional local heuristic rule can be introduced to further impact on the 
search process. 
As for any stochastic search process, the solutions reached depend on the extraction of 
random numbers, typically from a uniform probability distribution in the range [0, 1]. When 
repeatability of the results under the same conditions is needed, the seed for random 
number extraction is set to a fixed value at the beginning of the execution of the algorithm.  
 

distribution system data input  
set initial conditions 

preliminary calculations 

w = w + 1 
new ant: m  = m + 1 

objective function evaluation  
for each best objective function improvement: 

update best location and set w = 0 

last ant 
m = M ? 

stop criterion 
w = W ? 

new iteration: h = h + 1 
m = 0 (ants) 

Y

N

start 

stop 

parameter and counter initialization  
general parameters: M, σ, τ0, β, W   

specific parameters for local and global heuristic rules 
counters: h = 0 (iterations), w = 0 (stop criterion) 

local heuristic rule (optional)

global heuristic rule

Y

N

 
Fig. 1. General flow-chart for ant-colony optimization application to electrical distribution 
systems. 



 Ant Colony Optimization - Methods and Applications 

 

240 

2.2. Weighted probabilistic selection mechanism 
At each iteration, each ant m = 1,..., M moves along a path selecting the new locations 
according to a state transition rule: for ant m, the probability ( )

( )
,

m
i jp  of moving from location i 

to a location j (belonging to the set ( )m
iS  of the locations that can be visited by ant m starting 

from location i) is expressed as 

 ( )
( ) ( ) ( )( )

( ) ( )( )
( )

, ,
,

, ,
m

i

i j i jm
i j

i i
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where ( ),i jτ  is the amount of pheromone existing in the connection between the locations i 
and j, the term ( ),i jd  represents the distance between the locations i and j, and the exponent 
β  > 0 quantifies the relative importance of the pheromone and distance entries1. In practice, 
a transition from i to j becomes most probable when the distance between the locations is 
relatively low and there is a relatively high amount of pheromone deposed on the 
connection between the locations i and j. 

On the practical point of view, after calculating the probabilities ( )
( )

,
m
i jp , the transition of ant m 

from location i to a location belonging to the set ( )m
iS  is identified by using a weighted 

probabilistic selection mechanism based on the construction of the cumulative distribution 
function (CDF) (Carpaneto & Chicco, 2008), analogous with a biased roulette wheel 
mechanism. In fact, since the sum of the probabilities satisfies the basic probability law 

( )
( )

( )
, 1

m
i

m
ip ν

ν∈

=∑
S

, it is possible to construct the CDF of the probabilities associated to the state 

transition rule. An example in which ant m starts from location i and can reach four possible 
destinations (numbered as 1, 2, 3 and 4) with corresponding probabilities equal to 0.2, 0.3, 
0.4 and 0.1, respectively, is shown in Fig. 2. Then, taking a random number r extracted from 
a uniform probability distribution in [0, 1] and entering it onto the vertical axis, it is possible 
to identify the destination to reach by determining the corresponding step on the CDF. In 
the example of Fig. 2, if the random number r = 0.35 is extracted the destination is j = 2. 

2.3 Local heuristic rule 
This rule is optional and can be formulated in different ways. A typical formulation is the 
one of the ant colony system (Dorigo et al., 1996), that considers a small positive constant cτ  
not lower than the initial pheromone 0τ  and not higher than a quantity depending on the 
objective function values. The amount of pheromone existing in the connection between the 

                                                 
1 In some applications the pheromone terms indicated in (1) are associated to a further exponent. 
However, for the sake of reducing the overall parameters, a single exponent can be sufficient for tuning 
the relative importance of the pheromone quantity and distance terms. In the applications shown in this 
chapter, the double exponent representation used in some papers is reported to the single-exponent 
scheme. 
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locations i and j is changed from ( ),
previous
i jτ  to ( ) ( ) ( ), ,1 previous

ci j i jτ ρτ ρ τ= + − , where ρ  is a user-

defined parameter. This rule changes dynamically the characteristics of the path from i to j, 
thus modifying the extent to which this path is likely to be successively visited by the ants. 
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destination

CDF

r = 0.35

 p (m )= 0.4
 (i ,3)

 p (m ) = 0.3 
 (i ,2)

 p (m ) = 0.1
 (i ,4)

 p (m ) = 0.2
 (i ,1)

 
Fig. 2. Selection of the destination based on the construction of the CDF. 

2.4 Global heuristic rule 
This rule is applied at the end of each iteration h.  During the iteration, the path followed by 
one of the ants exhibited the best performance. The global heuristic rule is implemented by 
considering two terms: (i) pheromone evaporation applied to all connections, driven by the 
parameter σ∈ [0, 1]; (ii) pheromone reinforcement limited to the connections among the 
locations reached by the best path, depending on a specifically defined function ( )hψ :  

  ( )
( ) ( ) ( )

( ) ( )1
, ,1h h h

i j i jτ σ τ σψ−= − +  (2) 

Generally, the function ( )hψ  is inversely proportional to the distance covered by the best 
path. According to Dorigo & Blum, 2005, in the iteration-best update rule the best path can be 

the one found at iteration h, that is, ( ) ( )hh
bestdτψ κ= , where ( )h

bestd  represents the distance and 

τκ  is a user-defined factor. Alternatively, in the best-so-far update rule the best distance ( )h
bestd  

found so far is used, thus obtaining ( ) ( )hh
bestdτψ κ= . The update rule could also change 

during the iteration process, for instance using the iteration-best update rule in the first 
iterations and best-so-far update rule in the successive iterations.  

2.5 Pheromone bounds and hypercube framework 
Successful rules for driving the pheromone update have been set up by limiting the 
minimum and maximum amounts of pheromone. The ant colony system algorithm (Dorigo 
et al., 1996) applies to all pheromone values a non-fixed lower bound, possibly depending 



 Ant Colony Optimization - Methods and Applications 

 

242 

on the objective function values. The max-min ant system (Stützle & Hoos, 2000) applies to 
all pheromone values an explicit lower bound and a non-fixed upper bound depending on 
the objective function values. The hypercube framework (Blum & Dorigo, 2004) provides an 
automatic scaling of the objective function values used in the search process, and results in a 
more robust and easier way to implement computational procedure. The initial pheromone 
quantity 0τ ∈ [0, 1], and the pheromone values are always limited within the interval [0, 1] 
by properly formulating the pheromone update rules. 

2.6 Elitism 
In the basic version of the heuristic, each iteration starts with a set of locations, and these 
locations are then changed during the iteration according to the rules applied. As such, there 
is no certainty that the best solution found at a given point is maintained for the whole 
iterative process. In the elitistic version of the heuristic, the best solution found in the 
previous iteration is maintained without being subject to any change during the current 
iteration. In this case, a monotonically increasing path for the objective function to be 
maximized (e.g, fitness), or, correspondingly, a monotonically decreasing path for the 
objective function to be minimized, is generated in the successive iterations. The elitistic 
version of a heuristic is generally convenient to apply in terms of effectiveness of the 
solution process (Reeves, 1993). 
In ACO, a specific technique is used to implement elitistic considerations. Considering the 
set ( )m

iS  of locations that can be visited by ant m starting from location i, the selection 
process of the destination is driven by a user-defined parameter q0 ∈ [0,1]. After extracting a 
random number r ∈ [0,1], if r > q0 the selection is made by using the weighted probabilistic 
selection mechanism (Section 2.2) with probabilities defined as in (1), obtaining the 
destination ĵ . Conversely, for r ≤ q0 the destination with relatively high pheromone and 
relatively low distance in the connection is sought. In summary, the destination j ∈ ( )m

iS  to 
be reached by ant m is selected by applying the following rule: 
 

 ( ) ( ) ( ){ } 0, ,arg max if

ˆ otherwise

m
i

i u i u
u

d r q
j

j

βτ −

∈

⎧ ≤⎪= ⎨
⎪
⎩

S  (3) 

 

The more the parameter q0 is close to unity, the more the selection becomes driven by 
elitistic considerations. 

2.7 Stop criterion 
The most convenient stop criterion for a heuristic refers to conclude the iterative process 
when no objective function improvement occurs after a predefined number W of successive 
iterations. This criterion is by far more effective than the simple use of a maximum number 
of iterations H. In fact, setting up a maximum number of iterations could result either in 
premature stop of the solution process when substantial improvements are still occurring, or 
in unnecessary computational overburden when no change in the best solution is found for 
a large number of the last successive iterations. The maximum number of iterations H can be 
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used as a last-resource option, mainly for algorithm testing. However, many references still 
adopt the simple stop criterion based on the maximum number of iterations. 

2.8 Parameter values 
The choice of the ACO parameters is made by the user, who can conduct dedicated parameter 
analyses for assessing the most suitable parameter values to be used to solve the specific 
problem on the specific system under analysis. In order to summarize the parameters used in 
various applications to distribution system optimization, Table 1 shows the numerical values 
of the parameters adopted in the reference papers recalled in this chapter. Multiple indications 
are included to represent ranges of values used for parametric analysis. 
 

Parameters  
Reference M σ τ0 β W H 
Ahuja et al., 2007 - 0.05 100 - - 100 
Carpaneto et al., 2004 20 0.02 10 1 10 - 
Carpaneto & Chicco, 2004 100 0.1 10 1 5 - 
Carpaneto & Chicco, 2005 10÷600 0.01÷0.2 10 1 10 - 
Carpaneto & Chicco, 2008 10 0.04 1 1 5 - 
Chang, 2008 5 0.05÷0.2 0.1 0.1, 0.15 - 450 
Chiou et al., 2004 5 ]0, 1[ (*) 1 - 500 
Falaghi et al., 2009 50 0.1 0.1 (lower bound) (-) - 100 
Favuzza et al., 2006 50 0.00001 0.2 2 20 - 
Favuzza et al., 2007 50 0.00001 0.2 2 20 - 
Gomez et al., 2004 4÷50 0.2÷1 random 1÷4 - 30 
Niknam, 2008 10÷200 (*) (*) 0.01÷0.1 - 100 
Su et al., 2005 5 0.1÷0.5 (*) 0.1÷0.25 - 30 
Teng & Liu, 2003 50÷250 0.1÷0.6 > 0 (small) 1 - 100 
Tippachon & 
Rerkpreedapong, 2009 

(*) 0.2 not fixed 2 - (*) 

Wang & Singh, 2008 200 0.27 > 0 (small) 1 - 200 
Zamboni & Monteiro, 2009 5 - 0.01 0.15 - 200 

Table 1. Numerical values of the parameters used in reference papers. A dash indicates that 
the parameter is not used. An asterisk (*) indicates that a numerical value is not available. 

3. Optimal reconfiguration and voltage support  
3.1 Distribution system topology and network calculations 
In the weakly-meshed distribution system structure, the network topology typically lacks of 
regularity. As such, it is not possible to exploit concepts like network symmetry or 
uniformly distributed connection among the network nodes to simplify the computational 
procedures for network topology analysis.  
For a generic weakly-meshed distribution system structure, let us assume the following 
notation: the set of nodes N contains i = 1,…, N nodes, the subset of supply nodes S ⊂ N 
contains s = 1,…, S supply nodes, and the set of branches B contains b = 1,…, B branches. 
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Furthermore, the set T ⊂ B contains the transformers located in the distribution network, 
and the set X contains all the possible radial configurations of the distribution system. 
A general property is that each radial network obtained from the weakly-meshed network 
structure has the same number Λ = B-N+S of open branches. However, opening Λ branches is 
a necessary but not a sufficient condition for obtaining a radial network, since by arbitrarily 
opening Λ branches it could be possible to isolate one or more network nodes and to maintain 
loops in the network. As such, the identification of the radial structures is not straightforward. 
Even the enumeration and generation of all radial configurations that can be obtained for a 
given weakly meshed structure is a difficult task, that can be addressed by using specific 
algorithms (Andrei & Chicco, 2008).  However, the size of the real distribution systems is 
typically large, and the corresponding number of possible radial configurations is high enough 
to make exhaustive search practically intractable in terms of computational burden.  
For a radial configuration X ∈ X, the distribution network calculations are carried out by 
solving the power flow with a specific iterative method like the backward-forward sweep 
(Shirmohammadi et al., 1988; Baran & Wu, 1989; Andrei et al., 2008). The power flow results 
provide the complex voltages at every distribution system node. The branch currents and 
losses in the distribution system are then computed on the basis of the power flow results. 
In specific cases approximate solutions for loss calculation (Baran & Wu, 1989b) are adopted 
(for instance in Chiou et al., 2004; Su et al., 2005; Chang, 2008). 

3.2 Objective functions and constraints  
3.2.1 Optimization problem formulations 
The optimal reconfiguration of the distribution system is a discrete problem, consisting of the 
search of the radial configuration that minimizes (or maximizes) a specified objective 
function ( )f X  under various operational constraints. The general formulation for a 

minimization problem is ( ){ }min
X

f X
∈X

, subject to a set of equality and inequality constraints. 

The equality constraints are the power flow or approximate loss calculation equations.  
Concerning the inequality constraints, the constrained variables are the voltage magnitude at 
each node (a bilateral constraint with maximum and minimum limits implemented 
independently of each other), the phase-to-ground current at each node (with maximum 
limit), the three-phase short circuit current at each node (with maximum limit), the thermal 
current at each branch (with maximum limit). Other operational constraints (Carpaneto et 
al., 2003) may reflect the need to avoid the presence of multiple cascade circuit breakers in 
any path of the radial network (being the circuit breakers non-selective), the need to avoid 
simultaneous interruption of two (or more) supply points for the customers requiring 
enhanced supply availability in their contractual provision (according to which independent 
supply points have to be maintained, that is, connected to radial networks starting from 
different substations), and, in case, a constraint on the maximum number of switching 
operations occurring to move from the standard distribution system configuration to the 
new configuration found in the solution process. 
There are two ways to introduce the inequality constraints in the optimization problem: 
1. checking the constraints for each solution and discarding any solution that does not 

satisfy all constraints; 
2. embedding the inequality constraints into a penalized objective function, by adding 

penalty terms to the specific objective function. 
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The use of the penalized objective function is commonplace for heuristic methods. In this 
way, it is possible to obtain a numerical value of the objective function in any condition, 
provided that the network structure is acceptable (in our case, the network is radial), 
without the need of detecting and eliminating infeasible solutions that do not meet the 
operational constraints. This allows for reducing the limits on the size of the search space. 
Using the penalized objective function together with a dedicated mechanism to avoid the 
generation of non-radial networks (Section 3.3), the check for the existence of valid solutions 
indicated in the framework of a basic ACO algorithm in Dorigo & Blum, 2005, is not 
necessary, and thus it is not represented in the flow-chart of Fig. 1. 
Let us consider an objective function composed of a specific term ( )f X′  based on the 
objective to be assessed. Let us further assume that the objective function has to be 
minimized. In this case, positive penalty terms are added to ( )f X′  in case of violations, 
obtaining the penalized objective function expressed for instance in the form: 

 ( ) ( ) ( ){ }Tmin
X

f X f X X
∈

′= + Δw u
X

 (4) 

where: 
• u(X) is a column vector containing the variables subject to constraints, and ( )XΔu  is a 

column vector whose components are positive in case of violations and zero elsewhere; 
these components can be the absolute deviations with respect the corresponding 
constraints, in case elevated to an user-defined exponent (e.g., squared); 

• w is a column vector containing positive user-defined weights for the variables 
belonging to u(X) for which a violation occurs, and null values for the components 
without violation; 

• the superscript T denotes transposition. 

3.2.2 Specific objective functions 
The specific objective function ( )f X′  can be written as follows: 
• For total distribution system losses, considering the branch series resistance Rb and the 

branch current Ib: 

 ( ) ( ) 2tot
L b b

b
f X P X R I

∈

′ = = ∑
B

  (5) 

• For voltage deviations with respect to the rated value, considering the voltage magnitude 
Vk at node k and the rated voltage ( )rV : 

 ( ) ( ) ( ) { } ( ) { }{ }max max max , minr r
k kkk

f X V X V V V V
∈∈

′ = Δ = − −
KK

 (6) 

• For maximum load on branches (feeders or transformers), the objective function is the 
maximum ratio between the branch current Ib and the corresponding current rating ( )r

bI : 

 ( ) ( ) ( )
max max b

rb
b

If X L X
I∈

⎧ ⎫⎪ ⎪′ = = ⎨ ⎬
⎪ ⎪⎩ ⎭

B
 (7) 
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• For transformer load balancing, the rationale of this objective is to make the load sharing 
of each transformer (expressed in relative values with respect to the transformer 
capacity) proportional to the capacity of that transformer. The objective function is the 
total unbalance, expressed in terms of the total network apparent power load tot

LLA  
(including losses), of the apparent power ( )bA X  of each transformer b ∈ T in the 

configuration X under study, and the ratio ( ) ( )r r
b bA Aν

ν∈
= ∑

T
 between the transformer 

capacity and the sum of capacities of all network transformers: 

 ( ) ( ) ( ) tot
b b LLtot

T tot
b b LL

A X A
f X U X

A∈

−
′ = Δ = ∑

T
  (8) 

Alternatively, it is possible to define a transformer load balancing index (Wu et al., 2010).  
• For feeder load balancing, the objective is to make the branch loading as uniform as 

possible throughout the network, comparing the apparent power of each branch b ∈ B 
to the corresponding MVA limit max

bA : 

 ( ) ( ) ( ) 2

max
btot

b b

A X
f X B X

A∈

⎛ ⎞
′ = Δ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑
B

  (9) 

• For capacitor placement, the objective function can be set up as the sum of the total 
system losses and of the annual cost of the capacitors installed, in order to highlight the 
convenient solutions in which the loss reduction makes it possible at least to 
compensate the capacitor costs. Considering the specific cost cρ  in monetary units per 
kvar, and the rated power ( )

k

r
CQ  of the capacitor to be installed at node k ∈ K:  

 ( ) ( ) ( )
k

rtot
L c C

k
f X P X Qρ

∈

′ = + ∑
K

  (10) 

In the capacitor placement problem, an additional constraint is set up in order to limit 
the size of the capacitor to be installed at each node to the reactive power load 

kLQ at 
that node, i.e., ( )

kk

r
LCQ Q≤  for k = 1, …, K.  

A specific aspect adopted in the optimal reconfiguration problem formulation in Carpaneto 
& Chicco, 2008, refers to the consideration that each branch has two switches, one at each 
terminal, and for any open branch it is possible to choose which switch has to be maintained 
open. If the switches have different levels of automation, the switch-on/switch-off 
operations are convenient to be done only at the terminal with higher level of automation, 
because of easier manoeuvrability. The on/off position of the switches is then specified in 
detail in the problem formulation for each open branch. 
The above objective functions are expressed in terms of power quantities, that is, they are 
valid for a single snapshot in time. However, with the progressive introduction of 
distributed resources in the energy networks, the focus is now shifted to distribution system 
operation in a given time interval. For this purpose, the distribution network objectives have 
to be reformulated by explicitly considering the dependence on time of the relevant 
variables.  
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Let us represent the time domain with a set of regularly spaced discrete points j = 1,…, J, as 
in Carpaneto & Chicco, 2010. Without taking into account the possibility of making 
configuration changes in the time interval of analysis, the general form of the objective 
function is expressed as: 

 ( ) ( ) ( )T

1
min

J

jX j
f X f X X

∈ =

⎧ ⎫⎪ ⎪′= + Δ⎨ ⎬
⎪ ⎪⎩ ⎭

∑w u
X

 (11) 

and the specific objective functions are written taking into account the results of the power 
flow calculations at the various points in time. As an example, the voltage deviations with 
respect to the reference value can be assessed by considering, for j = 1,…, J, the voltage 
magnitude Vkj at node k ∈ K, the rated voltage ( )rV , the consumer damage constant Ck 
(Strezoski et al., 2001), and the consumer energy kjE  introduced as a weighting factor to 
enhance the importance of nodes and time intervals with relatively high energy 
consumption (Carpaneto et al., 2004; Carpaneto & Chicco, 2010): 

 ( ) ( )( )2
1

J
r

k kj kj
j k

f X C E V V
= ∈

⎛ ⎞
′ = −⎜ ⎟

⎝ ⎠
∑∑

K
 (12) 

Similar formulations can be obtained by considering, instead of a regular discretizazion in 
time, a reduced number of load variation steps, as in the minimum electrical energy 
generation cost problem defined in Niknam, 2008, applied to a fixed radial network 
configuration in which the decision variables refer to capacitors, transformer tap changers, 
distributed generators and voltage regulators. 
Multi-objective functions can be formulated as well, by simultaneously considering two or 
more objectives (Ahuja et al., 2007). 

3.3 Approaches for ant colony optimization applications 
3.3.1 Classification of the alternative approaches 
For the purpose of constructing radial system configurations, alternative approaches can be 
exploited. A first classification can be made on the basis of the starting conditions used: 
1. constructive approach: the initial network is only composed of the supply points, and 

the network branches are successively added until a radial network is formed; 
2. loop-based approach: all branches are initially considered in their closed state, and the Λ 

branches to open are determined in such a way to open Λ loops identified in the 
network; 

3. variation-based approach: the initial network is radial and a new configuration is 
obtained by closing and opening some branches according to a specific branch-
exchange rule formulated to preserve radial configurations after each variation. 

The details of these approaches and the corresponding ACO algorithms used are illustrated 
in the sequel. 

3.3.2 Constructive approach 
The constructive approach uses a pheromone-driven application of the Prim-Jarník 
algorithm (Prim, 1957) to form the radial network by successively adding edges that do not 
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form any loop. In the presence of multiple supply (root) points, with S > 1, there are S radial 
networks simultaneously growing by adding one branch at a time to one of these networks. 
A key aspect is the selection of the next branch to be added.  
In the constructive scheme illustrated in Carpaneto & Chicco, 2004, the initial network is 
composed of the only substation nodes. The specific objective function (5) is used. The 
pheromone is applied to all the branches of the weakly-meshed distribution system 

structure. The initial pheromone is set to ( )0
0bτ τ=  for any branch b ∈ B. An additional 

parameter ξ > 1 is used to represent the pheromone reinforcement factor and is set to 
( ) 1h
bξ =  at the beginning of each iteration for any branch b ∈ B. At each iteration, each ant m 

= 1,…, M builds a radial system by adding K-S branches to the initial network. At each step 
of the branch addition, a list of candidate nodes is formed, containing all the nodes to which 
it is possible to connect a further open branch without closing a loop (at the beginning, this 
list contains only the substation nodes). Then, one of the open branches converging to a 
node included in the list has to be added to the radial network under formation. For this 
purpose, a branch selection mechanism is applied. The selection is driven by the definition 
of a suitable distance in the state transition rule (1). For instance, branch resistance (or 
impedance) can be used as distance. In the version illustrated in Carpaneto & Chicco, 2004, a 
specific selection mechanism is implemented, in order to enable a relatively balanced 
growth of the radial networks supplied by different substations. The series resistance of the 
branches already belonging to the path from each node contained in the list and the 
corresponding supply substation is used as the distance related to that node2. Then, the state 
transition rule based on the weighted probabilistic selection mechanism (Section 2.2) is 
applied to extract the node belonging to the list formed to which an open branch has to be 
connected. Once the node has been selected, if there are multiple open branches that can be 
connected to its terminals without forming any loop, another extraction is carried out by 
using again the weighted probabilistic selection mechanism, in which the distances now 
consist of the resistances of the branches that can be connected. At the end of the radial 
network construction for the current iteration h, the pheromone reinforcement factor is set to 

( )h
bξ ξ=  at each branch belonging to the radial network formed, and to zero at every other 

branch.  
The global heuristic rule is applied to each branch by using an expression similar to (2), in 

which the function ( )hψ  multiplied by the evaporation factor σ contains the pheromone 
reinforcement factor, as well as a further component given by the ratio between the best 

solution ( )bestf X  found so far and the best solution ( )( )h
bestf X  found at the current iteration 

(excluding the best solution found in previous iterations and reproduced in the current 
iteration according to the application of the elitism principle): 

                                                 
2 For the substation nodes not yet connected to any other node, the distance is set to a very low default 
value (e.g., 10-8), thus increasing at these nodes the probability of being extracted by the weighted 
probabilistic selection mechanism with respect to other nodes already connected to the corresponding 
supply substations through a series of branches. 
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 ( ) ( ) ( )
( )( ) ( ) ( )11h h hbest

b b bh
best

f X

f X
τ σ ξ σ τ −= + −   (13) 

The ratio between the two best solutions is equal to unity if the best solution found so far 
has been obtained in the current iteration, otherwise is lower than unity, being the objective 
function to be minimized. In the latter case, the pheromone reinforcement at the current 
iteration h is in some way mitigated with respect to the case in which the best solution was  
updated during the iteration. 

3.3.3 Variation-based approach 
The initial distribution system configuration ( )0X ∈X  is chosen as a radial network, typically 
corresponding to the standard configuration adopted by the distribution company. The 
solution algorithm proceeds by progressively introducing variations in the configuration 
according to specific local and global heuristic rules. Each variation is constrained by the 
need of forming a radial structure, thus adopting the branch-exchange mechanism (Civanlar 
et al., 1988; Baran & Wu, 1989b) to maintain network radiality.  
Two types of branch-exchange mechanisms can be defined, based on inverse strategies: 
a. close-open branch exchange: consists of closing an open branch, detecting the loop formed in 

the system, and restoring the radial configuration by opening a branch inside the loop; 
b. open-close branch exchange: consists of opening a closed branch, detecting the island 

formed in the system and all the possible connections among any node of the island and 
the remaining part of the network, and restoring the radial configuration by closing one 
of these connections.  

In both mechanisms, the way in which the branches to open and close are selected depend 
on the characteristics of the solution strategy. For this purpose, it is possible to make a 
distinction between deterministic methods (in which specific rules are set up to apply the 
branch-exchange mechanism, with the possibility of trapping into local optima, Carpaneto 
et al., 2003) and probability-based methods (in which the selection is performed on the basis of 
random number extractions dependent on probability values, such as in the weighted 
probabilistic selection mechanism described in Section 2.2). ACO algorithms belong to the 
latter type of methods. 
In the approach presented in Carpaneto & Chicco, 2008, the pheromone is associated to each 
branch (more specifically, to each switch, but general reference will be made here to 
branches, for the sake of comparison with the other methods). The rationale is to enhance 
the pheromone at the branches that have to remain open in the configuration corresponding 
to the best objective function. This approach operates in the hyper-cube ACO framework 
(Blum & Dorigo, 2004), so that the pheromone has to be initialized and vary in the [0,1] 
range. The objective function (5) is used. Two additional parameters are introduced to be 
used in the local heuristic rule: the reduced neighbourhood size A and the number ζ of 
successive configuration changes produced by each ant. The value ζ cannot be too low, in 
order to allow for exploring the solution space by introducing relatively large variations, but 
at the same time it cannot be too high, to avoid the introduction of many changes to the 
reference configuration used. 
At each iteration h, the reference configuration is set to the one corresponding to the best 
solution obtained so far. The M ants are initially located on randomly selected branches. 
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Each ant m = 1,…, M introduces a number of successive configuration changes ( )h
mζ  

randomly selected from 1 to ζ  by applying the local heuristic rule. The changes are operated 
by applying ( )h

mζ  times the close-open branch-exchange mechanism. A further variant 
embedded in the local heuristic is the identification of a reduced neighbourhood of size A, 
such that the choice of the branch to open after closing a selected branch is limited to the A 
branches adjacent to the closed branch in the loop formed. Within the neighbourhood 
formed, the branch to open is chosen by applying the weighted probabilistic selection 
mechanism (Section 2.2) by using as weight the pheromone associated to each branch. After 

( )h
mζ  successive configuration changes have been introduced, the objective function is 

computed. The best configuration ( )h
bestX  of the current iteration h and the best configuration 

bestX  found so far are updated in case new best solutions are found during the calculations. 
In the global heuristic rule, the pheromone is updated according to the following relation: 

 ( ) ( ) ( )
( )( ) ( ) ( )11h h hbest

b b bh
best

f X

f X
τ συ σ τ −= + −   (14) 

where ( )h
bυ  = 1 if branch b is open in the best configuration found at iteration h, otherwise 

( )h
bυ  = 0. The considerations on the ratio between the two best solutions, corresponding to 

the function ( )hψ  in (2) are the same as the ones discussed in (13). Since the first addend in 
(14) cannot be higher than unity, and the initial pheromone cannot exceed unity by 
definition of the hyper-cube framework, the pheromone updated by the global heuristic rule 
always remains in the range [0, 1], thus maintaining full consistency with the hypotheses of 
the hyper-cube ACO framework. 
The multi-objective optimization presented in Ahuja et al., 2007, considers a set Ω of 
objectives, such as total loss minimization (5), voltage deviations with respect to the rated 
value (6) and transformer load balancing (8), and searches for the best-known Pareto front, 
composed of the non-dominated solutions for which it is not possible to found other 
solutions with better values of all individual objective functions (Shukla & Deb, 2007). The 
initial solutions are generated through the Prim-Jarník constructive algorithm (Prim, 1957), 
then configuration changes are determined by exploiting cloning principles and pheromone-
based hypermutation. Pheromone is used to store information on the solution effectiveness, 
in order to use this information during the solution process. A separate pheromone table is 
initialized (with equal values τ0) and used for each individual objective. Each pheromone 
element is denoted as ( )

,
h

b ωτ , with reference to iteration h, branch b and objective function ω 
∈ Ω. Each non-dominated solution is subject to cloning to obtain a number of copies of it. 
Each clone is then subject to hypermutation on the basis of the pheromone values. To do 
that, the open-close branch-exchange mechanism is used, driven by weighted probabilistic 
selection (Section 2.2) to select the branch to open (using the pheromone weights) and to 
further select the branch to close among the remaining open branches (using equal weights). 
The pheromone update is performed by considering pheromone evaporation at all branches 
according to the second addend of (2), then including an addend providing pheromone 
reinforcement only on the branches corresponding to non-dominated solutions. This addend 
contains a constant χ and the ratio between two terms: the upper-side term is the minimum 
value of the objective function for objective ω in the set ( )hX  of configurations providing 



Ant Colony System-based Applications to Electrical Distribution System Optimization   

 

251 

non-dominated solutions at the current iteration, and the lower-side value is the objective 
function for objective ω in the current non-dominated solution: 

 ( ) ( )
( ){ }

( ) ( ) ( )1
, ,

min
1

hh hX
b b

f X

f X

ω

ω ω
ω

τ χ σ τ −∈= + −X  (15) 

The update formula (15) is applied at each iteration to each branch and to each objective 
function. 

3.3.4 Loop-based approach 
The loop-based approach exploits a loop-opening principle. The weakly-meshed distribution 
system structure is initially considered with all branches closed, thus containing a number 
of loops. The ants are initially located at random positions in the network. The search space 
contains a number of loops Λ = B-N+S equal to the number of branches to be open (Section 
3.1). Each ant selects one switch to be opened for each loop. The loops are processed one at a 
time, by listing for each loop the branches it contains and selecting among them the branch 
to open with a probabilistic transition rule based on the pheromone located on these 
branches.  
Minimum loss reconfiguration is addressed from the loop-based viewpoint in Su et al., 2005, 
Chang, 2008, and Wu et al., 2010. The approximate solution for loss calculation introduced 
in Baran & Wu, 1989b, is used in Su et al., 2005, and in Chang, 2008, on any radial network 
constructed during the solution process, while Wu et al., 2010, includes as objectives both 
total losses and load balancing, performing full power flow calculation. The iterative process 
follows standard ACO concepts. Pheromone is located on the system branches and is 
initialized to the value τ0. Pheromone update is made according to the local heuristic rule 
(Section 2.3). The initial ants are located on the distribution system nodes. Each ants selects 
the next node in which it has to move on the basis of the state transition rule (1). Elitism is 
introduced by saving the best configuration found during the process, or by applying the 
concepts indicated in Section 2.6. In addition to the maximum number of iterations, in some 
cases the stop criterion includes as a rule the fact that all ants selected the same tour. 
In Chang, 2008, the optimal reconfiguration is addressed by taking into account capacitor 
placement, either as a single solution and combined with loop-based open branch selection. 
In this case, the search space is extended to include, for each node, different capacitor sizes. 
Each ant operates in this extended search space, by including in a single tour both the loops 
and the set of nodes containing the capacitors. The addition of capacitor placement to open 
branch selection gives the possibility to set up additional problem variables and to enhance 
the performance of the optimal reconfiguration process.  
Chiou et al., 2004, address the optimal capacitor placement problem by using an ant 
direction hybrid differential evolution method. The objective function to be minimized is the 
overall cost of power losses and capacitor placement (10). In this method, different mutation 
operators are available, and ACO is used to select the most convenient mutation operator to 
be used during the solution process. Each ant selects a mutation operator on the basis of a 
transition rule of the type (1) driven by a distance calculated on the diversity among the 
individuals (genes) generated with respect to the best individual found at the previous 
generation. A mutation operator is considered to be proper if the objective function of the 
current generation is better than the best objective function of the previous generation: 
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( )

( ) ( )
( , )

( , )
( 1) ( , )

h m
h m

h h m
best

f X

f X f X−

′
=

′ ′−
   (16) 

For ant m, the pheromone update is performed by summing up a term containing the 
remaining pheromone after evaporation and a fluctuant pheromone quantity added if the 
proper mutation operator has been chosen by the ant:  

 ( ) ( ) ( ) ( ), , 1,1h m h m h m
bτ τ σ τ −= Δ + −   (17) 

where, considering the user-defined constant value κ: 

 ( ) ( ),
, / if the mutation operator is proper

0 otherwise

h m
h m κτ

⎧⎪Δ = ⎨
⎪⎩

  (18) 

 

Zamboni & Monteiro, 2009, start with the weakly meshed structure with all branches closed, 
and adopt the classical weighted probabilistic selection mechanism as in (1), in which the 
branch resistance is considered as distance. The pheromone is associated to the branches, 
and all branches are assigned the same initial pheromone quantity τ0. 
The local pheromone update at iteration h is driven by the square of the current required to 
transfer the active power Pi and reactive power Qi from node i to node j, being i and j the 
terminals of branch b: 

 ( )
2 2

h i i
b

b b

P Q
R X

τ
⎛ ⎞ ⎛ ⎞

Δ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (19) 

 

The additional parameter q0 is introduced to further bias the selection mechanism by 
applying the elitistic criterion indicated in Section 2.6, allowing an ant located in a given 
node to move with probability q0 to the node with highest pheromone among the ones 
reachable, and partitioning the remaining 1-q0 probability of selection by using the selection 
mechanism (1). The authors indicate to set q0 ≤ 0.5 in order to avoid giving excessive weight 
to the local information. 
Ants are initially located in some nodes, and each ant tends to move to a neighbouring node. 
The paths already visited are stored in order to avoid visiting them again. The ant transition 
from one node to another is repeated for a specified number p of steps. If the ant selects 
visiting an already visited path, it remains at the initial location. Any ant reaching a 
substation node remains in that node for the following steps. In this way, each ant collects 
the contributions of the loads served along the path from a node to a substation. 
The solution method exploits the concept of élite ants, as the ones that cover the lowest 
distance paths. A maximum number M(e) of élite ants (set up as a parameter) is considered in 
the global pheromone update at iteration h, where pheromone reinforcement is done in each 
branch belonging to the corresponding paths ( ) ⊂eB B  containing the subset of nodes 

( ) ⊂eK K , by introducing an extra pheromone quantity expressed as: 



Ant Colony System-based Applications to Electrical Distribution System Optimization   

 

253 

 ( ) ( )

( )

( )

( )

2 2

e e

e e

b k b k
h k k

b

R P X Q

R Xν ν
ν ν

τ ∈ ∈

∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

Δ = +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑
K K

B B

 (20) 

where the active power Pk and reactive power Qk refer to the nodes encountered in the path. 
In this way, the extra pheromone in somehow proportional to the total load encountered in 
the path traced by each élite ant. When at a given iteration no élite ant is formed, the 
procedure moves to the next iteration. 
The stop criterion is based on reaching a predefined maximum number of iterations. At the 
end of the iterative process, the pheromone matrix contains different values, characterizing 
each branch. Considering the initial weakly-meshed structure, in order to decide which 
branches to open to form the best radial network, an algorithm is used which starts from a 
substation and proceeds until forming a mesh. Then, the branch belonging to that mesh 
having the least amount of pheromone is open. This procedure is run for Λ = B-N+S times, 
then the final radial configuration is found. 
Voltage control optimization is addressed in Carpaneto et al., 2004, for distribution systems 
with distributed generation, by using the objective function (12) formulated for time-varying 
loads and generations. The control variables are partitioned into time-independent and time-
dependent, and are all expressed through discrete values. The solution is carried out by using 
nested heuristics, with a primary loop solved with a genetic algorithm to find pseudo-optimal 
combinations of the time-independent variables, and a secondary loop solved with ACO to 
find the best path for the time-dependent variables corresponding to the assigned values of the 
time-independent ones. In the secondary loop, the limits of the path are represented by a 
rectangle, with time and voltage magnitude as coordinates. Within this rectangle, a number of 
discrete points are identified, and these points are assigned an initially equal pheromone 
quantity. An iterative process is then started, in which M ants are sent at each iteration to 
generate a path. The transition from a given point to the successive one (in time) is driven by a 
local heuristic rule, based on the weighted probabilistic selection mechanism (Fig. 2) applied to 
a neighbourhood of the current voltage magnitude, using the pheromone of the candidate 
points as weights. Once an ant has constructed an entire path, the objective function (12) is 
evaluated. After M ants have been sent, the global heuristic rule is applied by evaporating part 
of the current pheromone at every point, and by reinforcing the pheromone in the points 
belonging to the path producing the best objective function at that iteration through the use of 
a pheromone amplification factor. If the path is also the best one found so far, an higher value 
of the pheromone amplification factor is used. The secondary loop is concluded when the 
objective function exhibits no improvement after a predefined number of successive iterations. 
For the distribution system optimal reconfiguration problem, ACO algorithms showing 
better performance than other heuristics are indicated in some references, for instance in 
comparison with the simulated annealing algorithm (Su et al., 2005; Carpaneto & Chicco, 
2008; Chang, 2008) and with genetic algorithms (Su et al., 2005; Chang, 2008). 

4. Distribution system optimal planning 
4.1 Formulation of the optimal planning problems 
In a planning problem, the objective function is generally set up in economic terms. A basic 
distinction occurs between operational planning (carried out at constant load) and expansion 
planning (carried out at variable load). 
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A predefined set J of alternative planning actions (e.g., addition/removal of branches, 
distribution automation enhancement, addition of local generation units), each of which has 
to maintain a radial distribution network configuration after its activation, is chosen by the 
decision maker, in order to assess the most effective solution among the possible 
combinations of these alternatives. Since in real systems the number of possible 
combinations can be so high to make exhaustive search intractable, the use of heuristics like 
ACO can conveniently assist the decision-making process.  
Starting from the current state of operation of the distribution system, it is possible to 
formulate the problem by considering the variations that can be introduced in the systems, 
thus calculating the corresponding effects. Considering a combination R ⊆ J of planning 
actions activated at the stage of the solution process under analysis, in Carpaneto & Chicco, 
2005, the objective function for the operational planning problem is formulated as: 

 f (R) = CA(R) + ΔCR(R) + ΔCM(R) + ΔCV(R) (21) 

where CA(R) is the cost of activation of the combination R of planning actions, and the terms 
ΔCR(R), ΔCM(R) and ΔCV(R) are the variations of the cost components referred to reliability 
(power and energy not served), maintenance and annual investment, respectively, with 
respect to the present system operation. The cost component ΔCV(R) can also be constrained 
by a budget limit. 
Favuzza et al., 2006, address the distribution system reinforcement with distributed 
generation, using the annual cost of distribution systems reinforcement strategy as objective 
function in a multi-year planning approach. The objective function is expressed as:  

 f (R) = CL(R) + CM(R) + CV(R) – RD(R) – RI(R)   (22) 

where, in addition to the previously defined terms, CL(R) is the cost of losses, RD(R) is the 
saving referring to the energy not bought from the transmission system because of 
distributed generation exploitation, and RI(R) is the revenue resulting from incentives (e.g., 
for production from renewable sources).  
In Favuzza et al., 2007, the objective function for distribution system reinforcement with gas 
microturbines is formulated by taking into account also the costs CE(R) of the electrical 
energy bought and the revenues RE(R) from selling electricity and heat:  

 f (R) = CL(R) + CM(R) + CV(R) + CE(R) – RE(R)   (23) 

Gomez et al., 2004, formulate expansion planning as a mixed nonlinear integer optimization 
problem by considering the total (fixed and variable) costs and partitioning these costs 
among existing and proposed distribution system circuits and substations, with a given 
maximum load condition. The same partitioning is used to express the capacity constraints. 
Bi-directional voltage magnitude constraints are introduced as well. Other constraints refer 
to the energy balance and to consider only radial networks. A maximization problem is 
solved, in which the objective function is the inverse of the previously mentioned total costs. 

4.2 Ant colony optimization applications 
In the ACO application presented in Carpaneto & Chicco, 2005, the pheromone is associated 
to the individual planning actions. Initially, all planning actions j ∈ J are associated to the 
same quantity of pheromone τ0. During the iterative process, each ant m = 1,…, M activates a 
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number of planning actions chosen at random by applying the weighted probabilistic 
selection mechanism (Fig. 2) according to the probabilities (1), depending on the distance 
formulated for the specific problem. For instance, the application presented in Carpaneto & 
Chicco, 2005, deals with the placement of remote controllers in the distribution system 
nodes, considering as planning action the placement of an individual remote controller in a 
node belonging to a set of candidate nodes. In this case, the distance referring to a given 
node is the inverse of the product of the power not served times the equivalent failure rates 
in the upstream and downstream portions of the network with respect to that node. At the 
end of each iteration, the global heuristic rule is applied by evaporating part of the 
pheromone and increasing the pheromone quantity for the planning actions providing the 
best objective function during the iteration (if the solution is the best one found so far the 
amplification factor is higher than the one used for the best solution at the current iteration). 
In Favuzza et al., 2006, and Favuzza et al., 2007, the problem is represented as a graph, in 
which the (reinforced) distribution system configurations at the different years are the 
nodes, and the distances between the nodes are the actualized transition costs (including 
investment and operation) from the reference configuration to the new one. In this 
application, the set of nodes to be visited is not unique, but it is in principle infinite. The 
solution algorithm is then set up as a dynamic ant colony search, in which the algorithm 
creates at each year a finite number of candidate solutions, forming a dynamic tree 
structure. Basically, a parameter Ns is introduced to set up the number of candidate 
solutions generated (corresponding for instance to different sizes of the local generation 
units), and a mechanism to replace the worst search directions with most convenient ones 
(in terms of pheromone value and distance) is included to avoid excessive expansion of the 
dynamic tree during the solution process. Each resulting multi-year path is associated to a 
cost determined as the sum of the actualized transition costs. 

For a given ant m, starting from the configuration ( ),m y
iX  at a given year y, the configuration 

( ), 1m y
jX +  reached at the successive year is selected among the set ( ), 1m y

i
+S of the configurations 

generated dynamically. The selection is carried out by using elitistic considerations as in 
Section 2.6. The user-defined parameter q0 is adapted during the solution process, 
decreasing it when the number of successive solutions without improvement increases, thus 
reducing the importance of elitistic choice in favour of the weighted probabilistic selection. 
The pheromone is updated according to the standard local heuristic rule (Section 2.3), and to 

the global heuristic rule (2) applied at the end of each iteration, in which the function ( )hψ  is 
the inverse of the cost of the best path found during the iteration.  
In Gomez et al. 2004, initially a random pheromone quantity is associated to each branch of 
the network. Then, each ant explores the network to reach all its nodes with a radial 
network, with a search guided by the weighted probabilistic selection mechanism illustrated 
in Section 2.2. The selection is carried out by using elitistic considerations as in Section 2.6. 
Classical local and global heuristic rules are used for pheromone update. In the global 

heuristic rule (2), the function ( ) ( )
min
hh Cτψ κ=  is given by the ratio between the user-defined 

factor τκ  and the minimum cost of the best path found during the iteration. The distance 
used for pheromone update takes into account the branch length, the magnitude of the load 
at the end of the path, and the incremental cost of the network. 
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5. Optimization of service restoration and reliability 
5.1 Formulation of the service restoration and reliability optimization problems 
Faults in a distribution system are generally classified as temporary (when the protection trip 
is followed by successful reclosure and final normal operation) and permanent (requiring 
successive restoration phases after the protection trip, with remote-controlled operations, 
additional manual operations, on-site repair and eventual service restoration (Carpaneto & 
Chicco, 2004b).  
Distribution system reliability is represented by using local indices (referring to a single load 
point) and global indices (characterizing the overall distribution system). The relevant 
quantities are frequency and duration of the interruptions, and the corresponding global 
indices (Billinton & Allan, 1984) are the system average interruption frequency index (SAIFI) 
and the system average interruption duration index (SAIDI).  
The relevant functions of the devices installed in distribution systems for reliability and 
service restoration purposes are switch and protection. The switch function refers to isolate 
a fault occurring downstream with respect to the switching device location, and can be 
operated by reclosers (with protection capability) or switches (with no protection 
capability). The protection function can be performed by circuit breakers, fuses and 
reclosers. The reclose function reduces the interruption duration after a temporary fault. 
Different objective functions have been formulated for the optimization problems involving 
service restoration and reliability. In Teng & Liu, 2003, the objective function consists of the 
customer interruption costs (CIC) per year, taking into account voltage drop and feeder load 
transfer capability constraints. In Ahuja et al., 2007, service restoration is addressed starting 
from the solutions obtained for the multi-objective optimal reconfiguration problem (Section 
3.3.3), considering only the voltage deviation objective as relevant for restoration purposes. 
Wang & Singh, 2008, address the location of reclosers and distributed generation units for 
improving distribution system reliability. The objective function to minimize is written as: 

 ( ) ( )1 2T T
SAIFI SAIDIf w w

SAIFI SAIDI
= +  (24) 

where w1 and w2 represent the weights associated with the interruption frequency and 
duration terms, respectively. SAIFI(T) and SAIDI(T) are the target values for SAIFI and SAIDI. 
Falaghi et al., 2009, formulate a fuzzy optimization procedure to solve the multiobjective 
optimization with the two conflicting objectives of improving service reliability (assessed 
through the calculation of the annual expected energy not supplied) and minimizing the 
cost of sectionalizing switches. The objective function is composed of the weighted sum of 
the two objectives, 0 1 2R Cw wτ μ μ′ = + , where Rμ  and Cμ  are the fuzzy membership 
function used for reliability improvement and cost of sectionalizing switches, respectively, 
and the coefficients w1 and w2 satisfy the condition w1 + w2 = 1. This function is used as a 
quality function in the heuristic rules for pheromone addition to the best paths. 
Tippachon & Rerkpreedapong, 2009, address the multi-objective optimization problem 
concerning the optimal placement of reclosers and fuses. The objectives considered are 
SAIFI, SAIDI, and the total cost Ctot, and are addressed with the aim of searching for the 
non-dominated solutions belonging to a Pareto front (Shukla & Deb, 2007). The latter 
includes the average cost of temporary and permanent interruptions, and the fixed cost for 
investment and installation of switches and protective devices. The constraints refer to the 
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possibility of installing only reclosers and switches on the main distribution system feeders, 
the avoidance of fuse location upstream of a recloser, and the maximum number of fuses to 
be placed in a series path. The max-min operator is applied to select the best multiobjective 
solution. 

5.2 Ant colony optimization schemes and solutions 
In Ahuja et al., 2007, the pheromone table corresponding to the voltage deviation objective is 
used in order to obtain a feasible configuration for the service restoration problem after a 
contingency. The distribution network is progressively constructed starting from scratch by 
using the Kruskal’s algorithm (Kruskal, 1956) to connect branches not forming any loop 
until all nodes are reached. As relatively high pheromone values indicate the quality of a 
branch to remain open, the inverse of the pheromone values (added to a user-defined 
constant to avoid biasing the search towards the solution found in normal conditions) are 
used in the weighted probabilistic selection mechanism (Section 2.2) in order to extract the 
branch to be connected to the network. Falaghi et al., 2009, apply a classical version of ACO. 
An efficient scheme for addressing reliability optimization through ant ACO algorithms is 
illustrated and used in some references (Teng & Liu, 2003; Wang & Singh, 2008; Tippachon 
& Rerkpreedapong, 2009). This scheme adopts a multi-stage representation of the search 
space, in which the number of stages D is equal to the number of devices to be located in the 
distribution system (Fig. 3). Furthermore, at each stage the information dimension includes 
the candidate locations ξ = 1,…, Ξ. In a given stage δ = 1,..., D, a state γδ in the search space is 
defined by the pair (location ξ, device type). 
Each ant starts from the nest and proceeds on the various stages until reaching the 
destination. At each stage, an ant selects one state to go in the next stage, on the basis of a 
function of the pheromone and of the distance ( ),i jd  of the connection from the present state 
γξ (

δ)  to a state γξ′ (δ+1)  in the following stage. 
 

 

nest :
:

:
:

:
:

:
:

…….

…….

…….

stage δ = 1 δ = 2 δ = D-1 δ = D 

 
 
 
 
destination γξ (

δ) state

ξ = 1 

ξ = Ξ 

ξ = 2 

location 

 
Fig. 3. Multi-stage representation of the search space. 

In Teng & Liu, 2003, the max-min ant colony system (Stützle & Hoos, 2000) is used to 
address the switch relocation problem. For an ant m moving from the state i = γξ (

δ)  at stage δ 
to the point j = γξ′ (δ+1)  at stage δ+1, the transition probability is expressed by considering as 
distance ( , )i jd  the inverse of the CIC reduction between stage δ and δ+1, using the set ( ),m

i
δS of 

the states that can be reached at the successive stage to obtain: 
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Alternatively, equation (25) can be rewritten by avoiding the use of the distance information 
to make calculations faster. 
In Wang & Singh, 2008, ACO is applied by initially positioning the ants in randomly 
selected starting nodes. The pheromone is associated to the connections among the nodes, 
with equal initial values τ0. The multi-stage scheme of Fig. 3 is used. The distance is 
proportional to the inverse of the improvement of the objective function in two successive 
stages. Classical local and global heuristic rules are used. Elitism is applied as in Section 2.6. 
In Tippachon & Rerkpreedapong, 2009, the multi-stage representation of Fig. 3 is extended 
to solve a multi-objective optimization problem through the multiple ant colony system 
(MACS) (Gambardella et al., 1999). MACS uses a single pheromone matrix and several 
heuristic information functions. The pheromone matrix values are initialized by using as 

initial estimation the value ( ) 1
0 0 0 0

totSAIFI SAIDI Cτ
−

= ⋅ ⋅ . 

Starting from the state i on a given stage, let us consider the set Si of the states that can be 
reached at the successive stage, the distances ( ) { }( , ) ( , ) ( , ), , , tot

i j i j i ji jd SAIFI SAIDI C=  when an ant 

m reaches the state j ∈ ( )m
iS , the user-defined parameter q0 ∈ [0, 1] to introduce elitism 

(Section 2.6), and a random number r ∈ [0, 1] extracted each time a selection has to be made. 
The state j to be reached is then selected by applying the following rule: 

 ( ) ( ) ( )
( )( ) 0, ,

1,2 ,3
arg max if

ˆ otherwise
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d r q
j

j

νλ βν

ν
τ

−

∈ =

⎧ ⎧ ⎫⎪ ⎪⎪ ≤⎨ ⎬⎪= ⎨ ⎪ ⎪⎩ ⎭
⎪
⎪⎩

∏
S  (26) 

where the term ( )mod / 1,1m Mν νλ λ= + −  is introduced to force the ants m = 1,…, M to 
search in different directions of the Pareto front, and the state ĵ  is chosen by applying the 
weighted probabilistic selection mechanism by computing the probabilities in a way similar 
to (1) for j ∈ ( )m

iS , namely: 
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 (27) 

After each ant movement from i to j, the local heuristic rule (Section 2.3) is applied to update 
the pheromone ( ),i jτ . 
The pheromone 0τ  may be changed during the solution process. After the generation of 
new solutions, it is verified which solutions are non-dominated (i.e., belong to the set P′, and 
are potential solutions to belong to the Pareto front P). For each solution p ∈ P′, the value 0τ ′  
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is calculated as 1
0 ( )tot

p p pSAIFI SAIDI Cτ −′ = ⋅ ⋅ . If 0τ ′ > 0τ  the pheromone is reinitialized to 0τ ′ , 
otherwise the global update rule is applied to all connections ( ),i j  of each solution p ∈ P′: 

 ( ) ( ) ( ), ,1 previous
i j tot i j

p p pSAIFI SAIDI C
στ σ τ= + −

⋅ ⋅
 (28) 

6. Conclusions  
This chapter has summarized the framework of application referring to some typical 
distribution system optimization problems. While some applications use classical versions 
of the ACO algorithms, specific adaptations of the algorithms to specific problems led to 
customized versions with ACO variants or hybridizations with other heuristics. 
Future work can be developed to improve the effectiveness of the solutions of the ACO 
algorithms, also benefiting from recent theoretical findings, such as the ones concerning the 
choice of an appropriate pheromone model to avoid the so-called second-order deception 
with decreased algorithm performance over time (Blum & Dorigo, 2005; Dorigo & Blum, 
2005), the development of ACO algorithms functionally equivalent to the original ones, with 
pheromone independent of the scale of the problem instance considered (Birattari et al., 
2007), the possible ACO application to continuous optimization problems (Blum, 2005), and 
the analysis of the convergence time of the ACO algorithms (Huang et al., 2009). 
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